JPS6032837Y2 - Heat pump refrigeration equipment - Google Patents

Heat pump refrigeration equipment

Info

Publication number
JPS6032837Y2
JPS6032837Y2 JP1409881U JP1409881U JPS6032837Y2 JP S6032837 Y2 JPS6032837 Y2 JP S6032837Y2 JP 1409881 U JP1409881 U JP 1409881U JP 1409881 U JP1409881 U JP 1409881U JP S6032837 Y2 JPS6032837 Y2 JP S6032837Y2
Authority
JP
Japan
Prior art keywords
neon lamp
circuit
defrosting
heat pump
electronic control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1409881U
Other languages
Japanese (ja)
Other versions
JPS57125935U (en
Inventor
健一郎 二見
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP1409881U priority Critical patent/JPS6032837Y2/en
Publication of JPS57125935U publication Critical patent/JPS57125935U/ja
Application granted granted Critical
Publication of JPS6032837Y2 publication Critical patent/JPS6032837Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はヒートポンプ式冷凍装置、詳しくは、ディアイ
サにより除霜信号を、冷房・暖房・除霜の各運転の電子
制御回路に入力させて、該回路の出力により四路切換弁
を冷房側に切換えて除霜運転すべくしたヒートポンプ式
冷凍装置に関する。
[Detailed description of the invention] The present invention is a heat pump type refrigeration system, in detail, a defrosting signal is inputted by a de-Icer into an electronic control circuit for each operation of cooling, heating, and defrosting, and the output of the circuit is used to The present invention relates to a heat pump type refrigeration system in which defrosting operation is performed by switching a switching valve to the cooling side.

従来、此種装置は、交流の例えば100Vの電源から該
電源電圧に見合う電圧の除霜信号を発生させて、該電圧
を直流化すると共に減圧して、発光ダイオードとフォト
トランジスタとを組合わせた所謂フォトカプラの発光ダ
イオードに印加し、フォトトランジスタから、電子制御
回路の所定の入力電圧に対応した微弱な信号にして出力
させ、電子制御回路に入力すべくしていた。
Conventionally, this type of device generates a defrost signal from an AC power source of, for example, 100V, with a voltage corresponding to the power supply voltage, converts the voltage to DC and reduces the pressure, and combines a light emitting diode and a phototransistor. The voltage is applied to a light emitting diode of a so-called photocoupler, and the phototransistor outputs a weak signal corresponding to a predetermined input voltage of an electronic control circuit, which is then input to the electronic control circuit.

ところが交流の除霜信号をフォトカプラの発光ダイオー
ドに供給するに際し、直流にするため整流回路ひいては
平滑回路が必要で高価となる問題があり、しかも、発光
ダイオードは、過電流に弱く、かつ、逆耐電圧が小さい
ため、交流電源の電圧に重畳してサージが侵入すると、
該侵入サージによりフォトカプラが破損することとなる
問題があった。
However, when supplying an alternating current defrosting signal to the photocoupler's light emitting diode, there is a problem in that a rectifier circuit and even a smoothing circuit are required to convert it to direct current, making it expensive.Moreover, light emitting diodes are susceptible to overcurrent and reverse Since the withstand voltage is low, if a surge superimposes on the voltage of the AC power supply and enters,
There was a problem in that the photocoupler was damaged due to the intrusion surge.

そのため、この問題を解決すべくフォトカプラを2個用
いて、第1のフォトカプラの出力を第2のフォトカプラ
に入力させ、結果的にフォトカプラを2段に接続して絶
縁抵抗及び耐電圧の絶縁性能を向上させることが考えら
れるが、フォトカプラが2個必要で高価となるばかりか
、侵入サージに耐えられるような十分な絶縁性能は得ら
れず、根本的には解決できないのである。
Therefore, in order to solve this problem, two photocouplers are used, and the output of the first photocoupler is inputted to the second photocoupler.As a result, the photocouplers are connected in two stages to improve insulation resistance and voltage resistance. It is conceivable to improve the insulation performance of the insulator, but not only would this require two photocouplers, which would be expensive, but it would not provide sufficient insulation performance to withstand intruding surges, making it fundamentally unsolvable.

