JPH05621B2 - - Google Patents

Info

Publication number
JPH05621B2
JPH05621B2 JP59125538A JP12553884A JPH05621B2 JP H05621 B2 JPH05621 B2 JP H05621B2 JP 59125538 A JP59125538 A JP 59125538A JP 12553884 A JP12553884 A JP 12553884A JP H05621 B2 JPH05621 B2 JP H05621B2
Authority
JP
Japan
Prior art keywords
air conditioner
temperature
electric heater
room
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59125538A
Other languages
Japanese (ja)
Other versions
JPS613941A (en
Inventor
Juji Tsuchama
Masayuki Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59125538A priority Critical patent/JPS613941A/en
Publication of JPS613941A publication Critical patent/JPS613941A/en
Publication of JPH05621B2 publication Critical patent/JPH05621B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はヒートポンプサイクルと補助熱源用の
電気ヒータとで被調和室の暖房が行なえる空気調
和機の制御に係り、特に空気調和機の運転停止時
に被調和室の室温が所定値以下となつた場合に電
気ヒータによる加温を行なう制御方法に関するも
のである。
[Detailed Description of the Invention] (a) Industrial Application Field The present invention relates to the control of an air conditioner that can heat a room to be conditioned using a heat pump cycle and an electric heater for an auxiliary heat source. This invention relates to a control method that performs heating using an electric heater when the room temperature of a conditioned room falls below a predetermined value when the operation is stopped.

(ロ) 従来技術 一般に従来の空気調和機の制御方法としては特
公昭55−47291号公報に記載されているようなも
のがあつた。この公報には、ヒートポンプサイク
ルを有する空気調和機に、補助熱源用の電気ヒー
タを設け、外気温度が低下してヒートポンプサイ
クルの能力が充分に得られない時に電気ヒータを
通電して暖房能力の不足を補つているものであつ
たが、例えば外出時や夜間などで空気調和機の運
転を停止している時に、外気温度の低下に伴つて
被調和室の室温が低下しても空気調和機は停止状
態のままであり、場合によつてはドアや窓の凍結
または水道管の凍結による破損などが生じること
があつた。
(b) Prior Art In general, there is a conventional control method for air conditioners as described in Japanese Patent Publication No. 47291/1983. This publication states that an air conditioner with a heat pump cycle is equipped with an electric heater as an auxiliary heat source, and when the outside air temperature drops and the heat pump cycle cannot reach its full capacity, the electric heater is energized to compensate for the lack of heating capacity. For example, when the air conditioner is stopped when you go out or at night, even if the room temperature in the room to be conditioned drops due to the drop in outside temperature, the air conditioner will continue to operate. In some cases, doors and windows were frozen, or water pipes were frozen, resulting in damage.

(ハ) 発明の目的 斯る問題点に鑑み、本発明は空気調和機が停止
状態でも被調和室の室温が低下した時には自動的
に被調和室の補助加熱が開始されるようにした制
御方法を提供するものである。
(c) Purpose of the Invention In view of such problems, the present invention provides a control method that automatically starts auxiliary heating of a conditioned room when the room temperature of the conditioned room drops even when the air conditioner is stopped. It provides:

(ニ) 発明の構成 本発明の空気調和機の方法は圧縮機、凝縮器、
減圧装置、蒸発器を順次冷媒配管で環状に接続し
て構成したヒートポンプサイクルを有する空気調
和機において、凝縮器に補助熱源用の電気ヒータ
を設け、空気調和機の運転停止時に被調和室の室
温が所定値以下となつた場合に電気ヒータによる
加温運転を行なうようにして、空気調和機の運転
停止時に被調和室の室温が低下した時に電気ヒー
タによる暖房運転が自動的に行なえるようにした
ものである。
(d) Structure of the invention The air conditioner method of the present invention includes a compressor, a condenser,
In an air conditioner that has a heat pump cycle configured by sequentially connecting a pressure reducing device and an evaporator in a ring with refrigerant piping, the condenser is equipped with an electric heater for an auxiliary heat source, and when the air conditioner stops operating, the room temperature of the conditioned room is maintained. When the temperature drops below a predetermined value, heating operation using the electric heater is performed, so that heating operation using the electric heater can be performed automatically when the room temperature in the conditioned room drops when the air conditioner is stopped. This is what I did.

