JPS6032819B2 - Absorbance analyzer - Google Patents
Absorbance analyzerInfo
- Publication number
- JPS6032819B2 JPS6032819B2 JP2175977A JP2175977A JPS6032819B2 JP S6032819 B2 JPS6032819 B2 JP S6032819B2 JP 2175977 A JP2175977 A JP 2175977A JP 2175977 A JP2175977 A JP 2175977A JP S6032819 B2 JPS6032819 B2 JP S6032819B2
- Authority
- JP
- Japan
- Prior art keywords
- absorbance
- signal
- circuit
- light source
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/314—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【発明の詳細な説明】
本願発明は、2波長分光器を備え、とくに試料成分の複
雑なたとえば生体試料などの定量分析をおこなうのに有
効である吸光度分析装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorbance analyzer equipped with a two-wavelength spectrometer and particularly effective for quantitative analysis of complex sample components, such as biological samples.
更に詳しくは、本発明は多数の試料容器の吸光度をこれ
らの容器を順次測定位置に移送することにより測定する
装置において、試料容器の移送経路後方で光源からの光
を2つの波長の光に分光する2波長分光器と、この2波
長分光器からの各波長光東の吸光度の差を演算する差敷
増幅器と、測定位贋への試料容器の移送有無を検出する
位置検出手段と、この位置検出手段の信号にもとすき試
料容器が測定位置に移送される前の前記差動増幅器から
の吸光度信号を記憶する回路と位置検出手段の信号にも
とずき試料容器が測定位置に移送された時の前記差動増
幅器からの吸光度信号と前記記憶回路の吸光度信号との
差を演算する演算部と、この演算出力の表示部とを備え
たことを特徴とする吸光度分析装置に関する。物質を定
量する方法の一つとして、吸光度を測定する方法が知ら
れている。この吸光度は、光源に色温度等の変化がある
場合にその影響を受け、正確な測定が阻害される恐れが
ある。例えば、一般に光源はその色温度変化がなくなる
までに時間を必要とする。従って特に急いで測定したい
場合、つまり点灯後まもない時期に測定したい場合には
光源の色温度変化による誤差が大きい。本発明はこれら
の事情に鑑みなされたものである。More specifically, the present invention is an apparatus for measuring the absorbance of a large number of sample containers by sequentially transporting these containers to measurement positions, in which light from a light source is split into two wavelengths of light at the rear of the sample container transport path. a two-wavelength spectrometer, a differential amplifier that calculates the difference in the absorbance of each wavelength light from the two-wavelength spectrometer, a position detection means that detects whether or not a sample container is transferred to a measurement position; A circuit for storing the absorbance signal from the differential amplifier before the sample container is transferred to the measurement position based on the signal from the detection means and a circuit for storing the absorbance signal from the differential amplifier before the sample container is transferred to the measurement position based on the signal from the position detection means. The present invention relates to an absorbance analyzer comprising: a calculation unit that calculates the difference between the absorbance signal from the differential amplifier and the absorbance signal of the storage circuit when A method of measuring absorbance is known as one of the methods for quantifying substances. This absorbance is affected by changes in color temperature or the like of the light source, which may impede accurate measurement. For example, a light source generally requires time for its color temperature to change. Therefore, especially when you want to take measurements quickly, that is, when you want to take measurements soon after lighting, there is a large error caused by changes in the color temperature of the light source. The present invention has been made in view of these circumstances.
本発明に係る吸光度分析装置の特徴は、単的に言えば、
2波長側光方式のものにおいて、分析装直の演算部に光
源の色温度等の変化を補正する手段を付設したことにあ
る。Simply speaking, the features of the absorbance analyzer according to the present invention are as follows:
In the two-wavelength side light system, a means for correcting changes in the color temperature of the light source is attached to the calculation section directly in the analyzer.
つまりその特徴は試料の吸光度(又は吸光度差)より光
源のみによる吸光度(又は吸光度差)を自動的に差し引
く手段を付与したことにある。これによって例えば点灯
後まもない時期又は何らかの影響で光線の色温度等が変
化する場合により正確な吸光度による定量分析が可能に
なる。以下図に示す実施例に基いて本発明を詳述する。In other words, its feature lies in the provision of means for automatically subtracting the absorbance (or absorbance difference) due only to the light source from the absorbance (or absorbance difference) of the sample. This enables more accurate quantitative analysis based on absorbance, for example, immediately after lighting or when the color temperature of the light changes due to some influence. The present invention will be described in detail below based on embodiments shown in the figures.