しかして、本考案は以上の問題を解決すべく考案したも
ので、目的とする所は、交流の除霜信号を直流化する整
流回路及び平滑回路が必要でなく、安価にできると共に
、侵入サージにも耐えられ、寿命長く所定の除霜信号を
確実に電子制御回路に入力させられるヒートポンプ式冷
凍装置を提供する点にある。
Therefore, the present invention was devised to solve the above problems, and its purpose is to eliminate the need for a rectifier circuit and smoothing circuit to convert an AC defrosting signal to DC, making it inexpensive, and preventing intrusion surges. It is an object of the present invention to provide a heat pump type refrigeration device that can withstand high temperatures, has a long service life, and can reliably input a predetermined defrosting signal to an electronic control circuit.

即ち、本考案は、ディアイサにより除霜信号を、冷房・
暖房・除霜の各運転の電子制御回路に入力させて、該回
路の出力により四路切換弁を冷房側に切換えて除霜運転
すべくしたヒートポンプ式冷凍装置であって、前記ディ
アイサの切換動作により、ネオンランプと保護抵抗とを
直列としたネオンランプ回路に交流電源から電通すべく
威すと共に、前記ネオンランプに硫化カドミウムなどの
光電変換素子を対設して、該素子の除霜信号を前記電子
制御回路に入力させるごとくしたことを特徴とするもの
である。
That is, in the present invention, the defrost signal is transmitted by the de-Icer to the cooling/air conditioner.
A heat pump type refrigeration system is provided in which input is input to an electronic control circuit for each operation of heating and defrosting, and the output of the circuit is used to switch a four-way switching valve to the cooling side to perform defrosting operation, and the switching operation of the de-icer In this way, a neon lamp circuit in which a neon lamp and a protective resistor are connected in series is energized from an AC power supply, and a photoelectric conversion element such as cadmium sulfide is provided opposite to the neon lamp, and a defrosting signal of the element is transmitted. It is characterized in that the information is input to the electronic control circuit.

以下本考案装置の実施例をを図面に基づいて説明する。Embodiments of the device of the present invention will be described below based on the drawings.

図面において、Aは室外ユニット、Bは室内ユニットで
、室外ユニットAは、圧縮機1、四路切換弁2、室外フ
ァント工を対設した室外コイル3、暖房用膨張機構4と
と逆止弁5との並列回路を備え、それぞれ冷媒配管6に
より接続しており、また、室内ユニットBは、室内ファ
ンF2を対設した室内コイル7及び冷房用膨張機構8と
逆止弁9との並列回路を備え、それぞれ冷媒配管10に
より接続している。
In the drawings, A is an outdoor unit, B is an indoor unit, and the outdoor unit A includes a compressor 1, a four-way switching valve 2, an outdoor coil 3 with an outdoor fan installed oppositely, a heating expansion mechanism 4, and a check valve. The indoor unit B has a parallel circuit with a cooling expansion mechanism 8 and a check valve 9, an indoor coil 7 with an indoor fan F2 installed opposite it, and a parallel circuit with a check valve 9. are connected to each other by refrigerant piping 10.

また、両ユニットA、 Bの冷媒配管6,10の両端部
間を連絡配管C9Cにより連絡している。
Further, both ends of the refrigerant pipes 6 and 10 of both units A and B are connected by a connecting pipe C9C.