(ホ) 実施例 以下、本発明の実施例を第1図乃至第8図に基
づいて説明すると、先づ第1図は本発明の実施例
を示す冷媒回路図であり、圧縮機1、四方弁2、
室内側熱交換器3、液溜り4、減圧装置5,6、
室外側熱交換器7を冷媒配管で環状に接続して冷
凍サイクルを構成している。尚、8は点線の方向
(冷房運転時)に冷媒が流れる時にのみ冷媒が通
る逆止弁である。また9,10は第1、第2電気
ヒータであり、夫々2KW、3KWである。11は
室内側熱交換器3用の送風機(クロスフローフア
ン)、12は室外側熱交換器7用の送風機(プロ
ペラフアン)である。
(E) Embodiment Hereinafter, embodiments of the present invention will be explained based on FIGS. 1 to 8. First, FIG. 1 is a refrigerant circuit diagram showing an embodiment of the present invention. valve 2,
Indoor heat exchanger 3, liquid reservoir 4, pressure reducing device 5, 6,
A refrigeration cycle is constructed by connecting the outdoor heat exchangers 7 in an annular manner through refrigerant piping. Note that 8 is a check valve through which the refrigerant passes only when the refrigerant flows in the direction of the dotted line (during cooling operation). Further, 9 and 10 are first and second electric heaters, which are 2KW and 3KW, respectively. 11 is a blower (cross flow fan) for the indoor heat exchanger 3, and 12 is a blower (propeller fan) for the outdoor heat exchanger 7.

この図において、四方弁2が図示する位置にあ
れば、圧縮機1からの吐出冷媒が実線矢印の方向
に流れて夫々室内側熱交換器3が凝縮器、室外側
熱交換器7が蒸発器に作用して暖房運転が行なわ
れる。また四方弁2が図示する位置と反対の位置
に切換れば、圧縮機1からの吐出冷媒が点線矢印
の方向に流れて夫々室内側熱交換器3が蒸発器、
室外側熱交換器7が凝縮器として作用して冷房運
転が行なわれる。
In this figure, when the four-way valve 2 is in the position shown, the refrigerant discharged from the compressor 1 flows in the direction of the solid arrow, and the indoor heat exchanger 3 becomes the condenser and the outdoor heat exchanger 7 becomes the evaporator. Heating operation is performed by acting on Furthermore, when the four-way valve 2 is switched to the opposite position to the illustrated position, the refrigerant discharged from the compressor 1 flows in the direction of the dotted arrow, and the indoor heat exchanger 3 becomes an evaporator and an evaporator, respectively.
The outdoor heat exchanger 7 acts as a condenser to perform cooling operation.

第2図、第3図は第1図に示す冷凍サイクルの
運転制御に用いる電気回路図であり、第2図、第
3図間は、で接続されている。さらに第1図
と同一構成要素である圧縮機1、四方弁2、第1
電気ヒータ9、第2電気ヒータ10、室内側の送
風機11、室外側の送風機12は同一符号を付し
てある。尚、送風機11は強(H)、中(M)、弱(L)に風
速が切換え可能であり、送風機12は強(H)、弱(L)
に風速が切換え可能である。
FIGS. 2 and 3 are electrical circuit diagrams used to control the operation of the refrigeration cycle shown in FIG. 1, and FIGS. 2 and 3 are connected by. Furthermore, the same components as in FIG. 1 are compressor 1, four-way valve 2, and first
The electric heater 9, the second electric heater 10, the indoor blower 11, and the outdoor blower 12 are given the same reference numerals. The wind speed of the blower 11 can be switched between high (H), medium (M), and low (L), and the wind speed of the blower 12 can be switched between high (H) and low (L).
The wind speed can be changed.

