JP3680336B2 - Internal / external separation type air conditioner - Google Patents

Internal / external separation type air conditioner Download PDF

Info

Publication number
JP3680336B2
JP3680336B2 JP01112495A JP1112495A JP3680336B2 JP 3680336 B2 JP3680336 B2 JP 3680336B2 JP 01112495 A JP01112495 A JP 01112495A JP 1112495 A JP1112495 A JP 1112495A JP 3680336 B2 JP3680336 B2 JP 3680336B2
Authority
JP
Japan
Prior art keywords
outdoor
temperature detector
ice
heat exchanger
type air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01112495A
Other languages
Japanese (ja)
Other versions
JPH08200772A (en
Inventor
雄司 森
秀樹 松実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP01112495A priority Critical patent/JP3680336B2/en
Publication of JPH08200772A publication Critical patent/JPH08200772A/en
Application granted granted Critical
Publication of JP3680336B2 publication Critical patent/JP3680336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【産業上の利用分野】
本発明は内外分離型空気調和装置に関する。
【0002】
【従来の技術】
近年、空気調和装置が広く使用されているが、その大半は冷暖房兼用の内外分離型空気調和装置である。この場合、低外気温時の暖房運転においては室外機の熱交換器のディアイス制御が必須であるが、その制御を正確、かつ安価に実行できる手段が課題である。
【0003】
以下、従来の冷暖房兼用の内外分離型空気調和装置について図面を参照しながら説明する。図2は従来の内外分離型空気調和装置の電気的構成を示す回路図である。図において、1は室内機、2は室外機、3は室内機1と室外機2とを互いに電気的に接続する内外接続電線である。室内機1において、4は商用電源22との接続を開閉する本体スイッチ、5は室内側電子制御装置、6はトランジスタモータなどの室内ファンモータ、7は室内側電子制御装置5の制御により室外機2への電源供給を開閉するメインリレー、8は暖房運転時にオンとされる暖房リレー、9はディアイス検知回路である。
【0004】
また、室外機2において、10は室外側電子制御装置11により制御されるディアイス検知リレー、12は冷凍サイクルと加熱サイクルとに応じて冷媒の経路を切り換える四方弁、13はインダクションモータなどの室外ファンモータ、14は室外ファンモータ13用のキャパシタ、15は室外側電子制御装置11により制御される四方弁用リレー、16は室外側電子制御装置11により制御される室外ファンモータ用リレー、17は室外側電子制御装置11に電力を供給する室外側電子制御装置用トランス、18は圧縮機、19は圧縮機用キャパシタ、20は室外熱交換器用温度センサ、21は外気温センサである。
【0005】
上記構成要素の相互関係と動作について説明する。室内機1において使用者が本体スイッチ4を投入すると、室内機1は商用電源22に接続され、室内側電子制御装置5は電力を供給されて制御動作を開始し、室内ファンモータ6を回転させて室内熱交換器(図示せず)を通して室内空気を循環させる。つぎに、使用者が動作開始を室内側電子制御装置5に指示入力すると、室内側電子制御装置5はメインリレー7をオンに制御して商用電源22を室外機2に接続する。このとき、圧縮機18が回転を開始するとともに、室外ファンモータ13は室外ファンモータ用リレー16を介して商用電源22に接続されて室外熱交換器(図示せず)に外気の送り込みを開始する。また、室外側電子制御装置11には室外側電子制御装置用トランス17を介して商用電源22から電力が供給されて制御動作を開始する。
【0006】
冷媒が流れる経路を切り換える四方弁12は、暖房リレー8と四方弁用リレー15を介して商用電源22に接続されないときは冷媒を冷凍サイクルの経路に流す位置にあり、使用者が暖房動作を指定入力しない限り室内側電子制御装置5は暖房リレー8をオフとしており、この状態では空気調和装置は冷房動作を開始する。使用者が暖房動作を室内側電子制御装置5に指定入力すると、室内側電子制御装置5は暖房リレー8をオンとして四方弁12に四方弁用リレー15を介して商用電源22を接続し、冷媒の経路を加熱サイクル側に切り換えて暖房動作を開始させる。このとき、室外ファンモータ13により外気が室外側熱交換器に送り込まれ、外気の熱が室外側熱交換器に取り入れて冷媒が蒸発して気化し、圧縮機18により圧縮されて室内側熱交換器に送られる。
【0007】
