JPS6012533B2 - Heat pump air conditioner - Google Patents

Heat pump air conditioner

Info

Publication number
JPS6012533B2
JPS6012533B2 JP55152563A JP15256380A JPS6012533B2 JP S6012533 B2 JPS6012533 B2 JP S6012533B2 JP 55152563 A JP55152563 A JP 55152563A JP 15256380 A JP15256380 A JP 15256380A JP S6012533 B2 JPS6012533 B2 JP S6012533B2
Authority
JP
Japan
Prior art keywords
capacitor
winding
heating
motor
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55152563A
Other languages
Japanese (ja)
Other versions
JPS5774538A (en
Inventor
良幸 奥沢
哲夫 田口
譲次 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP55152563A priority Critical patent/JPS6012533B2/en
Publication of JPS5774538A publication Critical patent/JPS5774538A/en
Publication of JPS6012533B2 publication Critical patent/JPS6012533B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は補助電気ヒータなどの別の熱源を必要とせず、
暖房熱源を電動圧縮機自体で確保することが可能であっ
て、暖房能力不足時における能力増をはかり得る如くし
たヒートポンプ式冷暖房機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention does not require a separate heat source such as an auxiliary electric heater;
The present invention relates to a heat pump type air conditioner/heater that can secure a heating heat source using the electric compressor itself and can increase the heating capacity when the heating capacity is insufficient.

空気熱源ヒートポンプ式冷暖房機は、外気温度が低下す
ることにより暖房負荷が増大してくる状態では却って暖
房能力が低下するものであって、室温を所定の温度まで
高めることができない。
Air source heat pump type air conditioners have a heating capacity that actually decreases when the heating load increases due to a decrease in outside air temperature, and cannot raise the room temperature to a predetermined temperature.

そこで、従釆は補助電気ヒータを付加せしめて能力補助
をはかっていたが、電気ヒータは加熱効率が余り良くな
いために、ランニングコストの増大を招いて好まし・〈
なく、省エネルギー対策が要求されている現今の情況下
では適切な装置とは云い難かった。最近に至って、エネ
ルギー有効比(E・E・R)向上の観点から容量制御形
圧縮機の搭載によるヒータレス方式冷暖房機が多く利用
されてきているが、この場合には熊量低下が従来の定容
量形圧縮機を有するものに比べてより顕著とない、能力
向上のための対策が重要な課題となっているが、禾だに
要望に応え得る解決手段が探られていないのが実状であ
る。
Therefore, an auxiliary electric heater was added to the subsidiary to increase the capacity, but electric heaters do not have very good heating efficiency, so running costs increase, making them undesirable.
Therefore, it was difficult to say that it was an appropriate device in the current situation where energy saving measures are required. Recently, heater-less air conditioners equipped with capacity-controlled compressors have been increasingly used from the perspective of improving the effective energy ratio (E・E・R). Measures to improve capacity, which is not as noticeable compared to those with positive displacement compressors, are an important issue, but the reality is that no solution has been found that can meet the demands. .

か)る問題点に対処して、本発明は補助電気ヒータを省
略しながら、装置自体殊に汎用の定容量形電動圧縮機自
体に厳寒時における暖房能力増強機能を有せしめる如く
したことによって、従釆の欠陥を克服し得る如くした点
を重要な特徴とするものである。
To address these problems, the present invention eliminates the need for an auxiliary electric heater, but provides the device itself, particularly the general-purpose constant displacement electric compressor itself, with a heating capacity enhancement function during severe cold weather. An important feature is that it is able to overcome the deficiencies of the subordinate system.

以下、本発明の具体的内容について、添付図面を参照し
つつ詳細に説明する。
Hereinafter, specific contents of the present invention will be explained in detail with reference to the accompanying drawings.