第2図及び第3図において、13はマイクロプ
ロセツサであり、以下の周辺回路と共に動作す
る。尚このマイクロプロセツサ13の動作の詳細
は後記する。14は電源回路であり、整流素子1
5、平滑コンデンサ16,17、ツエナーダイオ
ード18、パワートランジスタ19、常閉接片2
0、電源投入時にマイクロプロセツサ13の端子
(INIT)にリセツトをかける比較器21、VASS
り低い値の定電圧VREFを供給するバツフア22な
どから構成されている。尚、端子VDDは負電源端
子である。23は遠隔制御盤であり、手動スイツ
チ24及び切換スイツチ25を空気調和機の本体
から分離して設けるものである。尚、切換スイツ
チ25は接片の切換る端子A,B,Cを有し、端
子Bを中立端子とすると、接片を端子Aに切換え
た場合、接片は端子Bに自動復帰し、端子B,C
間は手動切換えができるものである。また、手動
スイツチ24は温度設定幅を変更するもの、切換
スイツチ25は空気調和機の運転を停止させるも
のであり、3本の配線で分離されている。26,
27は発光素子であり、手動スイツチ24、切換
スイツチ25を操作した時に点灯する。28,2
9はリレーであり、夫々常閉接片20、常開接片
30を有している。31乃至37はバツフア38
を介してマイクロプロセツサ13の端子D6乃至
D12から与えられる信号で動作するリレーであ
り、夫々順に常開接片39、常開接片40、常開
接片41、切換接片42,43、切換接片44,
45、常開接片46、常開接片47を有してい
る。48は急速暖房スイツチであり、リレー3
4,37をマイクロプロセツサ13の出力にかか
わらず通電状態とするものである。尚、49,5
0は誤動作防止用のダイオードである。
In FIGS. 2 and 3, 13 is a microprocessor, which operates together with the following peripheral circuits. The details of the operation of this microprocessor 13 will be described later. 14 is a power supply circuit, and rectifying element 1
5, smoothing capacitors 16, 17, Zener diode 18, power transistor 19, normally closed contact 2
0, a comparator 21 that resets the terminal (INIT) of the microprocessor 13 when the power is turned on, and a buffer 22 that supplies a constant voltage V REF lower than V ASS . Note that the terminal V DD is a negative power supply terminal. 23 is a remote control panel, in which a manual switch 24 and a changeover switch 25 are provided separately from the main body of the air conditioner. The changeover switch 25 has terminals A, B, and C for switching contact pieces, and if terminal B is set as a neutral terminal, when the contact piece is switched to terminal A, the contact piece automatically returns to terminal B, and the contact piece is switched to terminal B. B,C
The time can be changed manually. Further, the manual switch 24 is for changing the temperature setting range, and the changeover switch 25 is for stopping the operation of the air conditioner, and they are separated by three wires. 26,
27 is a light emitting element, which lights up when the manual switch 24 and the changeover switch 25 are operated. 28,2
A relay 9 has a normally closed contact piece 20 and a normally open contact piece 30, respectively. 31 to 37 are batshua 38
It is a relay that operates by signals applied from terminals D6 to D12 of the microprocessor 13 via the terminals D6 to D12 of the microprocessor 13, and has normally open contacts 39, normally open contacts 40, normally open contacts 41, switching contacts 42, 43, switching contact piece 44,
45, a normally open contact piece 46, and a normally open contact piece 47. 48 is a rapid heating switch, and relay 3
4 and 37 are kept energized regardless of the output of the microprocessor 13. Furthermore, 49.5
0 is a diode for preventing malfunction.