室外熱交換器用温度センサ20は室外側熱交換器の温度を常に検出し、また、外気温センサ21は外気温度を常に検出しており、暖房運転時に外気温が高かったり室外側熱交換器の温度が高い場合には圧縮機18の吐出圧力が高くなる暖房過負荷状態になるので、室外側電子制御装置11は室外熱交換器温度と外気温度とに基づいて暖房過負荷状態を検出し、室外ファンモータ用リレー16をオフとして室外側熱交換器への熱の流入を低減させる。また、外気温度が低い場合には室外側熱交換器に着氷が発生するとして、除氷動作、すなわちディアイス動作を定期的に実行する。
【0008】
このディアイス動作では、室外側電子制御装置11は四方弁用リレー15をオフとして四方弁12を冷凍サイクル側に設定して冷凍サイクルにより室外側熱交換器の除氷を実行するとともに、ディアイス検知リレー10をオンとして室内機1のディアイス検知回路9に通電し、室内側電子制御装置5にディアイス制御中であることを通知する。室内側電子制御装置5は室外機2からの前記ディアイス情報により、たとえば、室内ファンモータ6を停止したり減速したりして冷気の室内流入を制御するなどの制御動作を実行する。
【0009】
なお、上記の動作は原理的な動作であって、室外側電子制御装置11は外気温センサ21の検知出力と室外熱交換器用温度センサ20の検知出力との組み合せにより、きめ細かい制御動作を実行することができる。また、機械式温度検知器による室外側熱交換器の温度低下の認知は、ファンモータの電流変化による手段に限定されるものではなく、たとえば検知出力を直接に室内側電子制御装置に入力するなどの手段でもよく、また、機械式温度検知器のオンオフ動作がスイッチの設計上の選択により逆の場合もあることは言うまでもない。
【0010】
【発明が解決しようとする課題】
このような従来の内外分離型空気調和装置では、室外側電子制御装置11を備える必要があるが、一般的に電子制御装置は他の部品と比較して熱に弱い特性を持っており、室外機2に設けられた室外側電子制御装置11は、冷房運転時には高温外気や直射日光などにより温度が上昇する室外機2の中にあって許容温度を越えて熱暴走する可能性がある。また、この熱暴走を避ける手段として室外側電子制御装置11を冷却する通風冷却回路を設ける場合もあるが、砂やほこりが侵入する可能性が高くて好ましくないなどの問題がある。また、室外側電子制御装置11を備えること自体が材料費アップの要因となる。
【0011】
その解決策として、室外側電子制御装置を備えず、室内側電子制御装置だけで暖房時のディアイス制御を行う内外分離型空気調和装置も存在するが、最適な制御を実現できていないのが現状であり、たとえば、室内機に室内側電子制御装置、室外機に室外側熱交換器用の機械式温度検知器を備え、ディアイス開始の温度とディアイス終了の温度との温度差を機械式温度検知器のヒステリシス特性によるオンオフの温度差に対応させ、オンでディアイス開始、オフでディアイス終了とするような内外分離型空気調和装置も考案されているが、機械式温度検知器の1つであるサーマルリードスイッチではオンとオフとの温度差を大きくとれないので、ディアイス開始に必要な温度とディアイス終了に必要な温度との温度差をかなり大きく設定しなければならないディアイス制御の目的には適切ではなく、また、バイメタルサーモではオンとオフとの温度差を大きくできるが、大きくとってしまうと着霜以外の条件でバイメタルサーモがオンとなったときに、圧縮機停止またはディアイスに移行しない限りオフとならないので、不必要なディアイス動作に移行してしまうなど、機械式温度検知器のヒステリシス特性を十分に考慮した制御としていないために確実なディアイス制御ができない問題があった。
【0012】
本発明は上記の課題を解決するもので、室内側電子制御装置を必要とせず、かつ室外熱交換器用に機械式温度検知器を用いながら、外気温が低い地域の暖房運転条件下においても、的確にディアイス制御できる内外分離型空気調和装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は上記の目的を達成するために、室内機に電子制御装置、室外機側熱交換器に機械式温度検知器を備え、暖房運転時に前記熱交換器が所定の温度以下に低下して前記機械式温度検知器が作動した時点に基づいてディアイス制御を開始し、ディアイス動作により前記室外側熱交換器の温度が上昇して前記機械式温度検知器が反転作動した時点に基づいてディアイス終了制御を行うようにした冷暖房用の内外分離型空気調和装置である。
【0014】
【作用】
本発明は上記の構成において、室外側電子制御装置を備えず、室内側電子制御装置は、室外側熱交換器の温度による機械式温度検知器の作動タイミングに時間制御を加えてディアイス制御とディアイス終了制御とを行う。
【0015】
【実施例】
以下、本発明の内外分離型空気調和装置の一実施例について図面を参照しながら説明する。図1は本実施例の電気的構成を示す回路図である。なお、図2に示した従来例と同じ構成要素には同一番号を付与している。本実施例が従来例と異なる点は、室外機2に機械式温度検知器23を備えるとともに室外側電子制御装置を備えず、また、室内機1に前記機械式温度検知器23のオンオフを検知するための変流器(以下、CTと称す)24を備え、その検知出力を室内側電子制御装置5に入力したことにある。
【0016】