そして、冷房・暖房・除霜の各運転の電子制御回路11
を形成して、該回路11により、冷房時、前記四路切換
弁2に通電して実線のごとく切換え、冷媒を実線矢印の
方向に循環させて冷房運転を行ない、また、暖房時、前
記四路切換弁2を非通電にして点線のごとく切換え、冷
媒を点線矢印の方向に循環させて暖房運転を行なうと共
に、室外コイル3にディアイサDSを設けて、暖房時、
該ディアイサDSにより、除霜信号を前記電子制御回路
11に入力させて、該回路11の出力により前記四路切
換弁2に通電し、冷房側に切換えて除霜運転すべく威す
のである。
And an electronic control circuit 11 for each operation of cooling, heating, and defrosting.
During cooling, the circuit 11 energizes the four-way switching valve 2 to switch as shown by the solid line to circulate the refrigerant in the direction of the solid line arrow to perform cooling operation, and during heating, the four-way switching valve 2 The road switching valve 2 is de-energized and switched as shown by the dotted line, and the refrigerant is circulated in the direction of the dotted arrow to perform heating operation, and the outdoor coil 3 is provided with a de-isser DS, and during heating,
The de-icer DS inputs a defrosting signal to the electronic control circuit 11, and the output of the circuit 11 energizes the four-way switching valve 2 to switch to the cooling side and perform defrosting operation.

ところで、前記電子制御回路11は、冷・暖房運転の開
始時、ドラフトなく室温を急速に所望温度j′−或す制
御、及び冷・暖房負荷の変化に対応した確実な室温制御
を行なうべく、IC,トランジスタなどの電子部品を用
いて圧縮機1の容量制御、及び室外ファンF1のモータ
Mと室内ファンF2Bのモータ(図示せず)との回転数
ひいては室外、内ファンF1.F2の風量制御などを行
なうように威すのである。
By the way, the electronic control circuit 11 is configured to rapidly control the room temperature to a desired temperature j' without drafts at the start of the cooling/heating operation, and to perform reliable room temperature control corresponding to changes in the cooling/heating load. Using electronic components such as ICs and transistors, the capacity of the compressor 1 is controlled, and the rotational speed of the motor M of the outdoor fan F1 and the motor (not shown) of the indoor fan F2B, as well as the number of rotations of the outdoor fan F1 and the indoor fan F1. It instructs the operator to control the air volume of F2.

即ち、前記電子制御回路11は、第2図ごとく、四路切
換弁2に直列接続され暖房時開く接点t1をもった冷暖
切換用リレーR1、及び該リレーR1の接点ちに並列接
続され、暖房時の前記除霜信号の入力により閉動作する
接点t2をもった除霜用リレーR2及び室外ファンモー
タMの速度タップ切換用レーR3、更に圧縮機1の容量
制御用リレーR1、室内ファンモータの速度タップ切換
用レーR6などの各種のリレーを備え、該リレーを前記
電子部品を用いて開閉制御すべく威すのである。
That is, as shown in FIG. 2, the electronic control circuit 11 includes a cooling/heating switching relay R1 that is connected in series to the four-way switching valve 2 and has a contact t1 that opens during heating, and a contact of the relay R1 that is connected in parallel to the heating/heating switching relay R1. A defrosting relay R2 having a contact t2 that closes when the defrosting signal is input at the time, a speed tap switching relay R3 for the outdoor fan motor M, a capacity control relay R1 for the compressor 1, and a relay R1 for controlling the indoor fan motor. It is equipped with various relays such as a speed tap switching relay R6, and the opening and closing of the relays are controlled using the electronic components.

斯くのごとく前記電子制御回路11は、電子部品を用い
るので、該回路11の電源は交流電源(例えば100V
)から逓降トランスTを介して入力させ直流化して作動
電源電圧を、例えば3乃至12VDCの低電圧と威すの
である。
Since the electronic control circuit 11 uses electronic components as described above, the power source of the circuit 11 is an AC power source (for example, 100 V).
) is inputted through a step-down transformer T and converted to direct current, thereby making the operating power supply voltage a low voltage of, for example, 3 to 12 VDC.