51乃至53,67はマイクロプロセツサ13
の端子Aと端子D3乃至D5,D15の間に接続
された温度センサ(負特性サーミスタなど)であ
り、夫々順に被調和室内の室温検出用、室内側熱
交換器3の温度検出用、室外側熱交換器7の温度
検出用、室外の外気温検出用である。54は温度
設定用のスライドスイツチであり、マイクロプロ
セツサ13の端子D1に出力がある時に端子K1
乃至K4でスキヤンを行ない設定値を読み込むも
のである。尚、55乃至58は誤読込み防止用の
ダイオードである。59は送風機11の風速を設
定するスライドスイツチであり、マイクロプロセ
ツサ13の端子D0に出力がある時に端子K1乃
至K4でスキヤンを行ない設定値を読み込むもの
である。尚、60,61は誤読込み防止用のダイ
オードである。62,63は夫々運転・停止スイ
ツチ、及び暖房運転・冷房運転の選択スイツチで
ある。尚、64,65は誤読込み防止用のダイオ
ード、66は手動スイツチである。また、第2
図、第3図に示したリレー接片の状態は全てリレ
ーが非通電の時のものを示してある。
51 to 53, 67 are microprocessors 13
Temperature sensors (such as negative characteristic thermistors) are connected between terminal A and terminals D3 to D5, D15, respectively, for detecting the room temperature inside the conditioned room, for detecting the temperature of the indoor heat exchanger 3, and for detecting the temperature outside the room. This is for detecting the temperature of the heat exchanger 7 and for detecting the outdoor temperature. 54 is a slide switch for temperature setting, and when there is an output at the terminal D1 of the microprocessor 13, the terminal K1 is
The setting values are read by scanning from K4 to K4. Note that 55 to 58 are diodes for preventing erroneous reading. A slide switch 59 sets the wind speed of the blower 11, and when there is an output at the terminal D0 of the microprocessor 13, the terminals K1 to K4 scan and read the set value. Note that 60 and 61 are diodes for preventing erroneous reading. Reference numerals 62 and 63 are operation/stop switches and heating/cooling operation selection switches, respectively. Note that 64 and 65 are diodes for preventing erroneous reading, and 66 is a manual switch. Also, the second
The states of the relay contacts shown in FIGS. 3 and 3 are all shown when the relay is not energized.

次に第4図、第6図はマイクロプロセツサ13
の動作を表わすフローチヤート図であり、以下の
ようになつている。但し、このフローチヤート図
は空気調和機の一部の動作を表わしたものであ
り、全ての動作を示すものではない。先づ、冷房
運転、暖房運転の選択スイツチ63を暖房運転と
している場合には、“リセツト&スタート”処理
を行なう。これは電源投入などによるスタート処
理であり、電源投入時に比較器21からマイクロ
プロセツサ13の端子INITに出力が与えられて、
リセツト処理を行い空気調和機は停止状態に維持
される。尚、リレー28が通電されて常閉接片2
0が開いた時にも、このようにリセツトされ空気
調和機は停止状態になる。次に運転スイツチ62
が押圧されて運転が開始した時には電気ヒータ9
(2KW)を通電して暖房運転の立ち上りを改善し
ている。
Next, Figures 4 and 6 show the microprocessor 13.
This is a flowchart diagram showing the operation, and is as follows. However, this flowchart shows only a part of the operation of the air conditioner, and does not show all the operations. First, when the cooling operation/heating operation selection switch 63 is set to heating operation, a "reset and start" process is performed. This is a start process when the power is turned on, and when the power is turned on, an output is given from the comparator 21 to the terminal INIT of the microprocessor 13.
The air conditioner is maintained in a stopped state by performing the reset process. Note that the relay 28 is energized and the normally closed contact 2
Even when 0 is opened, the air conditioner is reset in this way and the air conditioner is stopped. Next, the operation switch 62
When is pressed and operation starts, electric heater 9
(2KW) is applied to improve the start-up of heating operation.

次にスイツチ66がONか否かを判断し、スイ
ツチ66がONで、かつ空気調和機が運転中でな
い(停止状態)時に、被調和室内の室温Tinが
“TinT0(=3.5度)”となれば電気ヒータ10の
通電を開始し“TinT1(=5.5度)”に上昇する
までの間電気ヒータ10の通電を維持する。尚、
T0、T1の値はこれに限るものではなく、周囲の
条件に合わせて任意に設定してもよい。この時、
“T1>T0”として適当なデイフアレンシヤル幅を
設定する必要がある。
Next, it is determined whether the switch 66 is ON or not, and when the switch 66 is ON and the air conditioner is not operating (stopped), the room temperature Tin in the conditioned room is "TinT 0 (=3.5 degrees)". If so, energization of the electric heater 10 is started and energization of the electric heater 10 is maintained until the temperature rises to "TinT 1 (=5.5 degrees)". still,
The values of T 0 and T 1 are not limited to these values, and may be arbitrarily set according to the surrounding conditions. At this time,
It is necessary to set an appropriate differential width as "T 1 > T 0 ".