以下、上記構成要素の相互関係と動作について説明する。なお、冷房運転については本発明と直接関係がないので説明を省略する。本体スイッチ4を投入して室内機1を商用電源22に接続し、暖房動作を指定入力すると室内側電子制御装置5は暖房リレー8をオンとして冷媒の経路を加熱サイクル側に切り換え、暖房動作を開始させる。この暖房動作において室外側熱交換器の温度が着霜によって所定の温度より下がった場合、機械式温度検知器23がオンとなり、室外ファンモータ13の電源が暖房リレー8から供給され、リレー25からは供給されないので、リレー25の回路に流れる電流がなくなり、その電流を検出しているCT24により機械式温度検知器23がオンとなったことが室内側電子制御装置5に認知される。その認知時点から所定時間後にディアイス制御動作を開始し、暖房リレー8をオフとして四方弁12と室外側ファンモータ13をオフとしてディアイス動作に移行する。
【0017】
ディアイス動作が進行して室外側熱交換機の温度が上昇し、機械式温度検知器23がオフとなると、室外側ファンモータ13がリレー25を介して電源を供給されるように切り換えられ、室内機1におけるCT24が室外側ファンモータ13の電流を検出し、室内側電子制御装置5は室外側熱交換器の温度が上昇したことを確認する。そこで、一度リレー25をオフとし、所定の時間だけディアイス動作を継続したのちディアイス動作を終了する。ここでディアイス動作を継続する所定の時間を、所定の一定時間としてもよいし、また、たとえばディアイス開始時から機械式温度検知器23がオフとなるまでの時間の半分とし、機械式温度検知器23がオフとなるまでの時間との最大合計時間を12分までとするなど、ディアイス開始からオフとなるまでに要する時間により決定するようにしてもよい。このように、機械式温度検知器がオフとなってからも所定時間だけディアイス動作を継続したのち終了するように制御することにより、ディアイス終了のタイミングを機械式温度検知器のオフ動作時点に固定しないで制御でき、確実なディアイス時間を確保し、かつ機械式温度検知器の選択の自由度が大きくすることができる。
【0018】
以上のように、本実施例によれば、室外側熱交換器の温度を室内側電子制御装置で認知してディアイス制御し、室外機に電子制御装置を設けない構成としたことにより、電子制御装置が熱暴走する可能性がなく、安定に動作するのみならず安価に構成でき、また、機械式温度検知器のオフ信号を入力してから所定時間だけディアイス動作を継続するようにしたことにより、機械式温度検知器のオンとオフとの温度差が小さくてもよいので、機械式温度検知器としてヒステリシス温度差の小さいサーマルリードスイッチを採用しながら必要なディアイス時間を確保して確実にディアイスできるとともに、オンとオフとの温度差を大きく設定したときの無駄なディアイス動作を排除できる。
【0019】
なお、ディアイス開始時も機械式温度検知器がオンとなってから所定時間経過したのちにオン信号を再確認するようにすることにより、たとえば、圧縮機起動時、暖房過負荷制御のために室外側ファンモータを停止している状態など、着霜以外の条件でオン信号が入力したときでも無駄なディアイス動作に移行することもなく、的確なディアイス制御ができる。
【0020】
【発明の効果】
以上の説明から明らかなように、本発明は、室内機に電子制御装置、室外機側熱交換器に機械式温度検知器を備え、暖房運転時に前記熱交換器が所定の温度以下に低下して前記機械式温度検知器が作動した時点に基づいてディアイス制御を開始し、ディアイス動作により前記室外側熱交換器の温度が上昇して前記機械式温度検知器が反転作動した時点に基づいてディアイス終了制御を行うようにしたことにより、機械式温度検知器を用いながら機械式検知器の特性に限定されない的確なディアイス制御を実行できる。
【図面の簡単な説明】
【図1】本発明の内外分離型空気調和機の一実施例の電気的構成を示す回路図
【図2】従来の内外分離型空気調和機の一実施例の電気的構成を示す回路図
【符号の説明】
1 室内機
2 室外機
5 室内側電子制御装置
23 室外側熱交換器用の機械式温度検知器
[0001]
[Industrial application fields]
The present invention relates to an inside / outside separation type air conditioner.
[0002]
[Prior art]
In recent years, air conditioners have been widely used, and most of them are separated air conditioners for both heating and cooling. In this case, de-ice control of the heat exchanger of the outdoor unit is indispensable in the heating operation at the low outside air temperature, but there is a problem of means that can execute the control accurately and inexpensively.
[0003]