そして、第2図のごとく、前記交流電源の線路間に、前
記四路切換弁2及び前記接点t1.t2の並列回路の直
列回路と、前記室外ファンモータM、リレーR2の切換
スイッチ及びディアイサDSの暖房側接点t3の直列回
路とをそれぞ接続すると共に、該接続線に除霜信号線1
2を接続して、該信号線12に、ネオンランプ13と保
護抵抗r1とを直列としたネオンランプ回路30を接続
して、前記ディアイサDSの接点t3に対し並列に接続
するのである。
As shown in FIG. 2, the four-way switching valve 2 and the contact point t1. The series circuit of the parallel circuit of t2 is connected to the series circuit of the outdoor fan motor M, the changeover switch of the relay R2, and the heating side contact t3 of the de-icer DS, and the defrosting signal line 1 is connected to the connection line.
2 is connected to the signal line 12, and a neon lamp circuit 30 having a neon lamp 13 and a protective resistor r1 in series is connected to the signal line 12, and is connected in parallel to the contact t3 of the de-icer DS.

また、前記ネオンランプ13に、該ランプ13の発光を
受光可能に、硫化カドミウムCdsから威る光電変換素
子14を設け、該素子14の一端を前記電子制御回路1
1の端子ちに接続すると共に、素子14の他端を抵撤2
.r3の直列回路を介して電子制御回路11の作動電源
電圧端子らに接続するものである。
Further, the neon lamp 13 is provided with a photoelectric conversion element 14 made of cadmium sulfide Cds so as to be able to receive light emitted from the lamp 13, and one end of the element 14 is connected to the electronic control circuit 1.
Connect terminal 1 to terminal 1, and connect the other end of element 14 to resistor 2.
.. It is connected to the operating power supply voltage terminals of the electronic control circuit 11 via the series circuit r3.

そして、トランジスタTrのエミッタ、コレクタを電子
制御回路11の作動電源電圧端子t6、除霜信号入力端
子t6に接続し、トランジスタTrのベースに前記抵抗
r2.r3の接続線を接続するのである。
The emitter and collector of the transistor Tr are connected to the operating power supply voltage terminal t6 and the defrosting signal input terminal t6 of the electronic control circuit 11, and the resistor r2. The connecting wire of r3 is connected.

ところで、前記保護抵抗r1は、例えば40にΩの高抵
抗を用い、また、前記ネオンランプ13は、第3図のご
とくネオンガを封入した絶縁抵抗、耐電正大なるガラス
管15内に、2つの電極16゜16を1mm程度の間隔
で向かい合せたもので、ガラス管15の外面の内、電極
16.16間に対面する発光量大なる外面位置に前記素
子14を添設して、これらネオンランプ13及び素子1
4を透視可能なケース17に収納するのである。
By the way, the protective resistor r1 uses a high resistance of, for example, 40Ω, and the neon lamp 13 has two electrodes in a glass tube 15 filled with neon gas and having high insulation resistance and electric resistance. 16° 16 facing each other at an interval of about 1 mm, and the element 14 is attached to the outer surface of the glass tube 15 at a position on the outer surface facing between the electrodes 16 and 16 where the amount of light emitted is large. 13 and element 1
4 is housed in a see-through case 17.

尚、18はリード線、19はプラグ、20は室内、外ユ
ニットB、Aに設けた端子盤である。
In addition, 18 is a lead wire, 19 is a plug, and 20 is a terminal board provided in the indoor and outdoor units B and A.

しかして、以上の樹皮において、暖房運転時、前記リレ
ーR1,R2の接点ttt t2が開き、四路切換弁2
が暖房側に切換わると共に、ディアイサDSの接点ちが
閉じ、モータMに通電されて、ファンF1が作動される
(この時ファンF2も作動される)一方、前記ネオンラ
ンプ回路30はディアイサDSにより短絡されて、電圧
が印加されない状態にあり、従って、前記ネオンランプ
13は発光せず、電子制御回路11の入力端子t6には
除霜信号が入力しない状態にある。
Therefore, in the above bark, during heating operation, the contacts ttt t2 of the relays R1 and R2 open, and the four-way switching valve 2
is switched to the heating side, the contacts of the de-Isa DS are closed, the motor M is energized, and the fan F1 is activated (at this time, the fan F2 is also activated), while the neon lamp circuit 30 is activated by the De-Isa DS. The neon lamp 13 is short-circuited and no voltage is applied, so the neon lamp 13 does not emit light and no defrosting signal is input to the input terminal t6 of the electronic control circuit 11.