次にスイツチ66がOFFもしくは、空気調和
機が運転中ならば、スライドスイツチ54で設定
された室温設定値TSを読み込む、この時リレー
29の常開接片30がONならばTSの値を第5図
の変換図を用いて“TS=F(TS)”に変換した後
の値を、また常開接片30がOFFならばTSの値
を直接記憶し、この値TSに基づいて圧縮機1、
電気ヒータ9,10の運転または通電を制御す
る。すなわち外気温Toutが“ToutT2(=1.67
度)”ならば圧縮機1によるヒートポンプ運転と
電気ヒータ9とによる暖房運転が行なわれる。
“ToutT2”でないならば圧縮機1を停止状態
に維持し、かつ電気ヒータ9,10による暖房運
転のみが行なわれる。この時、特に電気ヒータ9
は室温Tinが“TinTS−1”で通電が開始さ
れ、“TinTS”になつて通電が遮断されるデイ
フアレンシヤルを有している。尚、圧縮機1の
ON−OFFによるチヤタリングを防止するため、
このON−OFFが切換る状態となる温度にデイフ
アレンシヤルを設けてもよい。
Next, if the switch 66 is OFF or the air conditioner is in operation, read the room temperature set value T S set by the slide switch 54. At this time, if the normally open contact piece 30 of the relay 29 is ON, the value of T S is converted into "T S = F (T S )" using the conversion diagram in Fig. 5, and if the normally open contact piece 30 is OFF, the value of T S is directly memorized, and this value T Compressor 1, based on S
Controls the operation or energization of the electric heaters 9 and 10. In other words, the outside temperature Tout is “ToutT 2 (=1.67
degree), the compressor 1 performs a heat pump operation and the electric heater 9 performs a heating operation.
If it is not "ToutT 2 ", the compressor 1 is maintained in a stopped state and only the heating operation by the electric heaters 9 and 10 is performed. At this time, especially the electric heater 9
has a differential in which energization is started when the room temperature Tin is "TinT S -1" and energization is cut off when the room temperature Tin reaches "TinT S ". In addition, compressor 1
To prevent chattering due to ON-OFF,
A differential may be provided at the temperature at which this ON-OFF switching occurs.

以上の説明において、圧縮機1、電気ヒータ
9,10の運転もしくは通電は、実際にはマイク
ロプロセツサ13の端子D8,D11,D12の
出力がアースレベルになつてリレー33,36,
37が通電されて、その常開接片41,46,4
7を閉じることによつて行なわれるものである。
さらに圧縮機1、電気ヒータ9,10は一度ON
状態となると、OFF状態を設定するまでON状態
は維持されるものである。
In the above explanation, the compressor 1 and the electric heaters 9, 10 are actually operated or energized when the outputs of the terminals D8, D11, D12 of the microprocessor 13 become the ground level, and then the relays 33, 36,
37 is energized and its normally open contacts 41, 46, 4
This is done by closing 7.
Furthermore, compressor 1 and electric heaters 9 and 10 are turned on once.
Once in the ON state, the ON state is maintained until the OFF state is set.

次に四方弁2が第1図の状態と逆に切換つた冷
房運転時には、運転が開始されると、先づスライ
ドスイツチ54で設定された室温設定値TSを読
み込む、この時リレー29の常開接片30がON
ならばTSの値を第7図の変換図を用いて“TS
G(TS)”に変換した後の値をまた常開接片30
がOFFならばTSの値を直接記憶し、この値TS
基づいて圧縮機1の運転が“TinTS”でON状
態となり、“Tin<TS”でOFF状態となる運転を
行なう。この時、圧縮機1のON−OFFが切換る
温度にデイフアレンシヤルを設けて圧縮機1の
ON−OFFのチヤタリングを防止するようにして
も良いものである。
Next, during cooling operation when the four-way valve 2 is switched in the opposite direction to the state shown in FIG. Open contact piece 30 is ON
Then, using the conversion diagram in Figure 7, change the value of T S to “T S =
The value after converting to “G(T S )” is also converted to normally open contact piece 30.
If is OFF, the value of T S is directly stored, and based on this value T S , the compressor 1 is operated to be in the ON state when “TinT S ” and to be in the OFF state when “Tin< TS ”. At this time, a differential is provided at the temperature at which compressor 1 switches between ON and OFF.
It is also possible to prevent ON-OFF chattering.