Hereinafter, a conventional air conditioning apparatus that is also used for cooling and heating will be described with reference to the drawings. FIG. 2 is a circuit diagram showing an electrical configuration of a conventional internal / external separation type air conditioner. In the figure, 1 is an indoor unit, 2 is an outdoor unit, and 3 is an internal / external connection wire that electrically connects the indoor unit 1 and the outdoor unit 2 to each other. In the indoor unit 1, 4 is a main body switch for opening and closing the connection with the commercial power source 22, 5 is an indoor electronic control device, 6 is an indoor fan motor such as a transistor motor, and 7 is an outdoor unit controlled by the indoor electronic control device 5. A main relay that opens and closes power supply to 2, 8 is a heating relay that is turned on during heating operation, and 9 is a deice detection circuit.
[0004]
In the outdoor unit 2, 10 is a deice detection relay controlled by the outdoor electronic control device 11, 12 is a four-way valve that switches a refrigerant path according to a refrigeration cycle and a heating cycle, and 13 is an outdoor fan such as an induction motor. Motor 14, capacitor for outdoor fan motor 13, 15 four-way valve relay controlled by outdoor electronic control device 11, 16 outdoor fan motor relay controlled by outdoor electronic control device 11, 17 A transformer for the outdoor electronic control device that supplies power to the outside electronic control device 11, 18 is a compressor, 19 is a compressor capacitor, 20 is a temperature sensor for an outdoor heat exchanger, and 21 is an outside air temperature sensor.
[0005]
The mutual relationship and operation of the above components will be described. When the user turns on the main body switch 4 in the indoor unit 1, the indoor unit 1 is connected to the commercial power supply 22, and the indoor electronic control device 5 is supplied with electric power to start a control operation, and rotates the indoor fan motor 6. The indoor air is circulated through an indoor heat exchanger (not shown). Next, when the user inputs an instruction to start operation to the indoor electronic control device 5, the indoor electronic control device 5 controls the main relay 7 to be turned on and connects the commercial power supply 22 to the outdoor unit 2. At this time, the compressor 18 starts rotating, and the outdoor fan motor 13 is connected to the commercial power supply 22 via the outdoor fan motor relay 16 to start sending outside air to an outdoor heat exchanger (not shown). . The outdoor electronic control device 11 is supplied with electric power from the commercial power supply 22 via the outdoor electronic control device transformer 17 and starts a control operation.
