JPS6032917B2 - semiconductor circuit - Google Patents

semiconductor circuit

Info

Publication number
JPS6032917B2
JPS6032917B2 JP55029978A JP2997880A JPS6032917B2 JP S6032917 B2 JPS6032917 B2 JP S6032917B2 JP 55029978 A JP55029978 A JP 55029978A JP 2997880 A JP2997880 A JP 2997880A JP S6032917 B2 JPS6032917 B2 JP S6032917B2
Authority
JP
Japan
Prior art keywords
memory
circuit
vertical
delay circuit
ratioless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55029978A
Other languages
Japanese (ja)
Other versions
JPS56127996A (en
Inventor
俊明 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP55029978A priority Critical patent/JPS6032917B2/en
Publication of JPS56127996A publication Critical patent/JPS56127996A/en
Publication of JPS6032917B2 publication Critical patent/JPS6032917B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/08Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using semiconductor devices, e.g. bipolar elements
    • G11C17/10Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using semiconductor devices, e.g. bipolar elements in which contents are determined during manufacturing by a predetermined arrangement of coupling elements, e.g. mask-programmable ROM
    • G11C17/12Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using semiconductor devices, e.g. bipolar elements in which contents are determined during manufacturing by a predetermined arrangement of coupling elements, e.g. mask-programmable ROM using field-effect devices
    • G11C17/123Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards using semiconductor devices, e.g. bipolar elements in which contents are determined during manufacturing by a predetermined arrangement of coupling elements, e.g. mask-programmable ROM using field-effect devices comprising cells having several storage transistors connected in series

Description

【発明の詳細な説明】 本発明は、半導体リードオンリーメモリ(以下ROMと
称する)に関し、特に、1本のメモリラインに対し、複
数個の絶縁ゲート型電界効果トランジスタ(以下MIS
FET又は単にFETと称する)が直列接続された、所
謂、縦型ROMに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor read-only memory (hereinafter referred to as ROM), and in particular, to a semiconductor read-only memory (hereinafter referred to as ROM), a plurality of insulated gate field effect transistors (hereinafter referred to as MIS) are connected to one memory line.
The present invention relates to a so-called vertical ROM in which FETs (hereinafter simply referred to as FETs) are connected in series.

最近のROMにおいては、集積度の向上を図る為に、縦
型構成で且つ、レシオレス構成としたROMが多く用い
られ、特に、マイクロコンピューター、電子式卓上計算
機等のチップの内部ROMとして用いられる事が多い。
In recent years, in order to improve the degree of integration, ROMs with a vertical configuration and a ratioless configuration are often used, and in particular, they are used as internal ROMs in chips of microcomputers, electronic desk calculators, etc. There are many.

動作周波数の比較的低い相補型絶縁ゲート電界効果トラ
ンジスタ(以下CMOSと称する)においては、上記縦
型レシオレス構成のものがほとんどである。縦型構成の
ものにおいてより集積度を向上させる通常手段として、
1本のメモリラインに対して直列接続されるメモリセル
の個数を増やす事が上げられる。
Most complementary insulated gate field effect transistors (hereinafter referred to as CMOS) with relatively low operating frequencies have the above-mentioned vertical ratioless configuration. As a normal means of increasing the degree of integration in vertical configurations,
One example of this is to increase the number of memory cells connected in series to one memory line.

かかる縦型ROMにおいては直列接続されるメモリセル
の個数が増加する程、ィンピ−ダンスが大となって、ブ
リチャージ、デイスチヤージに要する時間が長くなる。
従来の縦型レシオレス構成の相補型MOS(C/MOS
)FETを用いたROMの1例を図1に示し、その動作
の概要を第2図のタイミング、応答特性を参照しながら
正電源、正論理で説明する。
In such a vertical ROM, as the number of memory cells connected in series increases, the impedance increases and the time required for precharging and discharging increases.
Complementary MOS (C/MOS) with conventional vertical ratioless configuration
) An example of a ROM using a FET is shown in FIG. 1, and an outline of its operation will be explained in terms of positive power supply and positive logic, with reference to timing and response characteristics in FIG.