第3図は第2図の端子、で接続される電力
部の電気回路図であり、図中68はパワートラン
ス、69はサージ吸収用のバリスタ、70乃至7
2は夫々保護用の電流ヒユーズまたは温度ヒユー
ズ、73は空気調和機のメインスイツチ、74は
交流の商用電源である。他の構成要素は上記の説
明と同一なため省略する。
FIG. 3 is an electrical circuit diagram of the power section connected with the terminals shown in FIG.
2 is a current fuse or temperature fuse for protection, 73 is a main switch of the air conditioner, and 74 is an AC commercial power source. The other constituent elements are the same as those described above, and will therefore be omitted.

以上のように構成された空気調和機を運転する
場合、外気温度Toutと室内温度Tinとによつて
第8図に示すような状態で運転が行なわれる。外
気温Toutが“ToutT2”ならば圧縮機1がOFF
となり電気ヒータ9,10による暖房運転が行な
われる。この後“ToutT2”のままで室温Tin
が上昇し“TinTS”となると電気ヒータ9,1
0がOFF状態となる。以下“Tout>T2”となる
まで電気ヒータ9,10による暖房運転が行なわ
れる。このように、外気温度が低く冷凍サイクル
による充分なヒートポンプ運転が維持できない時
にはヒートポンプ運転を停止し、外気温度Tout
が上昇して“Tout>T2”となればヒートポンプ
運転による暖房運転が充分に行なえるため、圧縮
機1の運転と電気ヒータ9の通電による暖房運転
に切換るものである。
When the air conditioner configured as described above is operated, the air conditioner is operated in the state shown in FIG. 8 depending on the outside air temperature Tout and the indoor temperature Tin. If the outside temperature Tout is “ToutT 2 ”, compressor 1 is turned off
Then, heating operation by the electric heaters 9 and 10 is performed. After this, leave “ToutT 2 ” at room temperature.
rises and becomes “TinT S ”, electric heaters 9 and 1
0 is in the OFF state. Thereafter, heating operation by the electric heaters 9 and 10 is performed until "Tout>T 2 ". In this way, when the outside air temperature is low and sufficient heat pump operation cannot be maintained by the refrigeration cycle, the heat pump operation is stopped and the outside air temperature Tout
If Tout increases and becomes “Tout>T 2 ”, the heating operation by heat pump operation can be sufficiently performed, and therefore the heating operation is switched to operation of the compressor 1 and heating operation by energizing the electric heater 9.

また、空気調和機の運転が行なわれていない時
に、外気温度Toutの低下に伴つて被調和室内の
温度Tinが低下し“TinT0”でかつスイツチ6
6がON状態となつていれば、自動的に電気ヒー
タ10が通電されて、“TinT1”となるまで暖
房運転が行なわれる。これで、被調和室内の温度
低下による水道の凍結やドアの凍結を防止するこ
とができるものである。
Also, when the air conditioner is not operating, the temperature Tin in the room to be conditioned decreases as the outside air temperature Tout decreases, and the temperature in the conditioned room becomes "TinT 0 " and the switch 6 is turned off.
6 is in the ON state, the electric heater 10 is automatically energized and heating operation is performed until "TinT 1 " is reached. This can prevent the water supply from freezing and the door from freezing due to a drop in temperature within the conditioned room.

さらに空気調和機の本体より分離した遠隔操作
盤23の手動スイツチ24を離れた所で操作すれ
ば、リレー29が通電されて常開接片30を閉じ
ると同時に発光素子27が点灯する。常開接片3
0が閉じれば第4図のフローチヤート図に基づい
て室温の設定値TSを“TS=F(TS)”と変換する。
すなわち室温設定値丁Sの設定範囲を“16TS
27”から“19TS24”に変更して暖め過ぎ又
は能力不足のない暖房運転が行なえるものであ
る。また切換スイツチ25を操作すればリレー2
8が通電されて常閉接片20を開き、マイクロプ
ロセツサ13への電源供給を遮断する。再び電源
が供給された時には、マイクロプロセツサ13は
第4図のフローチヤートに基づいて“リセツト&
スタート”の処理が行なわれる。すなわちマイク
ロプロセツサ13はリセツトされ、空気調和機が
停止状態となるものである。
Furthermore, when the manual switch 24 of the remote control panel 23, which is separated from the main body of the air conditioner, is operated from a remote location, the relay 29 is energized and the normally open contact piece 30 is closed, and at the same time the light emitting element 27 lights up. Normally open contact piece 3
0 is closed, the room temperature set value T S is converted to "T S =F (T S )" based on the flowchart of FIG.
In other words, the setting range of the room temperature set value 16T S
By changing from "27" to "19T S 24", heating operation can be performed without overheating or insufficient capacity.Also, by operating changeover switch 25, relay 2 can be switched on.
8 is energized to open the normally closed contact piece 20 and cut off the power supply to the microprocessor 13. When power is supplied again, the microprocessor 13 performs the "reset &reset" process based on the flowchart of FIG.
"Start" processing is performed. That is, the microprocessor 13 is reset and the air conditioner is brought to a halt.