第1図は本発明の実施例に係る冷暖房機の冷凍回路図で
、圧縮機1、四路切換弁2、室内側コイル3、逆止弁7
を並列に有し冷房サイクル時に機能するキャピラリチュ
ープ4、逆止弁8を並列に有し暖房サイクル時に機能す
るキャピラリナューブ5および室外側コイル6を図示の
如き公知の可逆サイクルに連絡することによって、暖房
時には実線矢印に通り、冷房時および暖房時期のデフロ
スト時破線矢示の通りの冷媒流通が成される。
FIG. 1 is a refrigeration circuit diagram of an air conditioner according to an embodiment of the present invention, in which a compressor 1, a four-way selector valve 2, an indoor coil 3, and a check valve 7.
By connecting a capillary tube 4 which has a capillary tube 4 in parallel and functions during a cooling cycle, a capillary tube 5 which has a check valve 8 in parallel and functions during a heating cycle, and an outdoor coil 6 to a known reversible cycle as shown in the figure. During heating, the refrigerant flows as shown by the solid line arrow, and during cooling and defrosting during the heating period, the refrigerant flows as shown by the broken line arrow.

第1図中t 9は室外側ファン、9Mは該ファン用モー
タ、1川ま室内側ファン、10Mは該ファン用モータで
ある。上述するように、暖房運転時には冷煤が実線失示
の流通となって室外側コイル6が蒸発器として作用する
ことから、冬期の厳寒時には外気温度と蒸発温度との差
が小かくなって熱交換能力が低下するために、暖房能力
が低下することは前述した通りである。
In FIG. 1, 9 is an outdoor fan, 9M is a motor for the fan, 1 is an indoor fan, and 10M is a motor for the fan. As mentioned above, during heating operation, cold soot flows as a solid line, and the outdoor coil 6 acts as an evaporator. Therefore, in the severe cold of winter, the difference between the outside air temperature and the evaporation temperature becomes small, and the heat is reduced. As mentioned above, the heating capacity decreases because the exchange capacity decreases.

しかして前記圧縮機1はアンドロード機構などを有しな
い定容量形の汎用機であり交流謙導電導機IMと藤直結
せしめてケーシングC内に一体的に収納しており、電動
機IMの発生熱が圧縮機の吐出冷煤に影響を与えるよう
例えば高圧ドーム形の電動圧縮機に形成している。
However, the compressor 1 is a constant capacity type general-purpose machine that does not have an unload mechanism, etc., and is directly connected to the AC electric conductor IM and housed integrally in the casing C. For example, a high-pressure dome-shaped electric compressor is formed so as to affect the cold soot discharged from the compressor.

次に、上記構造になる冷暖房機の運転を掌る制2御回路
を第2図によって説明する。
Next, a control circuit 2 which controls the operation of the air conditioner having the above structure will be explained with reference to FIG.

第2図々示の電動機IMは三相交流譲導電導機であって
、圧縮機運転制御用の電磁開閉器11を介して三相交流
電源に接続される。
The electric motor IM shown in FIG. 2 is a three-phase AC transfer conductor, and is connected to a three-phase AC power source via an electromagnetic switch 11 for controlling compressor operation.

2aは四路切換弁2のソレノィドであって非励3磁の場
合に冷凍回路を暖房サイクルに規制せしめるようになっ
ている。
Reference numeral 2a designates a solenoid for the four-way switching valve 2, which regulates the refrigeration circuit to the heating cycle in the case of non-excited three-magnetism.

前記電磁開閉器11は室内側に設置した運転指令器12
の運転指令にもとづいてソレノィド11sが付勢し、主
接触子および補助接触子11aを3閉成する。
The electromagnetic switch 11 is an operation command device 12 installed indoors.
Based on the operation command, the solenoid 11s is energized to close the main contact 11a and the auxiliary contact 11a.