第1図は縦型レシオレスNAND論理のROMの例で、
12釘庁一1列−メモリセルの縦頚段数が少ない(例え
ば10〜2M変)場合には、正常にこれらの論理演算が
行なわれるが、縦積段数が多くなるに従い、メモリセル
の等価インピーダンスが大となり、特にバックバイアス
を受けるプリチャージの所要時間が指数関数的に増加す
る為、規定のプIJチャージ時間内には直列接続のメモ
リーセルの総てがピンチ・オフ状態鱒こ致る迄の充分な
充電が成し得なくなる。
Figure 1 is an example of a vertical ratioless NAND logic ROM.
12 pegs, 11 columns - When the number of vertical stacks of memory cells is small (for example, 10 to 2M), these logical operations are performed normally, but as the number of vertical stacks increases, the equivalent impedance of the memory cells decreases. becomes large, and the time required for precharging, especially when subjected to back bias, increases exponentially. Therefore, within the specified pre-IJ charging time, all series-connected memory cells are in a pinch-off state. It becomes impossible to charge the battery sufficiently.

この様な状態でROMをアクセスすると、次の様な問題
が生ずる。
If the ROM is accessed in such a state, the following problems will occur.

即ち、■pが“1”となり、■sが“1”となってサン
プリング状態に入ると第2図の応答特性の“保持”に示
す様にピンチオフし得なかったメモリセルの各節点は電
位平衡すべ〈電荷が移動し、出力Outも保持状態にな
ければならないが次第に電位平衡し、やがて情報は破壊
し、センスアンプは逆論理を検出してしまう。“放電”
状態においても、縦積段数が多くなるに従い、等価イン
ピーダンスが大となる為に、ディスチャージに要する時
間が長くなる。この様な条件下では縦債段数が多くなる
に従い、保持状態でのデータ破壊の時間と、デイスチヤ
ージ時間とがかなり接近してくる。■p,■sは内部の
基本クロッククに同期したクロックを用いるのが常にで
あり、動作保証すべき周波数範囲においてディスチャー
ジ時間≦サンプリング時間≦保持破壊時間を満足する敵
当なサンプリング時間が得がたい。且つ、広範囲な電源
変動、温度変動、製造条件の変動時を含むと最悪条件で
のディスチャージ時間と保持破壊時間はますます接近し
、第2図の如きサンプリングクロツク■sではセンスア
ンプはサンプリング期間中に“1”レベルが破壊し、ラ
ッチ回路Fに逆論理を読み込んでしまう。この発明の目
的は安定で、動作速度の低下を伴わないレシオレスRO
M回路を提供することにある。
In other words, when ■p becomes "1" and ■s becomes "1" and the sampling state is entered, each node of the memory cell that could not be pinched off has a potential as shown in "Hold" of the response characteristic in Figure 2. Balance should be achieved. (The charge moves and the output Out must also be held, but the potential is gradually balanced, and eventually the information is destroyed and the sense amplifier detects reverse logic. “Discharge”
Even in this state, as the number of vertically stacked stacks increases, the equivalent impedance increases, so the time required for discharging increases. Under such conditions, as the number of vertical bond stages increases, the time required for data destruction in the retained state and the discharge time become considerably closer. (2)p and (2)s always use clocks synchronized with the internal basic clock, and it is difficult to obtain a reasonable sampling time that satisfies discharge time≦sampling time≦holding/destruction time in the frequency range where operation is to be guaranteed. In addition, when wide-ranging power supply fluctuations, temperature fluctuations, and fluctuations in manufacturing conditions are included, the discharge time and hold breakdown time under the worst conditions become closer and closer together. The "1" level is destroyed and the reverse logic is read into the latch circuit F. The purpose of this invention is to provide a ratioless RO system that is stable and does not reduce operating speed.
The purpose of this invention is to provide an M circuit.