[0006]
The four-way valve 12 for switching the flow path of the refrigerant is in a position to flow the refrigerant to the path of the refrigeration cycle when not connected to the commercial power supply 22 via the heating relay 8 and the four-way valve relay 15, and the user designates the heating operation. Unless the input is made, the indoor electronic control unit 5 turns off the heating relay 8, and in this state, the air conditioner starts a cooling operation. When the user inputs a heating operation to the indoor electronic control unit 5, the indoor electronic control unit 5 turns on the heating relay 8 and connects the commercial power supply 22 to the four-way valve 12 through the four-way valve relay 15. Is switched to the heating cycle side to start the heating operation. At this time, outdoor air is sent to the outdoor heat exchanger by the outdoor fan motor 13, the heat of the outdoor air is taken into the outdoor heat exchanger, the refrigerant is evaporated and vaporized, and is compressed by the compressor 18 to be exchanged indoor heat. Sent to the vessel.
[0007]
The outdoor heat exchanger temperature sensor 20 constantly detects the temperature of the outdoor heat exchanger, and the outdoor air temperature sensor 21 constantly detects the outdoor air temperature. When the temperature is high, the discharge pressure of the compressor 18 becomes a heating overload state where the discharge pressure becomes high. Therefore, the outdoor electronic control unit 11 detects the heating overload state based on the outdoor heat exchanger temperature and the outside air temperature, The outdoor fan motor relay 16 is turned off to reduce the inflow of heat to the outdoor heat exchanger. Further, when the outside air temperature is low, it is assumed that icing occurs in the outdoor heat exchanger, and the deicing operation, that is, the de-ice operation is periodically performed.
[0008]
In this de-ice operation, the outdoor electronic control unit 11 turns off the four-way valve relay 15 and sets the four-way valve 12 to the refrigeration cycle side to execute deicing of the outdoor heat exchanger by the refrigeration cycle, and the de-ice detection relay 10 is turned on and the deice detection circuit 9 of the indoor unit 1 is energized to notify the indoor electronic control unit 5 that deice control is being performed. The indoor-side electronic control device 5 executes a control operation such as controlling the inflow of cold air by, for example, stopping or decelerating the indoor fan motor 6 based on the deice information from the outdoor unit 2.
[0009]
The above-described operation is a principle operation, and the outdoor electronic control device 11 executes a fine control operation by combining the detection output of the outdoor air temperature sensor 21 and the detection output of the outdoor heat exchanger temperature sensor 20. be able to. Further, the recognition of the temperature decrease of the outdoor heat exchanger by the mechanical temperature detector is not limited to the means by the current change of the fan motor, for example, the detection output is directly input to the indoor electronic control device, etc. It goes without saying that the on / off operation of the mechanical temperature detector may be reversed depending on the design of the switch.
[0010]
[Problems to be solved by the invention]
In such a conventional inside / outside separation type air conditioner, it is necessary to include the outdoor electronic control device 11, but generally the electronic control device has a characteristic that it is weak against heat as compared with other components, The outdoor electronic control unit 11 provided in the unit 2 is in the outdoor unit 2 where the temperature rises due to high temperature outside air or direct sunlight during cooling operation, and there is a possibility of thermal runaway exceeding an allowable temperature. Further, there is a case where a ventilation cooling circuit for cooling the outdoor electronic control device 11 is provided as means for avoiding this thermal runaway, but there is a problem that sand and dust are not likely to enter, which is not preferable. Further, the provision of the outdoor electronic control device 11 itself causes an increase in material costs.