斯<シて、室外コイル3にフロストが生じ、ディアイサ
DSの接点もが開離すると、モータMの抵抗値にくらべ
て保護抵抗r1の抵抗値がはるかに大きく、例えば30
0〜200of@の大きさであり、電源電圧のはS゛全
体ネオンランプ回路30に印加される。
In this way, when frost occurs on the outdoor coil 3 and the contacts of the de-isser DS are also opened, the resistance value of the protective resistor r1 is much larger than the resistance value of the motor M, for example, 30
The power supply voltage S is applied to the entire neon lamp circuit 30.

そのため、モータMが停止され、ファンF1が停止され
ると共に(ファンF2も停止される)、ネオンランプ1
3が放電を開始して、電極16.16間電圧が一定の放
電維持電圧(例えば60V)を保ち、前記保護抵抗r1
で定まる電流で放電が維持され、グロー光が発せられる
こととなる。
Therefore, the motor M is stopped, the fan F1 is stopped (fan F2 is also stopped), and the neon lamp 1 is stopped.
3 starts discharging, the voltage between the electrodes 16 and 16 maintains a constant discharge sustaining voltage (for example, 60 V), and the protective resistor r1
The discharge is maintained at a current determined by , and glow light is emitted.

その結果、前記グ陥−光を前記素子14が受光して抵抗
値が減少し、トランジスタTrから電子制御回路11の
入力端子t6に所定の除霜信号が入力する。
As a result, the element 14 receives the deterioration light, its resistance value decreases, and a predetermined defrosting signal is input from the transistor Tr to the input terminal t6 of the electronic control circuit 11.

そのため、リレーR2が励磁されて接点t2が閉じ、四
路切換弁2は通電されて冷房側に切換動作し、室外コイ
ル3にホットガスが流入して除霜運転が行なわれる。
Therefore, relay R2 is energized and contact t2 is closed, four-way switching valve 2 is energized and switched to the cooling side, hot gas flows into outdoor coil 3, and defrosting operation is performed.

しかして、以上のごとく除霜運転をを行なう場合、前記
ネオンランプ回路30は消費電力が極めて小さいため経
済的であり、しかも、ネオンランプ13の発光により除
霜の表示も行なえ、かつ、ネオンランプ13は長寿命の
ため取替えの必要が殆んどないのである。
Therefore, when performing the defrosting operation as described above, the neon lamp circuit 30 is economical because the power consumption is extremely small, and furthermore, the defrosting operation can be indicated by the light emission of the neon lamp 13, and the neon lamp circuit 30 13 has a long life, so there is almost no need to replace it.

また、除霜運転時、電源線路にサージが侵入した場合、
該侵入サージはネオンランプ回路30に達するが、該回
路30のネオンランプ13は発光ダイオードにくらべて
耐サージ性がきわめて大きく、しかも、耐湿性が大きく
て安定かつ大なる絶縁性能をもったガラス管15の中の
、しかもネオンガス中に電極16.16が収納されてい
るため、ネオンランプ13と素子14との間の絶縁は、
侵入サージに拘わらず確実で、電子制御回路11の入力
端子t6には除霜信号が安定かつ確実に入力されるので
ある。
Also, if a surge enters the power line during defrosting operation,
The intruding surge reaches the neon lamp circuit 30, but the neon lamp 13 of the circuit 30 is made of a glass tube, which has extremely high surge resistance compared to light emitting diodes, and has high moisture resistance, stability, and great insulation performance. Since the electrodes 16 and 16 are housed in the neon gas inside the neon lamp 15, the insulation between the neon lamp 13 and the element 14 is as follows.
Regardless of the intruding surge, the defrosting signal is stably and reliably input to the input terminal t6 of the electronic control circuit 11.