この発明によるROMは、最も長い放電時間を要するビ
ットかそれより少し長い放電時間を有する遅延回路を設
け、この遅延回路が放電した事を感知した信号によって
メモリ出力〜センス・アンプ間かセンス・アンプ〜デー
タ・ラツチ回路間を電気的に切り離す事により、メモリ
ー回路内部での‘‘保持”論理の破壊が無視しうる様に
成したことを特徴とする。
The ROM according to the present invention is provided with a delay circuit having a bit that requires the longest discharge time or a slightly longer discharge time, and a signal that detects that the delay circuit has discharged is used to control the bit between the memory output and the sense amplifier. ~A feature is that by electrically separating the data latch circuit, destruction of the ``retention'' logic inside the memory circuit can be ignored.

この発明の実施例を第3図に示す。An embodiment of this invention is shown in FIG.

第3図において、M,〜A,斑は1列12群庁のNチャ
ネル型FETのメモリーセル・アレイ・Mpはプリチヤ
ージ用のPチャネル型MISFET,Maはサンプリン
グ用Nチャネル型MISFET,Sはセンスアンプ用ィ
ンバータ、Fはデータラツチ用のSDフリツプフ。ツプ
である。Qr,Q,〜Q64〜,28は恒常的にオンし
たNチャネル型セル・アレイ、Qpはプリチャージ用P
チャネル型MISFET,Qdはサンプリング用Nチャ
ネル型MISFET,S′はセンスアンプ用インバータ
、■s信号をINV,で反転し、2入力のNORで検出
して■dを得る。
In Figure 3, M, ~A, and spots are memory cell arrays of N-channel FETs in 1 row and 12 groups, Mp is a P-channel MISFET for pre-charge, Ma is an N-channel MISFET for sampling, and S is a sense Inverter for amplifier, F is SD flippf for data latch. It's Tsupu. Qr, Q, ~Q64~, 28 are N-channel cell arrays that are permanently turned on, Qp is P for precharging.
The channel type MISFET Qd is an N-channel type MISFET for sampling, S' is an inverter for a sense amplifier, and the s signal is inverted by INV and detected by a two-input NOR to obtain d.

この■d出力と逆相の■p出力でデータ・ラッチ用SD
フリップ・フロップの読み込み、帰還用のトランスフア
ゲートを制御する。Pチャネルの基板は十VccにNチ
ャネルの基板は接地電位に接続される。正電源正論理で
、第4図の応答特性を用いて説明する。1列−128行
のメモリー回路のセンス出力B.は従来例で説明したの
と全く同じタイミング、特性を有する。
SD for data latch with this ■d output and ■p output which is in reverse phase.
Controls flip-flop reading and feedback transfer gates. The P-channel substrate is connected to 10 Vcc, and the N-channel substrate is connected to ground potential. This will be explained using the response characteristics shown in FIG. 4 using positive power supply and positive logic. Sense output of memory circuit of 1st column-128th row B. has exactly the same timing and characteristics as explained in the conventional example.

異なるのは、このセンス出力をラッチするフリップ・フ
ロップの読み込み、帰還用のトランスフアゲートの制御
に用いるラツチ・クロックを遅延回路で発生させること
である。ラッチ・クロック■d,■dの幅、即ちサンプ
リング時間は、最長のメモリー放電時間≦サンプリング
時間≦最短のメモリー保持破壊時間となる様に設定する
The difference is that a delay circuit generates a latch clock used to read the flip-flop that latches this sense output and to control the feedback transfer gate. The width of the latch clocks ■d and ■d, that is, the sampling time, is set so that the longest memory discharge time≦sampling time≦the shortest memory retention and destruction time.