運転指令器12は運転スイッチ20の投入によって、逓
降変圧器24から低電圧電源の供給を受け作動する電子
回路であって、室温検出用サーミスタ18と室温設定用
可変抵抗器19とからの信雛号を比較し、冷房時には室
温が設定温度よりも或る値の温度差以上に高いとき、暖
房時には逆に低いときに運転指令を発して設定温度値に
略々合致するときまで運転指令を発し続ける如く作動し
、さらに、暖房運転の際において室温が設定温度に対し
て前記温度差を超えてさらに低下したときに能力増指令
を発する如く作動し、所謂2段指令形の指令器に形成さ
れている。
The operation command device 12 is an electronic circuit that is activated by receiving low voltage power from the step-down transformer 24 when the operation switch 20 is turned on, and receives signals from the thermistor 18 for detecting room temperature and the variable resistor 19 for setting the room temperature. When the room temperature is higher than the set temperature by a certain value during cooling, and when it is lower than the set temperature during heating, an operation command is issued, and the operation command is continued until the temperature almost matches the set temperature. It operates to issue a capacity increase command when the room temperature further decreases by exceeding the temperature difference with respect to the set temperature during heating operation, and is formed into a so-called two-stage command type command device. has been done.

夕 13は前記運転指令器12から能力増指令が発せ
られると付勢するりレーであって、その常開接点13a
、常閉接点13bを切換作動せしめるが、常開接点13
aを閉成することによって、電動機IMの固定子巻線の
3端子のうち1端子Vを0コンデンサ15を介し三相電
源の一相に接続し、常開接点13bは前記1端子Vを三
相電源の前記−相以外の一つの相に接続するようになっ
ている。
Reference numeral 13 is a relay that is energized when a capacity increase command is issued from the operation command device 12, and its normally open contact 13a.
, normally closed contact 13b is switched, but normally open contact 13
a, one terminal V of the three terminals of the stator winding of the motor IM is connected to one phase of the three-phase power supply via the zero capacitor 15, and the normally open contact 13b connects the one terminal V to the three-phase power supply through the zero capacitor 15. It is connected to one phase other than the negative phase of the phase power supply.

!6はリレーであって、袷暖切換スイッチ17夕に関連
して設けられ、該スイッチ17を冷房側に操作すると付
勢して常開接点16a、常閉接点16bおよび切換接点
16cを切換作動せしめるが、常開接点16aの閉威に
より四路切換弁2を冷房側に切換え、常閉接点16bの
開放により1′0レー13を消勢し、切襖接点16cの
切換えにより、室外ファン用モータ9Mを高速下で駆動
するようになっている。
! Reference numeral 6 denotes a relay, which is provided in connection with the underside heating selector switch 17, and when the switch 17 is operated to the cooling side, it is energized to switch the normally open contact 16a, the normally closed contact 16b, and the changeover contact 16c. However, the four-way switching valve 2 is switched to the cooling side by closing the normally open contact 16a, the 1'0 relay 13 is deenergized by opening the normally closed contact 16b, and the outdoor fan motor is switched by switching the switching contact 16c. The 9M is designed to be driven at high speed.

21は室内側に設けた風量制御スイッチであって、室内
ファン用モータ10Mを高速、中速、低速に手動切換え
得る如く配設されている。
Reference numeral 21 denotes an air volume control switch provided on the indoor side, and is arranged so that the indoor fan motor 10M can be manually switched between high speed, medium speed, and low speed.

22は運転用リレーで、運転スイッチ20の投入により
付勢し、該接点22aにより室内ファン用モータ10M
に電源を供給し得るようになっている。
22 is a driving relay, which is energized when the driving switch 20 is turned on, and the indoor fan motor 10M is activated by the contact 22a.
It is designed to be able to supply power to.

次に第1図および第2図によって、冷房あるいは暖房運
転時の作動態様を説明すると、先ず冷房運転時はリレー
16が付勢しているので、リレー13は常に消勢してお
り従って能力向上のためのコンデンサ15に通電される
ことはない。
Next, the operation mode during cooling or heating operation will be explained with reference to Figures 1 and 2. First, during cooling operation, relay 16 is energized, so relay 13 is always de-energized, and therefore the capacity is improved. The capacitor 15 for this purpose is not energized.

一方、冬期の暖房運転時においては、室温と設定温度と
の差が大きいと、指令器12からの能力増指令によって
電磁開閉器11およびリレー13が同時に付勢し、圧縮
機1が運転すると共に、コンデンサ15に通電される。
圧縮機用モータIMはリレー】3の作動によってS相と
はしや断され、端子Vはコンデンサー5を介し電源のT
相に接続される。
On the other hand, during heating operation in winter, if the difference between the room temperature and the set temperature is large, the electromagnetic switch 11 and the relay 13 are simultaneously energized by the capacity increase command from the command unit 12, and the compressor 1 is operated. , the capacitor 15 is energized.
The compressor motor IM is immediately disconnected from the S phase by the operation of relay 3, and the terminal V is connected to the power supply T via capacitor 5.
connected to the phase.