なおこれによって本発明が限定を受けるものではない。
第1図において、1は二波長吸光度自動分析装置で、多
数の試料容器S,.S2・・・を間隔をおいて載架支持
する回転論状コンベァ2と、その試料測定位置3で対向
する光源4及びレンズ5と、このレンズの外側に順に接
続された二波長分光器6と、検出器7,8と、対数変換
回路9,10と、差鰯増幅器11と、光源4の色温度変
化の補正回路12及び計算回路24を備えた主演算回路
13と、指示(表示)計14とから主として構成されて
いる。Note that the present invention is not limited by this.
In FIG. 1, reference numeral 1 denotes a dual-wavelength absorbance automatic analyzer, which includes a large number of sample containers S, . A rotating logical conveyor 2 that supports S2... at intervals, a light source 4 and a lens 5 facing each other at the sample measurement position 3, and a two-wavelength spectrometer 6 connected in order to the outside of this lens. , detectors 7 and 8, logarithmic conversion circuits 9 and 10, a differential amplifier 11, a main processing circuit 13 comprising a correction circuit 12 for color temperature change of the light source 4 and a calculation circuit 24, and an indicator (display) meter. It is mainly composed of 14.
前記回転輪状コンベア2には、試料容器S,,S2・・
・がそれぞれ設定測定位置3に送られたことを検出する
ための透孔日,,比・・・が予め設けられ、且つ試料容
器S,,S2・・・が設定測定位置になく光源4からの
光東が直接レンズ5に向う位置を検出するための透孔B
,,B2…が予め設けられている。The rotating ring conveyor 2 includes sample containers S, S2...
The through-hole days,, ratios, etc. for detecting that the sample containers S, S2, etc. are sent to the set measurement positions 3, respectively, are provided in advance, and the sample containers S, S2, etc. Through hole B for detecting the position where the light east directly faces the lens 5
, , B2... are provided in advance.
そしてこの回転静状コンベア2は適当な動力手段により
連続回転できるものである。前記二波長分光器6は、鏡
15、半透明鏡16、回折格子17,18より構成され
、その両回折格子によって光源4からの光東を二つの波
長:入,と入2 に分光する。This rotary static conveyor 2 can be continuously rotated by suitable power means. The two-wavelength spectrometer 6 is composed of a mirror 15, a semi-transparent mirror 16, and diffraction gratings 17 and 18, and these two diffraction gratings separate the light from the light source 4 into two wavelengths: 1 and 2.
前記色温度変化の補正回路12は、前記差動増幅器11
の出力側より延びピーク検出ゲート19と記憶回路20
を直列に接続したゲート回路21と、同じく出力側より
分岐し光源モニタ検出ゲ−ト22を接続したゲート回路
23と、両回路21,23の他端をそれぞれ入力側に接
続し出力側を前記計算回路24に接続した差動増幅器2
5とから主として構成されている。The color temperature change correction circuit 12 includes the differential amplifier 11
A peak detection gate 19 and a memory circuit 20 extend from the output side of the
a gate circuit 21 connected in series, a gate circuit 23 branched from the output side and connected to the light source monitor detection gate 22, and the other ends of both circuits 21 and 23 connected to the input side, respectively, and the output side connected to the Differential amplifier 2 connected to calculation circuit 24
It is mainly composed of 5.
そして前記ピーク検出ゲート19には、適宜配段された
位置検知部としてのピーク検出フオトカップラ26によ
って透孔日,.日2…の有無検出信号27、つまりゲー
ト信号が入り、一方前記光源モニタ検出ゲート22には
、同じく位置検出部としての光源モニタ検出フオトカツ
ブラ28によって透孔B,B2…の有無(十)、(一)
検出信号29、つまりゲート信号が入るよう設定されて
いる。なお二波長吸光度自動分析装置1における試料に
ともなう吸光度信号と光源の変動に起因する信号との差
を検出する演算部としては、主演算回路13だけでなく
対数変換回路9,10及び差動増中器11を含むもので
ある。The peak detection gate 19 is connected to the peak detection photocoupler 26, which serves as a position detection section, arranged as appropriate. On the other hand, the light source monitor detection gate 22 receives the presence/absence detection signal 27 of day 2..., that is, the gate signal, and the presence/absence (10) of the through holes B, B2..., ( one)
It is set so that a detection signal 29, that is, a gate signal, is input. Note that the arithmetic section for detecting the difference between the absorbance signal associated with the sample and the signal caused by fluctuations in the light source in the dual-wavelength absorbance automatic analyzer 1 includes not only the main arithmetic circuit 13 but also the logarithmic conversion circuits 9 and 10 and the differential amplifier. It includes a middle part 11.