第3図の回路は、この条件を簡単に満足させる回路であ
る。メモリーセル・アレイの列に並んで恒常的に導通し
た疑似セル・アレイを配する。セル・サイズ、配列ピッ
チを同じにして直列段数をメモリー回路の最長段数より
も少し多く設ければ、サンプリング時間は必ず最長のメ
モリー放電時間よりも長い範囲で可能な限り短く設定す
ることができる。こうすれば製造条件や電源変動、温度
変化等につるセル・サイズのオン抵抗の変化、容量の変
化等がメモリー・セル・アレイと遅延回路で同機に働く
ので好都合である。
The circuit shown in FIG. 3 is a circuit that easily satisfies this condition. A permanently conductive pseudo cell array is arranged in line with the memory cell array. If the cell size and array pitch are kept the same and the number of series stages is slightly larger than the longest number of stages in the memory circuit, the sampling time can be set as short as possible while always being longer than the longest memory discharge time. This is advantageous because changes in on-resistance and capacitance of the cell size due to manufacturing conditions, power supply fluctuations, temperature changes, etc. will affect the memory cell array and delay circuit simultaneously.

この様にすれば基本クロツク■sがいかになってもサン
プリング・ラツチ・クロックは常に遅延回路の放電時間
で定まる。遅延回路が放電(■dが“0”)した後はデ
ータ・ラッチのフリップ・フロッブの読み込みトランス
フアがカット・オフしてメモリー出力とフリツプ・フロ
ツブの読み込みトランスフアがカット・オフしてメモリ
ー出力とフリツプ・フロツプとを切り離す為、それ以後
のメモリーセル側での“保持”情報の破壊は何等構わな
い。上記の説明はROMの構成が1ビット出力で、ビッ
ト当り1列一12桝庁の構成例で述べたが実施にあたっ
ては、多ビット出力であっても良いしビット当り多列−
多行であっても構わない。
In this way, no matter what the basic clock s becomes, the sampling latch clock is always determined by the discharge time of the delay circuit. After the delay circuit is discharged (■d is “0”), the read transfer of the data latch flip-flop is cut off and the memory output and the read transfer of the flip-flop are cut off and the memory output In order to separate the flip-flop and the flip-flop, it does not matter what happens to the subsequent destruction of "retained" information on the memory cell side. In the above explanation, the configuration of the ROM is one bit output, and each bit has one column and 12 squares.
It doesn't matter if it has multiple lines.

また、上記説明は電圧極性を逆にすれば、チャネル型も
逆にすれば良く、さらにCMOSではなくて、Pチャネ
ルまたはNチャネルの単一チャネルでも全く構わない。
Further, in the above description, if the voltage polarity is reversed, the channel type may also be reversed, and it is also possible to use a single channel such as P channel or N channel instead of CMOS.

図面の簡単な説明第1図は従釆のレシオレス構成ROM
の1列−12群庁のビット構成例を示す図、第2図は、
第1図の従来回路に用いるタイミングクロックと各節点
電位の応答特性を示す図、第3図は遅延回路を用いてな
る本発明のレシオレスROMの回路例を示す図、第4図
はこの発明に用いるクロックに用いるタイミング・クロ
ツクとメモリーおよび遅延回路の各節点電位の応答特性
およびラッチ・クロック破形を示す図である。
Brief explanation of the drawings Figure 1 shows the ratioless configuration ROM of subordinates.
Figure 2 is a diagram showing an example of the bit configuration of column 1-12 of
FIG. 1 is a diagram showing the response characteristics of the timing clock used in the conventional circuit and each node potential, FIG. 3 is a diagram showing a circuit example of the ratioless ROM of the present invention using a delay circuit, and FIG. 4 is a diagram showing the response characteristics of the timing clock used in the conventional circuit. FIG. 4 is a diagram showing the response characteristics of the timing clock used as the clock used, the memory and each node potential of the delay circuit, and the latch clock irregular shape.