[0011]
As a solution to this, there is an internal / external separation type air conditioner that does not have an outdoor electronic control unit and performs deice control at the time of heating only by the indoor electronic control unit, but the current situation is that optimal control has not been realized. For example, the indoor unit is equipped with an indoor-side electronic control device, the outdoor unit is equipped with a mechanical temperature detector for the outdoor heat exchanger, and the temperature difference between the temperature at the start of the deice and the temperature at the end of the deice is detected as a mechanical temperature detector. An internal / external separation type air conditioner has been devised that responds to the temperature difference between on and off due to the hysteresis characteristics of the device and starts de-ice when turned on and ends when de-ice is turned off, but thermal lead is one of mechanical temperature detectors. Since the switch cannot take a large temperature difference between on and off, do not set the temperature difference between the temperature required to start de-ice and the temperature required to end de-ice very large. It is not appropriate for the purpose of de-ice control that must be done, and with bimetal thermo, the temperature difference between on and off can be increased, but when it is taken large, when bimetal thermo is turned on under conditions other than frost formation Since it does not turn off unless the compressor stops or shifts to de-ice, it is not controlled with sufficient consideration for the hysteresis characteristics of the mechanical temperature detector, such as shifting to unnecessary de-ice operation, so reliable de-ice control is possible. There was a problem that could not be done.
[0012]
The present invention solves the above-described problems, does not require an indoor electronic control unit, and uses a mechanical temperature detector for an outdoor heat exchanger, even under heating operation conditions in a region where the outside air temperature is low, An object of the present invention is to provide an internal / external separation type air conditioner capable of accurately controlling ice cream.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention includes an electronic control device in an indoor unit and a mechanical temperature detector in an outdoor unit-side heat exchanger, and the heat exchanger decreases below a predetermined temperature during heating operation. De-ice control is started based on the time when the mechanical temperature detector is activated, and the de-ice is finished based on the time when the temperature of the outdoor heat exchanger rises due to the de-ice operation and the mechanical temperature detector is reversed. This is an internal / external separation type air conditioner for air conditioning that is controlled.
[0014]
[Action]
In the above configuration, the present invention does not include the outdoor electronic control device, and the indoor electronic control device adds time control to the operation timing of the mechanical temperature detector according to the temperature of the outdoor heat exchanger, and performs deice control and deice control. Perform termination control.
[0015]
【Example】
DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of an internal / external separation type air conditioner of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing the electrical configuration of the present embodiment. The same reference numerals are given to the same components as those in the conventional example shown in FIG. This embodiment is different from the conventional example in that the outdoor unit 2 includes the mechanical temperature detector 23 and does not include the outdoor electronic control device, and the indoor unit 1 detects whether the mechanical temperature detector 23 is on or off. A current transformer (hereinafter referred to as “CT”) 24 is provided, and the detected output is input to the indoor electronic control unit 5.
[0016]
Hereinafter, the mutual relationship and operation of the above components will be described. Since the cooling operation is not directly related to the present invention, the description thereof is omitted. When the main body switch 4 is turned on and the indoor unit 1 is connected to the commercial power supply 22 and the heating operation is designated and input, the indoor electronic control unit 5 turns on the heating relay 8 to switch the refrigerant path to the heating cycle side, and the heating operation is performed. Let it begin. In this heating operation, when the temperature of the outdoor heat exchanger falls below a predetermined temperature due to frost formation, the mechanical temperature detector 23 is turned on, the power of the outdoor fan motor 13 is supplied from the heating relay 8, and the relay 25 Is not supplied, the current flowing through the circuit of the relay 25 is lost, and the indoor electronic control unit 5 recognizes that the mechanical temperature detector 23 is turned on by the CT 24 detecting the current. The de-ice control operation is started after a predetermined time from the recognition time, the heating relay 8 is turned off, the four-way valve 12 and the outdoor fan motor 13 are turned off, and the de-ice operation is started.
[0017]
When the de-ice operation proceeds and the temperature of the outdoor heat exchanger rises and the mechanical temperature detector 23 is turned off, the outdoor fan motor 13 is switched to be supplied with power via the relay 25, and the indoor unit 1 detects the current of the outdoor fan motor 13, and the indoor electronic control unit 5 confirms that the temperature of the outdoor heat exchanger has increased. Therefore, the relay 25 is once turned off, and after the deice operation is continued for a predetermined time, the deice operation is terminated. Here, the predetermined time for continuing the deicing operation may be a predetermined constant time, or, for example, half the time from the start of the deicing until the mechanical temperature detector 23 is turned off. For example, the maximum total time with the time until 23 turns off may be up to 12 minutes. In this way, the de-ice end timing is fixed at the off-time of the mechanical temperature detector by controlling the de-ice operation to continue after a predetermined time has elapsed even after the mechanical temperature detector is turned off. Control can be performed without any problem, ensuring a reliable de-ice time, and increasing the degree of freedom in selecting a mechanical temperature detector.