斯くして、室外コイル3の除霜が完了して、ディアイサ
DSの接点もが連通すると、モータMが運転され、ファ
ンF1が駆動されると共に(ファンF2も駆動される)
、ネオンランプ回路30は電圧が印加されない状態とな
って、電子制御回路11の入力端子t6には、除霜信号
の入力が停止する。
In this way, when the defrosting of the outdoor coil 3 is completed and the contacts of the de-icer DS are connected, the motor M is operated and the fan F1 is driven (the fan F2 is also driven).
, the neon lamp circuit 30 is in a state where no voltage is applied, and the input of the defrosting signal to the input terminal t6 of the electronic control circuit 11 is stopped.

そのため、リレーR2が消磁して四路切換弁2が暖房側
に切換わり、暖房運転が再開される。
Therefore, relay R2 is demagnetized, four-way switching valve 2 is switched to the heating side, and heating operation is restarted.

また、前記ネオンランプ回路30の除霜信号線12は、
モータMとディアイサDSの接続線から引出腰 リレー
を用いることなく、ディアイサDSの動作により交流の
除霜信号をネオンランプ回路30の導出すべくしたので
、部品点数を減少できると共に回路構成を簡単にでき、
しかもリレーを用いることによるコイルの断線、接点の
導通不良などのリレートラブルがなく、故障をなくしう
るのである。
Further, the defrosting signal line 12 of the neon lamp circuit 30 is
Since the AC defrosting signal is derived from the neon lamp circuit 30 by the operation of the De-Icer DS without using a relay, the number of parts can be reduced and the circuit configuration can be simplified. I can do it,
Furthermore, there are no relay troubles such as disconnection of coils or poor continuity of contacts due to the use of relays, and failures can be eliminated.

尚、以上の説明では、除霜時四路切換弁2を切換えるリ
レーR2は、励磁により閉じる接点t2を用いたが、消
磁により閉じる接点を用いるごとくしてもよく、又、入
力端子t6に入力する除霜信号はL信号、H信号のいず
れとしてもよいことは云う迄もない。
In the above explanation, the relay R2 that switches the four-way switching valve 2 during defrosting uses a contact t2 that closes when it is energized, but it may also use a contact that closes when it is demagnetized. It goes without saying that the defrosting signal to be used may be either an L signal or an H signal.

又、以上の説明では、光電変換素子14として、光の入
射により電気抵抗が変化する抵抗可変材料の内、硫化カ
ドミウムを用いたが、他の抵抗可変材料、ホトトランジ
スタ、ホトダイオードなどを用いてもよい。
Furthermore, in the above explanation, cadmium sulfide, which is a variable resistance material whose electrical resistance changes depending on the incidence of light, was used as the photoelectric conversion element 14, but other variable resistance materials such as phototransistors, photodiodes, etc. may also be used. good.

以上のごとく本考案は、ディアイサDSの切換動作によ
り、ネオンランプ13と保護抵抗r1とを直列としたネ
オンランプ回路30に交流電源から通電すべく威すと共
に、前記ネオンランプ13に光電変換素子14を対設し
て、該素子14の除霜信号を電子制御回路11に入力さ
せるごとくしたのであるから、ディアイサDSの動作に
より発生する交流の除霜信号を直流化しなくともネオン
ランプ回路30に入力でき、整流回路及び平滑回路構造
が簡単で故障が少なく、小形で安価にできるのである。
As described above, according to the present invention, the neon lamp circuit 30 in which the neon lamp 13 and the protective resistor r1 are connected in series is energized from the AC power source by the switching operation of the de-Icer DS, and the photoelectric conversion element 14 is connected to the neon lamp 13. Since the defrosting signal of the element 14 is inputted to the electronic control circuit 11 by providing the defrosting signal of the element 14 in parallel, the AC defrosting signal generated by the operation of the deicer DS can be inputted to the neon lamp circuit 30 without converting it to DC. The structure of the rectifying circuit and smoothing circuit is simple, there are few failures, and it can be made small and inexpensive.