次に以上のような構成を備えた自動分析装置1の動作を
説明する。まず光源4が点灯し、回転輪状コンベア2が
回転を開始する。Next, the operation of the automatic analyzer 1 having the above configuration will be explained. First, the light source 4 is turned on and the rotary ring conveyor 2 starts rotating.
そして例えば、試料容器S,が試料測定位直3に移動す
るところから説明すると、その移動を間接的に透孔日,
によってピーク検出フオトカップラ26で検出し、ピー
ク検出ゲート19へその有(十)信号を伝える。もちろ
んこのときは光源モニタ検出ゲート22には(十)信号
は伝えられていない。一方試料容器S,を通過した光東
はしンズ5を通り鏡15、半透明鏡16回折格子17,
18を経て二波長:入,と入2 に分光され、更にその
二波長光は検出器7,8、対数変換回磯9,10及び差
敷増中器11により二波長の吸光度差に演算され色温度
変化の補正回路12の両回路21,23に伝えられてい
る。For example, if we start by explaining the movement of the sample container S to the sample measurement position 3, this movement can be indirectly explained as follows:
is detected by the peak detection photocoupler 26, and a presence (10) signal is transmitted to the peak detection gate 19. Of course, at this time, the (10) signal is not transmitted to the light source monitor detection gate 22. On the other hand, Koto, which has passed through the sample container S, passes through the mirror 15, the semi-transparent mirror 16, the diffraction grating 17,
18, the light is separated into two wavelengths: I, and I2, and the two wavelengths are further calculated into the absorbance difference between the two wavelengths by detectors 7 and 8, logarithmic conversion circuits 9 and 10, and an intensifier 11. This is transmitted to both circuits 21 and 23 of the color temperature change correction circuit 12.
しかしながら前述の通り一方のピーク検出ゲート19に
のみ有(十)信号が伝わっているのでその回路21のみ
導通して二波長の吸光度差が記憶回路20‘こ記憶され
る。続いて、回転論状コンベア2が回転を続けて光源4
の光東が直接レンズ5に向うところに至ると、光源モニ
タ検出フオトカップラ28で透孔耳を検出し、その有(
十)信号を光源モニ夕検出ゲート22〔及び記憶回路2
0〕へ伝える。かくしてその時に差敷増中器11の出力
側に表われた二波長の吸光度差及び記憶回路20の吸光
度差は筆動増中器25の入力側に同時に伝えられ差鰯増
中される。そして計算回蝋24を通って所望の濃度値に
まで演算され表示計14にて適宜表示される。つまり前
述の差教増中器25による差鱗増中によって、試料によ
る吸光度差から光源そのものの吸光度差を差し引く補正
が可能となる。従って本葬直1は光源の色温度変化が大
きく測定デー外こ影響を与える場合に効果があり、特に
光源V点灯後すぐに測定を行うような場合は色温度変化
が大きいので効果的である。以上の実施例においては、
記憶回路201まピーク検出ゲート19を備えた回路2
1に接続されているが、同じ内容の記憶回路を光源モニ
タ検出ゲートを備えた回路に接続してもよい。However, as described above, since the present (10) signal is transmitted only to one peak detection gate 19, only that circuit 21 becomes conductive, and the absorbance difference between the two wavelengths is stored in the storage circuit 20'. Subsequently, the rotary conveyor 2 continues to rotate and the light source 4
When the light east reaches the point directly toward the lens 5, the light source monitor detection photocoupler 28 detects the through-hole ear and detects its presence (
10) Signal to light source monitor detection gate 22 [and memory circuit 2
0]. Thus, the absorbance difference between the two wavelengths appearing on the output side of the differential intensifier 11 and the absorbance difference in the storage circuit 20 at that time are simultaneously transmitted to the input side of the pen intensifier 25 and are intensified. Then, it passes through the calculation wax 24 and is calculated to a desired concentration value, which is displayed on the display meter 14 as appropriate. In other words, by increasing the difference scale using the difference intensifier 25 described above, it becomes possible to perform correction by subtracting the absorbance difference of the light source itself from the absorbance difference due to the sample. Therefore, Honso Nao 1 is effective when the color temperature change of the light source is large and affects the outside of the measurement data, and is especially effective when the measurement is performed immediately after the light source V is turned on because the color temperature change is large. . In the above embodiment,
Memory circuit 201 or circuit 2 equipped with peak detection gate 19
1, a storage circuit with the same content may be connected to a circuit provided with a light source monitor detection gate.