尚、暖房運転時における除霜運転は室外側熱交
換器7の温度を温度センサ53で検出して、この
室外側熱交換器7の温度変化が一定条件となつた
時に除霜を開始する一般的な方法を用いており、
同じく除霜終了時の冷風防止に関しても室内側熱
交換器3の温度に基づいて送風機11を一定時間
停止させる一般的な方法を用いている。また送風
機11,12の制御に関してはスライドスイツチ
59の設定値、もしくは圧縮機1、電気ヒータ
9,10の状態に基づいて行なわれるものであ
る。
The defrosting operation during the heating operation is generally performed by detecting the temperature of the outdoor heat exchanger 7 with a temperature sensor 53 and starting defrosting when the temperature change of the outdoor heat exchanger 7 reaches a certain condition. We use a method that
Similarly, to prevent cold air at the end of defrosting, a general method is used in which the blower 11 is stopped for a certain period of time based on the temperature of the indoor heat exchanger 3. Further, the blowers 11 and 12 are controlled based on the set value of the slide switch 59 or the states of the compressor 1 and electric heaters 9 and 10.

(ヘ) 発明の効果 以上のように本発明は圧縮機、凝縮器、減圧装
置、蒸発器を順次冷媒配管で環状に接続して構成
したヒートポンプサイクルを有する空気調和機に
おいて、凝縮器に補助熱源用の電気ヒータを設
け、空気調和機の運転停止時に被調和室の室温が
所定値以下となつた場合に電気ヒータによる加温
もしくは加熱運転を行なうようにしたので、空気
調和機の運転停止に被調和室の室温が低下しても
自動的に電気ヒータによる加温もしくは加熱が行
なわれ、室温の低下で生じるドアや窓の冷凍また
は水道管の凍結による破損などを防止することが
できる。さらにスイツチを設け所定値の切換えを
行なえば、被調和室の条件に見合つた最低室温の
維持が行なわれ無駄な運転を省くようにすること
ができるものである。
(F) Effects of the Invention As described above, the present invention provides an air conditioner having a heat pump cycle configured by sequentially connecting a compressor, a condenser, a pressure reducing device, and an evaporator in an annular manner through refrigerant piping. If the room temperature in the room to be conditioned falls below a predetermined value when the air conditioner is stopped, the electric heater will be used to warm or heat the air conditioner. Even if the room temperature of the conditioned room drops, heating or heating is automatically performed by the electric heater, and it is possible to prevent damage caused by freezing of doors and windows or freezing of water pipes caused by a drop in room temperature. Furthermore, if a switch is provided and a predetermined value is changed over, the lowest room temperature that meets the conditions of the room to be conditioned can be maintained and unnecessary operations can be avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を用いる空気調和機の
概略図、第2図は第1図に示した空気調和機の制
御に用いる電気回路図、第3図は同じく第1図に
示した空気調和機の制御に用いる電気回路図、第
4図は第2図に示したマイクロプロセツサの暖房
運転時の動作を示すフローチヤート図、第5図は
TSとF(TS)との関係を示す変換図、第6図は第
2図に示したマイクロプロセツサの冷房運転時の
動作を示すフローチヤート図、第7図はTSとG
(TS)との関係を示す変換図、第8図は本発明の
実施例を用いた場合の圧縮機、第1、第2電気ヒ
ータの運転もしくは通電状態を示す説明図であ
る。 1…圧縮機、3…室内側熱交換器、5,6…減
圧装置、7…室外側熱交換器、9…第1電気ヒー
タ、10…第2電気ヒータ。
Figure 1 is a schematic diagram of an air conditioner using an embodiment of the present invention, Figure 2 is an electrical circuit diagram used to control the air conditioner shown in Figure 1, and Figure 3 is the same diagram as shown in Figure 1. Fig. 4 is a flowchart showing the operation of the microprocessor shown in Fig. 2 during heating operation, and Fig. 5 is an electrical circuit diagram used to control the air conditioner.
A conversion diagram showing the relationship between T S and F (T S ), Fig. 6 is a flowchart showing the operation of the microprocessor shown in Fig. 2 during cooling operation, and Fig. 7 shows the relationship between T S and G
(T S ), and FIG. 8 is an explanatory diagram showing the operation or energization state of the compressor, first and second electric heaters when the embodiment of the present invention is used. DESCRIPTION OF SYMBOLS 1... Compressor, 3... Indoor heat exchanger, 5, 6... Pressure reducing device, 7... Outdoor heat exchanger, 9... First electric heater, 10... Second electric heater.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、凝縮器、減圧装置、蒸発器を順次冷
媒配管で環状に接続して構成したヒートポンプサ
イクルを有する空気調和機において、凝縮器に補
助熱源用の電気ヒータを設け、空気調和機の運転
停止時に被調和室の室温が所定値以下となつた場
合に電気ヒータによる被調和室の加温又は加熱を
行なうようにしたことを特徴とする空気調和機の
制御方法。
1. In an air conditioner that has a heat pump cycle configured by sequentially connecting a compressor, condenser, pressure reducing device, and evaporator in a ring with refrigerant piping, an electric heater for an auxiliary heat source is installed in the condenser, and the air conditioner is operated. 1. A control method for an air conditioner, characterized in that when the room temperature of the conditioned room falls below a predetermined value when the air conditioner is stopped, the room to be conditioned is warmed or heated by an electric heater.
JP59125538A 1984-06-18 1984-06-18 Controlling method of air-conditioning machine Granted JPS613941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59125538A JPS613941A (en) 1984-06-18 1984-06-18 Controlling method of air-conditioning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59125538A JPS613941A (en) 1984-06-18 1984-06-18 Controlling method of air-conditioning machine