従ってモーターMはR相「T相間の単相電源によって運
転される単相誘導電動機となり、巻線の温度が上昇して
くる。
Therefore, the motor M becomes a single-phase induction motor driven by a single-phase power supply between the R phase and the T phase, and the temperature of the winding increases.

この温度上昇によって生じた発熱は圧縮機1からの吐出
ガスの温度上昇に寄与し、その結果、室内側コイル3で
室内空気と熱交換する冷嬢の熱量が増加して暖房能力の
上昇をはかることが可能となる。
The heat generated by this temperature rise contributes to the temperature rise of the gas discharged from the compressor 1, and as a result, the amount of heat in the cooling chamber that exchanges heat with indoor air in the indoor coil 3 increases, increasing the heating capacity. becomes possible.

三相誘導電動機に運転コンデンサ15を接続して単相誘
導電動機として運転した場合には、最大出力が低下し、
従って同じ負荷に対して負荷率が上り、巻線に流れる電
流は増加する。
When the operating capacitor 15 is connected to a three-phase induction motor and the motor is operated as a single-phase induction motor, the maximum output decreases,
Therefore, for the same load, the load factor increases and the current flowing through the winding increases.

Zしかもコンデンサを介して接続する形態で
は、軽負荷時など巻線に加わる電圧が高くなるので、巻
線への流入電流は増加する。また、コンデンサの容量を
増加させるほど巻線への流入電流は多くなって、この電
流増により、Z電流の自棄の比で巻線温度が上昇するの
で、暖房負荷に見合った十分な熱を得ることができる。
In the case where Z is connected via a capacitor, the voltage applied to the winding becomes high when the load is light, so the current flowing into the winding increases. Also, as the capacitance of the capacitor increases, the current flowing into the winding increases, and due to this increase in current, the winding temperature increases at the rate of Z current, so sufficient heat can be obtained to match the heating load. be able to.

なお、電動機IMへの流入電流が増加し、それによって
入力が増加するとき、コンデンサ16での発熱は殆ど生
じないので、入力増加分の略々全部が巻線内での発熱と
なることは言うまでもない。このようにして能力向上し
た運転によって室温が設定温度に近付いてくると、能力
増指令の解除によってリレー13が消勢し、モータIM
は三相電源に接続される通常の三相運転に復帰するので
通常運転に入る。通常運転では能力が不足する場合には
、室温が下り、設定温度との差が大となるので、リレー
13が付勢して能力増援房運転が自動的に行われること
は言うまでもない。
Note that when the current flowing into the motor IM increases and the input increases as a result, almost no heat is generated in the capacitor 16, so it goes without saying that almost all of the increased input becomes heat generated within the winding. stomach. When the room temperature approaches the set temperature due to the operation with improved performance in this way, the relay 13 is deenergized by the release of the increased performance command, and the motor IM
is connected to a three-phase power supply and returns to normal three-phase operation, so it enters normal operation. Needless to say, if the capacity is insufficient during normal operation, the room temperature will drop and the difference from the set temperature will become large, so the relay 13 will be energized and capacity reinforcement room operation will be automatically performed.

このようにして、暖房時の高負荷運転の際には圧縮機1
用の電動機IMの巻線温度を強制的に上昇させて、この
熱により圧縮機1からの吐出ガスの温度を高めることが
できるので、暖房能力の増大が可能となり、しかもこの
場合に、冷媒系統の外から暖めるのではなく、冷煤通路
中で効率良く加熱する方式であるので、熱交換性能は良
好である。
In this way, during high-load operation during heating, the compressor 1
By forcibly increasing the winding temperature of the electric motor IM for use in the refrigerant system, the temperature of the discharged gas from the compressor 1 can be increased using this heat, making it possible to increase the heating capacity. This method heats the soot efficiently in the cold soot passage rather than heating it from outside, so the heat exchange performance is good.