Mp…・・・プリチャージ用FET,M,〜M64〜M
,2・・・・・・メモリーセル用FET、SD・・・…
フリツプ・フロツフ〇。
Mp...Precharge FET, M, ~M64~M
, 2... Memory cell FET, SD...
Flip Frotzf〇.

劣〆図 第4図 策Z図 第3図inferior figure Figure 4 Plan Z diagram Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁ゲート電界効果トランジスタが複数個直列接続
された縦型レシオレス構成のリード・オンリー・メモリ
ーと前記リード・オンリー・メモリーと同期して充放電
する縦型レシオレス構成の遅延回路を具備して成る回路
であつて、前記遅延回路の放電時間は前記メモリー出力
の最長の放電時間と同じか、またはより長くされ遅延回
路が放電したことを感知した信号によりメモリー出力線
とデータ・ラツチ回路間を電気的に分離するようにした
ことを特徴とする半導体回路。
1. A circuit comprising a read-only memory with a vertical ratioless configuration in which a plurality of insulated gate field effect transistors are connected in series, and a delay circuit with a vertical ratioless configuration that charges and discharges in synchronization with the read-only memory. The discharge time of the delay circuit is equal to or longer than the longest discharge time of the memory output, and a signal detecting discharge of the delay circuit connects the memory output line and the data latch circuit electrically. A semiconductor circuit characterized by being separated into two.
JP55029978A 1980-03-10 1980-03-10 semiconductor circuit Expired JPS6032917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55029978A JPS6032917B2 (en) 1980-03-10 1980-03-10 semiconductor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55029978A JPS6032917B2 (en) 1980-03-10 1980-03-10 semiconductor circuit

Publications (2)

Publication Number Publication Date
JPS56127996A JPS56127996A (en) 1981-10-07
JPS6032917B2 true JPS6032917B2 (en) 1985-07-31

Family

ID=12291043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55029978A Expired JPS6032917B2 (en) 1980-03-10 1980-03-10 semiconductor circuit

Country Status (1)

Country Link
JP (1) JPS6032917B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125998A (en) * 1983-12-12 1985-07-05 Fujitsu Ltd Semiconductor storage device
JPH0793028B2 (en) * 1984-12-22 1995-10-09 日本テキサス・インスツルメンツ株式会社 Semiconductor memory device
JPS61150193A (en) * 1984-12-24 1986-07-08 Toshiba Corp Latch circuit

Also Published As

Publication number Publication date
JPS56127996A (en) 1981-10-07

Similar Documents

Publication Publication Date Title
US6597596B2 (en) Content addressable memory having cascaded sub-entry architecture
JPH0424799B2 (en)
US8144537B2 (en) Balanced sense amplifier for single ended bitline memory architecture
JPS62293586A (en) Semiconductor storage circuit
JPS60258791A (en) Mos static ram
JPS63183680A (en) Semiconductor storage device
EP0373672B1 (en) Semiconductor memory circuit having an improved restoring control circuit
US7433254B2 (en) Accelerated single-ended sensing for a memory circuit
US6181596B1 (en) Method and apparatus for a RAM circuit having N-Nary output interface
US6717873B2 (en) Balanced sense amplifier control for open digit line architecture memory devices
US7391633B2 (en) Accelerated searching for content-addressable memory
JPS6032917B2 (en) semiconductor circuit
US20030193359A1 (en) Semiconductor memory delay circuit
US5982692A (en) Bit line boost amplifier
US4439697A (en) Sense amplifier circuit
US4802126A (en) Semiconductor memory device
JP3632113B2 (en) Associative memory device
JPS6299975A (en) Semiconductor storage circuit
US6118716A (en) Method and apparatus for an address triggered RAM circuit
Singh et al. Architecture and design of a high performance SRAM for SOC design
JPS59140688A (en) Static mosram
JPH05101681A (en) Semiconductor memory
JPH0658760B2 (en) Semiconductor integrated circuit
JPS6325883A (en) Dynamic ram
JPS6180589A (en) Dynamic type ram