又、ネオンランプ13は発光ダイオードに比べて耐サー
ジ性が極めて大きいため、侵入サージにより破損される
ことがなく、シかも、ネオンランプ13は、該ネオンラ
ンプ13のガラス管内面から外面に至る厚み部分が所定
の厚みをもち、絶縁抵抗及び耐電圧が極めて大きくかつ
安定であり、しかもこれらの値はガラス管外方の湿度が
高くとも低下することがなく一層安定であり、かつ、ガ
ラス管中にはネオンガスが封入されているため、該ネオ
ンガス中に収納された電極と光電変換素子14との間の
絶縁抵抗及び耐電圧は、侵入サージのない通常の運転時
は勿論のこと、サージが侵入した時にも、きわめて大き
な値に安定に保持されるのである。
In addition, since the neon lamp 13 has extremely high surge resistance compared to light emitting diodes, it will not be damaged by intruding surges. The part has a predetermined thickness, and the insulation resistance and withstand voltage are extremely high and stable.Moreover, these values do not decrease even when the humidity outside the glass tube is high, and are even more stable. Since neon gas is sealed in the neon gas, the insulation resistance and withstand voltage between the electrodes housed in the neon gas and the photoelectric conversion element 14 are not only limited during normal operation without intruding surges, but also during surge intrusion. Even when this occurs, it remains stably at an extremely large value.

従って、電子制御回路11には、除霜信号を安定かつ確
実に入力できるのである。
Therefore, the defrosting signal can be stably and reliably input to the electronic control circuit 11.

その上、ネオンランプ回路30は消費電力がきわめて小
さく経済的であり、またネオンランプ13の発光により
、除霜中には暖房中なのに温風が出ないという使用者の
不満足感を排するための除霜表示も行なえるのである。
Moreover, the neon lamp circuit 30 is economical with extremely low power consumption, and the light emission of the neon lamp 13 eliminates the user's dissatisfaction of not being able to produce warm air even though heating is in progress during defrosting. It is also possible to display defrost status.