[0018]
As described above, according to the present embodiment, the temperature of the outdoor heat exchanger is recognized by the indoor electronic control device and is deiced, and the electronic control device is not provided in the outdoor unit. There is no possibility of thermal runaway of the device, and it can be configured not only stably but also at low cost, and the de-ice operation is continued for a predetermined time after the mechanical temperature detector OFF signal is input. Since the temperature difference between on and off of the mechanical temperature detector may be small, the necessary de-ice time is ensured while using the thermal reed switch with a small hysteresis temperature difference as the mechanical temperature detector to ensure the de-ice. In addition, it is possible to eliminate wasteful de-ice operation when the temperature difference between ON and OFF is set large.
[0019]
Even when de-ice is started, the ON signal is reconfirmed after a predetermined time has elapsed since the mechanical temperature detector is turned on. For example, when the compressor is started, the room is used for heating overload control. Even when an ON signal is input under conditions other than frosting, such as when the outer fan motor is stopped, accurate deice control can be performed without shifting to useless deice operations.
[0020]
【The invention's effect】
As is apparent from the above description, the present invention includes an electronic control device in an indoor unit and a mechanical temperature detector in an outdoor unit-side heat exchanger, and the heat exchanger decreases below a predetermined temperature during heating operation. The de-ice control is started based on the time when the mechanical temperature detector is activated, and the de-ice is controlled based on the time when the temperature of the outdoor heat exchanger is increased by the de-ice operation and the mechanical temperature detector is reversed. By performing the end control, it is possible to execute accurate deice control that is not limited to the characteristics of the mechanical detector while using the mechanical temperature detector.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an electrical configuration of an embodiment of an internal / external separation type air conditioner of the present invention. FIG. 2 is a circuit diagram showing an electrical configuration of an embodiment of a conventional internal / external separation type air conditioner. Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Indoor unit 2 Outdoor unit 5 Indoor electronic controller 23 Mechanical temperature detector for outdoor heat exchangers

Claims (5)

室内機に電子制御装置と、室外機の室外機側熱交換器に機械式温度検知器を備え、商用電源が本体スイッチを介して室内機ならびに室外機に導かれ、前記商用電源の一端には室外側ファンモータと四方弁が取付けられ、前記ファンモータの他端は前記機械式温度検知器のコモン端子に接続され、前記四方弁の他端は前記機械式温度検知器のノーマルオープン端子へ接続されると同時にリレーを介して商用電源に接続され、前記機械式温度検知器のノーマルクローズ端子は変流器およびリレーを介して商用電源に接続され、さらに、前記商用電源に室内側電子制御装置を設けた冷暖房用の内外分離型空気調和装置であって、前記室内側電子制御装置は前記変流器の出力信号を受け、当該信号の受信時を基準にしてディアイス制御を開始ならびに終了することを特徴とする、冷暖房用の内外分離型空気調和装置。The indoor unit is equipped with an electronic control unit, the outdoor unit side heat exchanger of the outdoor unit is equipped with a mechanical temperature detector, and a commercial power source is led to the indoor unit and the outdoor unit via a main body switch. An outdoor fan motor and a four-way valve are attached, the other end of the fan motor is connected to a common terminal of the mechanical temperature detector, and the other end of the four-way valve is connected to a normally open terminal of the mechanical temperature detector At the same time, it is connected to a commercial power source via a relay, and the normally closed terminal of the mechanical temperature detector is connected to the commercial power source via a current transformer and a relay. An indoor / outdoor separation type air conditioning apparatus for cooling and heating, wherein the indoor electronic control unit receives an output signal of the current transformer and starts deice control with reference to the reception of the signal. Wherein the Ryosuru, inside and outside the separation-type air conditioner for cooling and heating. 