例えば第1図における回路12にこの変更を加えた場合
は、光源の色温度変化の補正は試料測定(ピーク)前の
光源について行なうことになるわけである。更に光源の
色温度変化の補正は試料測定前・後の値の平均値につい
て行われるとより好ましいものである。この一例を第2
図に示すが、31aはその平均値演算回路、32aは信
号分配器である。以上の実施例においては、検出器及び
対数変換回路によって得られた二波長吸光度信号は葦動
増中器11,11aを介して二波長吸光度差(信号)と
してから光源の色温度変化補正回路12,12aへ伝え
られるが、第3図のように検出器7b,8b及び対数変
換回路9b,10bによって得られた各二波長吸光度(
信号)を直接それぞれ光源の色温度変化補正回路12′
b,12″bへ伝え、その後差動増中器11bによって
二波長吸光度を求めることもできる。なお第1〜3図に
示した自動分析装置1,la,lbは二波長吸光度差を
測定するものであるが、単波長吸光度を測定するものに
もその光源の色温度変化補正回滋12,12a,12′
b,12rbと同一構成の補正回路を付設することがで
きる。ゲート信号、すなわちピーク検出信号及び光源モ
ニタ信号は、実施例ではそれぞれ位置検出部のフオトカ
ップラによって直接得られるが、予めコンベアの移動に
対応して両信号の発信指示を適当なコンピュータに記憶
させ、それによって間接的に得てもよい。For example, if this change is made to the circuit 12 in FIG. 1, correction of color temperature change of the light source will be performed for the light source before sample measurement (peak). Furthermore, it is more preferable to correct the color temperature change of the light source using the average value of the values before and after the sample measurement. This example is shown in the second
As shown in the figure, 31a is an average value calculation circuit, and 32a is a signal distributor. In the above embodiment, the two-wavelength absorbance signal obtained by the detector and the logarithmic conversion circuit is converted into a two-wavelength absorbance difference (signal) via the reed intensifiers 11 and 11a, and then sent to the light source color temperature change correction circuit 12. , 12a, but as shown in FIG. 3, the respective two-wavelength absorbances (
signal) directly to the color temperature change correction circuit 12' of each light source.
b, 12″b, and then determine the two-wavelength absorbance using the differential intensifier 11b.The automatic analyzer 1, la, and lb shown in FIGS. 1 to 3 measure the difference in absorbance at two wavelengths. However, when measuring single wavelength absorbance, the color temperature change correction circuit 12, 12a, 12' of the light source is also required.
A correction circuit having the same configuration as that of b and 12rb can be attached. In the embodiment, the gate signals, that is, the peak detection signal and the light source monitor signal, are obtained directly by the photocoupler of the position detection section, but instructions for transmitting both signals are stored in advance in an appropriate computer in accordance with the movement of the conveyor. It may also be obtained indirectly.
第1図は本発明に係る自動分析装置の一実施例を示す機
能説明図、第2及び3図はそれぞれ一部を省略する他の
実施例の第1図相当図である。
1・・・・・・自動分析装置、3・・・・・・設定測定
位置、4・・・・・・光源、6・・・・・・二波長分光
器、7,8・・・・・・検出器、9,10・・・・・・
対数変換回路、12・・・・・・光源の色温度補正回路
、13・・・・・・演算回路、14・・・・・・指示計
、20・・・・・・記憶回路、21,23・・・・・・
ゲート回路、25・・・・・・差動増中器、27・・・
・・・ピーク検出信号、29・・・・・・光源モニタ信
号。
第2図
第1図
第3図FIG. 1 is a functional explanatory diagram showing one embodiment of an automatic analyzer according to the present invention, and FIGS. 2 and 3 are diagrams corresponding to FIG. 1 of other embodiments, with some parts omitted. 1... Automatic analyzer, 3... Setting measurement position, 4... Light source, 6... Dual wavelength spectrometer, 7, 8... ...Detector, 9,10...
Logarithmic conversion circuit, 12... Light source color temperature correction circuit, 13... Arithmetic circuit, 14... Indicator, 20... Memory circuit, 21, 23...
Gate circuit, 25... Differential multiplier, 27...