【図面の簡単な説明】 図面は本考案の実施例を示すもので、第1図は冷媒配管
系統図、第2図は電気回路図、第3図はネオンランプと
光電変換素子との組合わせ状態を示す説明図である。 2・・・・・・四路切換弁、11・・・・・・電子制御
回路、13・・・・・・ネオンランプ、14・・・・・
・光電変換素子、30・・・・・・ネオンランプ回路、
DS・・・・・・ディアイサ、r□・・・・・・保護抵
抗。
[BRIEF DESCRIPTION OF THE DRAWINGS] The drawings show an embodiment of the present invention. Figure 1 is a refrigerant piping system diagram, Figure 2 is an electric circuit diagram, and Figure 3 is a combination of a neon lamp and a photoelectric conversion element. It is an explanatory diagram showing a state. 2...Four-way switching valve, 11...Electronic control circuit, 13...Neon lamp, 14...
・Photoelectric conversion element, 30... Neon lamp circuit,
DS...De-Isa, r□...Protection resistance.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)ディアイサDSにより除霜信号を、冷房・暖房・
除霜の各運転の電子制御回路11に入力させて、該回路
11の出力により四路切換弁2を冷房側に切換えて除霜
運転すべくしたヒートポンプ式冷凍装置であって、前記
ディアイサDSの切換動作により、ネオンランプ13と
保護抵抗r1とを直列としたネオンランプ回路30に交
流電源から通電すべく威すと共に、前記ネオンランプ1
3に硫化カドミウムなどの光電変換素子14を対設して
、該素子14の除霜信号を前記電子制御回路11に入力
させるごとくしたことを特徴とするヒートポンプ式冷凍
装置。
(1) De-Isa DS sends defrost signals to cooling, heating,
This is a heat pump type refrigeration system in which input is made to an electronic control circuit 11 for each operation of defrosting, and the output of the circuit 11 is used to switch a four-way selector valve 2 to the cooling side to perform a defrosting operation. By the switching operation, the neon lamp circuit 30 in which the neon lamp 13 and the protective resistor r1 are connected in series is energized from the AC power supply, and the neon lamp 1
A heat pump type refrigeration system characterized in that a photoelectric conversion element 14 made of cadmium sulfide or the like is provided opposite to the heat pump 3, and a defrosting signal from the element 14 is inputted to the electronic control circuit 11.
(2)電源に室外ファンモータMと該ファンモータMを
オンオフするディアイサDSとを直列に接続すると共に
、該ディアイサDSにネオンランプ回路30を並列に接
続して、暖房時ディアイサDSのオンオフに対応して前
記ネオンランプ回路30をオンオフすると共に、ディア
イサDSがオフするとき前記ネオンランプ回路30に交
流電源から通電すべくしたことを特徴とする実用新案登
録請求の範囲第1項記載のヒートポンプ式冷凍装置。
(2) Connect the outdoor fan motor M and the de-icer DS that turns on and off the fan motor M in series to the power supply, and connect the neon lamp circuit 30 in parallel to the de-icer DS to turn the de-icer DS on and off during heating. The heat pump type refrigeration according to claim 1, which is a registered utility model, is characterized in that the neon lamp circuit 30 is turned on and off by turning off the neon lamp circuit 30, and the neon lamp circuit 30 is energized from an alternating current power source when the diaster DS is turned off. Device.
JP1409881U 1981-02-02 1981-02-02 Heat pump refrigeration equipment Expired JPS6032837Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1409881U JPS6032837Y2 (en) 1981-02-02 1981-02-02 Heat pump refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1409881U JPS6032837Y2 (en) 1981-02-02 1981-02-02 Heat pump refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS57125935U JPS57125935U (en) 1982-08-05
JPS6032837Y2 true JPS6032837Y2 (en) 1985-10-01

Family

ID=29812162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1409881U Expired JPS6032837Y2 (en) 1981-02-02 1981-02-02 Heat pump refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS6032837Y2 (en)

Also Published As

Publication number Publication date
JPS57125935U (en) 1982-08-05

Similar Documents

Publication Publication Date Title
US9062906B2 (en) Retrofittable air conditioner to refrigeration conversion unit
JPH08271024A (en) Air conditioner
US5918668A (en) System for increasing the temperature of air initially delivered by a heat pump
CN201181836Y (en) Protecting equipment for air conditioner compressor
JPS6032837Y2 (en) Heat pump refrigeration equipment
US6369544B1 (en) Furnace and air conditioner blower motor speed control
KR102436313B1 (en) High Efficiency Heating and Cooling System Using Self-Generating Means
JPS6017976B2 (en) air conditioner
JP3815463B2 (en) Separate air conditioner
JPH11211253A (en) Controller for separation type air conditioning equipment
JP6957756B2 (en) Air conditioner
JP2000320866A (en) Air conditioner
KR20030046304A (en) System and method for defrost termination feedback
CN106152690A (en) Alternating current and photovoltaic DC dual-purpose refrigerator and the same device of water heater
CN218599890U (en) Dehumidification system
KR100315485B1 (en) compressor starting apparatus of air conditioner
JPS58193057A (en) Air conditioner
JPS6012533B2 (en) Heat pump air conditioner
CN2163340Y (en) Multifunction air conditioner protector
JPH10336901A (en) Interconnected system power generation equipment
JP2000217271A (en) Waiting power compensating circuit and air conditioner using it
US4013119A (en) Air conditioner control system
JPH0526426Y2 (en)
JPH05621B2 (en)
JPS6014033A (en) Air conditioner