Publications (2)

Publication Number Publication Date
JPS613941A JPS613941A (en) 1986-01-09
JPH05621B2 true JPH05621B2 (en) 1993-01-06

Family

ID=14912669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59125538A Granted JPS613941A (en) 1984-06-18 1984-06-18 Controlling method of air-conditioning machine

Country Status (1)

Country Link
JP (1) JPS613941A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110986227A (en) * 2019-12-10 2020-04-10 重庆交通大学 Coupling heat exchange energy-saving air conditioning system
CN114383253B (en) * 2020-10-19 2023-06-30 广东美的制冷设备有限公司 Air conditioner, control method and device thereof and computer readable storage medium

Also Published As

Publication number Publication date
JPS613941A (en) 1986-01-09

Similar Documents

Publication Publication Date Title
US4094166A (en) Air conditioning control system
CA1090307A (en) Control for a combination furnace and heat pump system
KR960010637B1 (en) Control device for an air-conditioner
JPH0452441A (en) Frost-detecting method for heat pump type air-conditioner
US4543468A (en) Control system for water heater with external heat source
JPS5926860B2 (en) I can&#39;t wait to see what&#39;s going on.
US3422633A (en) Delayed restarting circuit for compressor motor
JPH05621B2 (en)
JPH0243101B2 (en)
US5513796A (en) Dual control device of an air conditioner
JPS5916185B2 (en) Air conditioner control device
JPS613940A (en) Controlling method of air-conditioning machine
JPS58193057A (en) Air conditioner
JPS596346Y2 (en) Control circuit for heat pump air conditioner
JPH0220475Y2 (en)
JPS6132302Y2 (en)
JP2810588B2 (en) Control device for air conditioner
JP3197748B2 (en) Control device for air conditioner
JPS5925126B2 (en) air conditioner
JPS5829801Y2 (en) Indoor fan motor control device for air conditioners
JPS6237302B2 (en)
JPS6120451Y2 (en)
JPH05312379A (en) Controller for air conditioner
JP3680336B2 (en) Internal / external separation type air conditioner
JPS6273029A (en) Controlling device for air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term