...Peak detection signal, 29...Light source monitor signal. Figure 2 Figure 1 Figure 3
Claims (1)
位置に移送することにより測定する装置において、試料
容器の移送経路後方で光源からの光を2つの波長の光に
分光する2波長分光器と、この2波長分光器からの各波
長光束の吸光度の差を演算する差動増幅器と、測定位置
への試料容器の移送有無を検出する位置検出手段と、こ
の位置検出手段の信号にもとずき試料容器が測定位置に
移送される前の前記差動増幅器からの吸光度信号を記憶
する回路と位置検出手段の信号にもとずき試料容器が測
定位置に移送された時の前記差動増幅器からの吸光度信
号と前記記憶回路の吸光度信号との差を演算する演算部
と、この演算出力の表示部とを備えたことを特徴とする
吸光度分析装置。1. In a device that measures the absorbance of a large number of sample containers by sequentially transporting these containers to a measurement position, a dual-wavelength spectrometer is used that separates light from a light source into two wavelengths of light at the rear of the sample container transport path. , a differential amplifier that calculates the difference in absorbance of each wavelength light beam from the two-wavelength spectrometer, a position detection means that detects whether or not the sample container is transferred to the measurement position, and a position detection means based on the signal of this position detection means. a circuit for storing the absorbance signal from the differential amplifier before the sample container is transferred to the measurement position; and a circuit for storing the absorbance signal from the differential amplifier when the sample container is transferred to the measurement position based on the signal from the position detection means. 1. An absorbance analyzer comprising: a calculation unit that calculates a difference between an absorbance signal from the storage circuit and an absorbance signal from the storage circuit; and a display unit for displaying the calculation output.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2175977A JPS6032819B2 (en) | 1977-02-28 | 1977-02-28 | Absorbance analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2175977A JPS6032819B2 (en) | 1977-02-28 | 1977-02-28 | Absorbance analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53106185A JPS53106185A (en) | 1978-09-14 |
JPS6032819B2 true JPS6032819B2 (en) | 1985-07-30 |
Family
ID=12063982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2175977A Expired JPS6032819B2 (en) | 1977-02-28 | 1977-02-28 | Absorbance analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6032819B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4236076A (en) * | 1979-02-26 | 1980-11-25 | Technicon Instruments Corporation | Infrared analyzer |
JPS56106143A (en) * | 1980-01-26 | 1981-08-24 | Denki Kagaku Keiki Co Ltd | Absorbance measuring apparatus |
JPS56108940A (en) * | 1980-02-04 | 1981-08-28 | Itouman Kk | Measuring device utilizing near infrared ray absorption |
-
1977
- 1977-02-28 JP JP2175977A patent/JPS6032819B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS53106185A (en) | 1978-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2847899A (en) | Method of and apparatus for spectrochemical analysis | |
US4627008A (en) | Optical quantitative analysis using curvilinear interpolation | |
US5077469A (en) | Calibrating a nondispersive infrared gas analyzer | |
US3428401A (en) | Flame photometer | |
EP0091126B1 (en) | Fluorimeter | |
JPH06100549B2 (en) | Quantitative measurement method of sample parameters | |
US4537510A (en) | Output control device for light detectors for photometers | |
US4128339A (en) | Automatically-adjusting photometer | |
US4355233A (en) | Method and apparatus for negating measurement effects of interferent gases in non-dispersive infrared analyzers | |
US4027972A (en) | Gas analyzer method and apparatus | |
US3988591A (en) | Photometric method for the quantitative determination of a material or substance in an analysis substance and photoelectric photometer for the performance of the aforesaid method | |
JPS6032819B2 (en) | Absorbance analyzer | |
US5065613A (en) | Method for the direct presentation of a differential measured quantity in terms of its correct physical unit | |
GB2070765A (en) | Spectrophotometry | |
EP0105659A2 (en) | Carbon monoxide detectors | |
JPS6350656B2 (en) | ||
EP0015068B2 (en) | Non-dispersive infrared analyzers | |
JPS59218936A (en) | Remote spectrum analyzer | |
JP2004085252A (en) | Gas analyzer | |
JPH08122246A (en) | Spectral analyzer | |
RU2180733C2 (en) | Procedure measuring concentration of optically active substances in solutions | |
JPS58139036A (en) | Spectrophotometer | |
JPH07151689A (en) | Biochemical measurement system | |
JPH0210372B2 (en) | ||
JPH0213962Y2 (en) |