また、電気ヒータを使用しないのでE●E・Rは向上す
る。
Also, since no electric heater is used, E•E•R is improved.

次に第3図について説明すると、前記例が三相交流誘導
電導機を圧縮機1用の電動機とした場合の冷凍能力が比
較的大きい空気調和機であるのに対して、第3図々示例
は一般家庭用など小容量形の空気調和機に適用したもの
である。
Next, referring to FIG. 3, the example shown in FIG. is applied to small capacity air conditioners for general household use.

圧縮機1用の電動機IMをコンデンサ起動・運転形の単
相交流電動機に形成すると共に、補助巻線に直列ごせた
運転コンデンサ14に対して、前記コンデソサ15を始
動兼用として並列的に接続してなる構成以外は第2図々
示のものと同様である。
The motor IM for the compressor 1 is formed into a single-phase AC motor of the capacitor start/operation type, and the condenser 15 is connected in parallel to the operating capacitor 14 connected in series to the auxiliary winding, so as to serve as a starter. The structure other than that shown in FIG. 2 is the same as that shown in FIG.

次にこの装置例の主な作動態様を第1図および第3図に
より説明すると、暖房運転を開始させることにより、運
転最初は室温と設定温度との差が大きいためにリレー1
3が励磁されるので、常開接点13aの閉成により前記
コンデンサ15に通電され、始動トルクが増加する。
Next, the main operating mode of this device example will be explained with reference to FIGS. 1 and 3. By starting the heating operation, the relay 1
3 is excited, the capacitor 15 is energized by closing the normally open contact 13a, and the starting torque increases.

始動トルクの増大と併せて補助巻線の電流増加により電
動機IMの発熱量は増大し、第2図による設明のように
、この発熱量の増大が暖房能力の増強に寄与して短時間
に室温が設定温度に近付いてくる。
The amount of heat generated by the electric motor IM increases due to the increase in the current in the auxiliary winding along with the increase in starting torque, and as shown in Figure 2, this increase in heat amount contributes to increasing the heating capacity and increases the heating capacity in a short time. The room temperature approaches the set temperature.

その結果、リレー13の消勢によってコンデンサ15は
運転コンデンサ14との並列関係が断たれ、通常の暖房
運転に切り換る。
As a result, the parallel relationship between the capacitor 15 and the operating capacitor 14 is cut off due to the deenergization of the relay 13, and the heating operation is switched to normal heating operation.

外気温度が低下した高暖房負荷のときにも、当然コンデ
ンサ15が通電されて電動圧縮機は能力増加の状態で運
転する。
Even when the outside air temperature is low and the heating load is high, the capacitor 15 is naturally energized and the electric compressor operates with increased capacity.

なお、コンデンサ15に通電したときの状態は次の通り
であり、電動機IMの補助巻線電流が増加して巻線温度
が上昇するが、このとき、主巻線に流れる電流は僅かで
あるが減少し、主巻線の温0度は上昇しないので、補助
巻線の温度は主巻線側へも移行し、従って補助巻線に相
当大きい電流を流しても巻線が焼損する危険はない。
The state when the capacitor 15 is energized is as follows; the auxiliary winding current of the motor IM increases and the winding temperature rises; however, at this time, although the current flowing through the main winding is small, Since the temperature of the main winding decreases and the temperature of the main winding does not rise to 0 degrees, the temperature of the auxiliary winding also transfers to the main winding side, so there is no risk of burning out the winding even if a considerably large current is passed through the auxiliary winding. .

コンデンサ15の抵抗は電動機IMの巻線抵抗に比し無
視し得る程度に少さし、ので、コンデンサタ 15の接
続により増加した入力は、その殆どか巻線温度の上昇に
寄与し、全て圧縮機1の吐出ガス温度を上昇させる熱量
として作用する。
The resistance of the capacitor 15 is negligible compared to the winding resistance of the motor IM, so most of the input that increases due to the connection of the capacitor 15 contributes to an increase in the winding temperature, and all of it is caused by compression. It acts as an amount of heat that increases the temperature of the gas discharged from the machine 1.

本発明の内容は以上説明した両例によって明らかにした
が、続いで本発明の効果を挙げると次の0通りである。
The contents of the present invention have been clarified by the above-mentioned examples, and the effects of the present invention are listed below.

‘ィ’暖房能力不足時の運転中は圧縮機1用の電動機I
Mを積極的に発熱量が大きくなるようにして、しかもこ
の発熱量はケーシング内で効率的に吐出ガス加熱用とし
て作用させ得るので冷煤系統外から他の熱源によって加
熱するよりも熱効率が高く、ランニングコストの低減が
はかれる。(o} 補助電気ヒータを有する従来装置に
比してE・E・Rが大であり、時代の要請に応え得る装
置として通したものであり、また安全性の高い装置を提
供することができる。
'i' During operation when heating capacity is insufficient, the electric motor I for compressor 1
M is actively made to have a large calorific value, and this calorific value can be effectively used to heat the discharged gas within the casing, so the thermal efficiency is higher than heating by other heat sources from outside the cold soot system. , reducing running costs. (o) Compared to conventional devices with auxiliary electric heaters, the E/E/R is greater, making it a device that can meet the demands of the times, and can provide a highly safe device. .

し一 単相誘導電動機の場合は、始動用コンデンサを共
用できるので経済性に富む利点がある。
In the case of a single-phase induction motor, the starting capacitor can be shared, so it has the advantage of being highly economical.

0 暖房能力不足時だけでなく運転開始時の立上り特性
の改善にも併せて利用でき、ウオーミングアップ時間の
短縮による経済効果も大である。
0 It can be used not only when the heating capacity is insufficient, but also to improve the start-up characteristics at the start of operation, and the economical effect of shortening the warm-up time is also large.

以上の如く本発明は種々のすぐれた効果を奏するヒート
ポンプ式冷暖房機である。
As described above, the present invention is a heat pump type air conditioner/heater that exhibits various excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明冷暖房機の例に係る冷凍回路図、第2図
および第3図は本発明冷暖房機の各例に係る電気回路図
である。 1…・・・圧縮機、IM・・・・・・交流誘導電導機、
13……リレー、15……コンデンサ。 孝′図 汐函 孝3区
FIG. 1 is a refrigeration circuit diagram of an example of the air conditioner/heater of the present invention, and FIGS. 2 and 3 are electrical circuit diagrams of each example of the air conditioner/heater of the invention. 1...Compressor, IM...AC induction machine,
13...Relay, 15...Capacitor. Ko'zu Shiokako Ko 3 Ward

Claims (1)

【特許請求の範囲】 1 交流誘導電動機1Mと圧縮1とを軸直結してケーシ
ング内に一体的に収納すると共に、四路切換弁2の切換
操作により、冷凍回路を冷房サイクルと暖房サイクルと
に切換可能となしたヒートポンプ式冷暖房機において、
冷凍回路が暖房サイクルに切り換っており、かつ、室温
が設定温度に比して所定温度差以上低下している間を通
じて付勢するリレー13を設けると共に、前記電動機1
Mの巻線の一部と、コンデンサ15と前記リレー13の
常開接点13aとを直列に接続して電源に連絡すること
により、暖房能力不足時に、前記巻線の一部に対し発熱
を起生するに十分な値の進相電流を通電する如くしたこ
とを特徴とするヒートポンプ式冷暖房機。 2 圧縮機1と軸直結した前記交流誘導電導機1Mがコ
ンデンサ起動・運転形の単相誘導電動機であり、前記リ
レー13の常開接点13aに対し直列関係に存するコン
デンサ15および電動機1Mの巻線の一部が、始動兼用
コンデンサおよび補助巻線である特許請求の範囲第1項
記載のヒートポンプ式冷暖房機。
[Claims] 1. The AC induction motor 1M and the compression motor 1 are directly connected to each other and housed integrally in a casing, and the refrigeration circuit can be switched between the cooling cycle and the heating cycle by switching the four-way switching valve 2. In switchable heat pump air conditioners,
A relay 13 is provided which is energized while the refrigeration circuit is switched to the heating cycle and the room temperature is lower than the set temperature by more than a predetermined temperature difference.
By connecting a part of the winding M, the capacitor 15, and the normally open contact 13a of the relay 13 in series and communicating with the power supply, heat is generated in a part of the winding when heating capacity is insufficient. 1. A heat pump type air-conditioning/heating machine characterized by passing a phase-advanced current of a value sufficient to generate energy. 2. The AC induction motor 1M that is directly connected to the compressor 1 is a capacitor-started and operated single-phase induction motor, and the capacitor 15 and the winding of the motor 1M are connected in series with the normally open contact 13a of the relay 13. 2. The heat pump type air-conditioning machine according to claim 1, wherein a part of the starting capacitor and the auxiliary winding.
JP55152563A 1980-10-29 1980-10-29 Heat pump air conditioner Expired JPS6012533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55152563A JPS6012533B2 (en) 1980-10-29 1980-10-29 Heat pump air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55152563A JPS6012533B2 (en) 1980-10-29 1980-10-29 Heat pump air conditioner

Publications (2)

Publication Number Publication Date
JPS5774538A JPS5774538A (en) 1982-05-10
JPS6012533B2 true JPS6012533B2 (en) 1985-04-02

Family

ID=15543209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55152563A Expired JPS6012533B2 (en) 1980-10-29 1980-10-29 Heat pump air conditioner

Country Status (1)

Country Link
JP (1) JPS6012533B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207661A1 (en) * 2018-04-25 2019-10-31 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163197U (en) * 1981-04-02 1982-10-14
JPS597857A (en) * 1982-07-02 1984-01-17 ダイキン工業株式会社 Heat pump type air conditioner
CN108613326A (en) * 2018-06-25 2018-10-02 珠海格力电器股份有限公司 Air-conditioning system and its intelligent adjustment control method, device, computer equipment
CN113251567A (en) * 2021-06-09 2021-08-13 珠海格力电器股份有限公司 Heating control method and device and air conditioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019207661A1 (en) * 2018-04-25 2019-10-31 三菱電機株式会社 Refrigeration cycle device
CN111971515A (en) * 2018-04-25 2020-11-20 三菱电机株式会社 Refrigeration cycle device
JPWO2019207661A1 (en) * 2018-04-25 2020-12-03 三菱電機株式会社 Refrigeration cycle equipment
CN111971515B (en) * 2018-04-25 2022-03-01 三菱电机株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
JPS5774538A (en) 1982-05-10

Similar Documents

Publication Publication Date Title
KR900007205B1 (en) Air conditioner with heat regeneration cycle
US5142880A (en) Automatic fan control (AFC) unit of low cost and durable construction and related progress for improving the efficiency of existing air conditioning systems
US5105096A (en) Transport refrigeration system with stand-by compressor drive motor also operable as a generator
US4167966A (en) Air conditioner blower control
KR0156058B1 (en) Airconditioner
US3959979A (en) Dual voltage forced air heat exchanger
JPH026990B2 (en)
JPH0769087B2 (en) Operation control device for air conditioner
JPS6012533B2 (en) Heat pump air conditioner
JPS5844299Y2 (en) Air conditioner refrigeration cycle
JPS59189243A (en) Defrosting control device of air conditioner
JPH04174B2 (en)
JP2850440B2 (en) Operation control device of air conditioner equipped with refrigerant heater
JPS6251391B2 (en)
JPS6132302Y2 (en)
JPS59153076A (en) Controller for operation of air conditioner
JPS596346Y2 (en) Control circuit for heat pump air conditioner
JP3675589B2 (en) Refrigerant heating type air conditioner
JPS5971960A (en) Heat pump type refrigeration cycle
JPH07823Y2 (en) Cooling built-in type hot air heater
JPS5854583Y2 (en) Air conditioner control circuit
JPH0471129B2 (en)
CN116324169A (en) System and method for multistage operation of a compressor
JPS6154149B2 (en)
JPS5835952Y2 (en) air conditioner