室外側熱交換器が所定の温度以下に低下して機械式温度検知器が作動した時点からディアイス制御を開始するようにした請求項1記載の内外分離型空気調和装置。  The internal / external separation type air conditioner according to claim 1, wherein the de-ice control is started from a point in time when the outdoor heat exchanger drops below a predetermined temperature and the mechanical temperature detector is activated. 室外側熱交換器が所定の温度以下に低下して機械式温度検知器が作動した時点から所定時間後に再度前記機械式温度検知器の作動を確認したのちディアイス制御を開始する請求項1記載の内外分離型空気調和装置。  The de-ice control is started according to claim 1, wherein after the outdoor heat exchanger drops below a predetermined temperature and the mechanical temperature detector is activated, the operation of the mechanical temperature detector is confirmed again after a predetermined time, and then the de-ice control is started. Internal / external separation type air conditioner. ディアイス動作により室外側熱交換器の温度が上昇して機械式温度検知器が反転作動した時点から所定の一定時間だけディアイス動作を継続したのちディアイス終了制御を開始するようにした請求項1ないし3のいずれかに記載の内外分離型空気調和装置。  4. The deice end control is started after the deice operation is continued for a predetermined time from the time when the temperature of the outdoor heat exchanger rises due to the deice operation and the mechanical temperature detector reversely operates. The internal / external separation type air conditioning apparatus according to any one of the above. ディアイス動作により室外側熱交換器の温度が上昇して機械式温度検知器が反転作動した時点から、ディアイス開始から反転作動までの経過時間によって決定する時間だけディアイス動作を継続したのちディアイス終了制御を開始するようにした請求項1ないし3のいずれかに記載の内外分離型空気調和装置。  After the temperature of the outdoor heat exchanger rises due to the de-ice operation and the mechanical temperature detector reverses, the de-ice operation is continued for the time determined by the elapsed time from the start of the de-ice to the reverse operation. The internal / external separation type air conditioner according to any one of claims 1 to 3, which is started.
JP01112495A 1995-01-27 1995-01-27 Internal / external separation type air conditioner Expired - Fee Related JP3680336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01112495A JP3680336B2 (en) 1995-01-27 1995-01-27 Internal / external separation type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01112495A JP3680336B2 (en) 1995-01-27 1995-01-27 Internal / external separation type air conditioner

Publications (2)

Publication Number Publication Date
JPH08200772A JPH08200772A (en) 1996-08-06
JP3680336B2 true JP3680336B2 (en) 2005-08-10

Family

ID=11769273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01112495A Expired - Fee Related JP3680336B2 (en) 1995-01-27 1995-01-27 Internal / external separation type air conditioner

Country Status (1)

Country Link
JP (1) JP3680336B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113075A (en) * 1995-10-17 1997-05-02 Matsushita Electric Ind Co Ltd Indoor/outdoor separation type air conditioner

Also Published As

Publication number Publication date
JPH08200772A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
US4105064A (en) Two stage compressor heating
US3273352A (en) Refrigeration system defrost control
JP3680336B2 (en) Internal / external separation type air conditioner
JPH07190458A (en) Indoor/outdoor unit separate type air conditioner
JPH1073300A (en) Air conditioner
KR100687989B1 (en) Separated type air-conditioner
US3400553A (en) Refrigeration system defrost control
JPH04174B2 (en)
JPS62186157A (en) Defrosting control unit of air conditioner
JPH04288438A (en) Air conditioner
JP3526393B2 (en) Air conditioner
JPS5925126B2 (en) air conditioner
JPH0113977Y2 (en)
JP2859981B2 (en) Air conditioner
JPH0113978Y2 (en)
JPS5854583Y2 (en) Air conditioner control circuit
JPH06193979A (en) Air conditioner
JPS6229853A (en) Air conditioner
JP2001235238A (en) Heat pump type air-conditioning system
JPH05256503A (en) Controller for air conditioner
JPS6029561A (en) Defroster for air conditioner
JPS5920581Y2 (en) Control circuit for heat pump air conditioner
JPH05240493A (en) Air conditioner
JPS6273029A (en) Controlling device for air conditioner
JPS596350Y2 (en) Air conditioning compressor control device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees