JPS6032814B2 - Planar grating spectrometer - Google Patents
Planar grating spectrometerInfo
- Publication number
- JPS6032814B2 JPS6032814B2 JP16089077A JP16089077A JPS6032814B2 JP S6032814 B2 JPS6032814 B2 JP S6032814B2 JP 16089077 A JP16089077 A JP 16089077A JP 16089077 A JP16089077 A JP 16089077A JP S6032814 B2 JPS6032814 B2 JP S6032814B2
- Authority
- JP
- Japan
- Prior art keywords
- plane
- curvature
- diffraction grating
- spectrometer
- concave mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003384 imaging method Methods 0.000 claims description 4
- 238000000701 chemical imaging Methods 0.000 claims 2
- 230000004075 alteration Effects 0.000 description 14
- 230000003595 spectral effect Effects 0.000 description 10
- 201000009310 astigmatism Diseases 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
- G01J3/18—Generating the spectrum; Monochromators using diffraction elements, e.g. grating
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
Description
【発明の詳細な説明】
本発明は反射鏡によって構成された平面回折格子分光器
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plane diffraction grating spectrometer constituted by a reflecting mirror.
レーザーマイクロプローブによる発光分析のような場合
、分光器の明るさが重要な条件となるが、このための分
光器としては一般にッェルニターナ型と呼ばれる構造の
ものが分解能の良い鮮明なスペクトル像を得る上で適し
ている。In cases such as emission analysis using a laser microprobe, the brightness of the spectrometer is an important condition, and the spectrometer for this purpose generally has a structure called the Ernitana type, which is effective in obtaining clear spectral images with good resolution. It is suitable for
しかしこの構造のものは凹面反射鏡が軸外しの状態で用
いられているため非点収差があり、この収差の補正が困
難で、従釆回折格子に入射させる光を平行光東でなくわ
づかに発散する光東にして非点収差を軽減する方法が試
みられているが十分な補正はできていない。特に発光分
析ではスペクトル線の濃度を測る必要があるが、スペク
トル線の測定部位によって濃度が異ると云う問題がある
。即ちスペクトル線の幅方向の広り方がスペクトル線の
高さ方向に沿って異っており、しかも幅の最もせまし、
スペクトル線の鮮銭な高さが波長によって異っている。
そのため側光素子をスペクトルの波長方向に移動させた
ときスペクトル線毎に鮮鉄さが異り、従って正しい濃度
比較ができないことになる。また勿論ステップフィル夕
のようなものも使用できない。上述した問題点は反射鏡
が軸外し状態で用いられていることによる非点収差が主
たる原因と考えられる。However, with this structure, since the concave reflector is used off-axis, there is astigmatism, and it is difficult to correct this aberration. Attempts have been made to reduce astigmatism by adjusting the light beam to diverge, but sufficient correction has not been achieved. Particularly in emission analysis, it is necessary to measure the concentration of a spectral line, but there is a problem in that the concentration varies depending on the measurement site of the spectral line. In other words, the spread of the spectral lines in the width direction differs along the height direction of the spectral lines, and the width is the narrowest.
The exact height of the spectral lines differs depending on the wavelength.
Therefore, when the side light element is moved in the wavelength direction of the spectrum, the brightness differs for each spectral line, making it impossible to perform accurate density comparisons. Also, of course, something like a step filter cannot be used. It is thought that the main cause of the above-mentioned problems is astigmatism caused by the reflecting mirror being used in an off-axis state.
本発明はツェルニターナ型分光器の光学系における非点
収差を補正して上述した問題点を解決しようとするもの
である。第1図はッェルニターナ型分光器の平面図であ
る。The present invention attempts to solve the above-mentioned problems by correcting astigmatism in the optical system of a Czerny-Turner spectrometer. FIG. 1 is a plan view of the Ernitana spectrometer.
Sは入射スリット、Gは平面反射回折格子、MIはコリ
メータ鏡で凹面鏡であり、M2は結像鏡でこれも凹面鏡
で、Pはスペクトル像面である。凹面鏡M1,M2にお
いて鎖線C,〇は夫々凹面鏡の光軸で8,a′が軸外し
角である。一つの凹面鏡M1,M2の光路は全部同一平
面内にあり、軸外しもその面内で行われているのでM1
,M2夫々で生じる非点収差は打消し合うことなく加重
される。本発明は上述した非点収差を補正するためコリ
メータ鏡MIを水平断面の曲率半径(第1図で紙面)R
Hを垂直断面の曲率半径RVより大きくした樽形凹面鏡
とした。S is an entrance slit, G is a plane reflection grating, MI is a collimator mirror and is a concave mirror, M2 is an imaging mirror which is also a concave mirror, and P is a spectral image plane. In the concave mirrors M1 and M2, dashed lines C and O are the optical axes of the concave mirrors, respectively, and 8 and a' are off-axis angles. The optical paths of one concave mirror M1 and M2 are all in the same plane, and off-axis is also done within that plane, so M1
, M2 are weighted without canceling each other out. In order to correct the above-mentioned astigmatism, the present invention provides a collimator mirror MI with a radius of curvature (the plane of the paper in FIG. 1) of the horizontal section.
A barrel-shaped concave mirror in which H is larger than the radius of curvature RV of the vertical section is used.
第2図はそのような凹面鏡MIの斜視図である。このよ
うな凹面鏡MIから回析格子Gに向けて反射される光東
のうちスリットSの中心から来た光東によるものを考え
ると、その水平断面では平行光東になっており、垂直断
面ではMIの曲率が水平断面より強いため梢収数するよ
うになっている。そのようにコリメータ鏡MIの縦軸の
曲率を定めてある。別葉の表は本発明の一実施例におけ
るM1,M2、格子G、スリットS、受光面(スペクト
ル後面)Pの各中心の座標、額き角、曲率半径等を示す
。FIG. 2 is a perspective view of such a concave mirror MI. Of the light reflected from such a concave mirror MI toward the diffraction grating G, if we consider the light that comes from the center of the slit S, the light is parallel in the horizontal cross section, and the light is parallel in the vertical cross section. Since the curvature of the MI is stronger than that of the horizontal section, the curvature of the MI is greater than that of the horizontal section. The curvature of the vertical axis of the collimator mirror MI is thus determined. The table on a separate page shows the coordinates, frame angle, radius of curvature, etc. of each center of M1, M2, grating G, slit S, light-receiving surface (rear surface of spectrum) P in one embodiment of the present invention.
座標は第1図に示すように回折格子Gの中心を原点に紙
面内に矢印X,Zの方向にX軸、Z軸をとり紙面に垂直
にY軸をとったもので長さの単位は肌であるが、光学系
では相似形の場合光路も相似になるので、この表の座標
や曲率半径はそれらの相互比率を表わす数値と考えても
よい。なお本発明はこの表に示された数値を中心に多少
(5%程度)変化させても充分成立し得るものであるこ
とは云うまでもない。第3図は上記実施例における収差
を示したものである。As shown in Figure 1, the coordinates are the center of the diffraction grating G as the origin, the X and Z axes in the direction of arrows X and Z in the plane of the paper, and the Y axis perpendicular to the plane of the paper, and the unit of length is However, in an optical system, if the shapes are similar, the optical paths will be similar, so the coordinates and radii of curvature in this table can be considered to be numerical values representing their mutual ratios. It goes without saying that the present invention can be sufficiently implemented even if the values shown in this table are slightly changed (approximately 5%). FIG. 3 shows aberrations in the above embodiment.
この図で縦軸△Xはスペクトル面Pにおける或る光線の
理想的な入射点からの横方向(第1図の紙面内)のずれ
を示し、機軸は考えている光線の回折格子Gとの交点の
格子幅方向の位置を示し、、実線と点線とで示した2本
のカーブでH=0とあるのは格子Gの中心を通る水平線
上の点を通った光線に対する収差を示し、同様にして日
=土51とあるのは格子Gの上及び下の線に沿う線上の
点を通った光線に対する収差である。言葉による説明で
は判り難いが、第4図に示すように格子Gに水平に座標
Wを垂直に座標日を探ったとき、第3図でイ点は格子G
上のイ点を通った光線イの横方向の収差を示し、口点は
格子G上の口点を通った光線口の収差を示す。又第3図
で入=23Mm等とあるのは波長を示す。この図から収
差は各波長にわたって0.1柵以内に入っていることが
判る。本発明は第1図の図の平面内の光線について収差
A×(第4図に実線で示す収差)が最小になるように通
常のッェルニターナ型分光器として諸元を決定し、その
際コリメータ鏡MIの曲率半径RHが定められるので、
そこから出発してRVを(RHと同じ値から出発する)
少しずつ変えて収差量△×を計算し第3図について云え
ばH=士51の点線で示す収差が総合的に見て技も4・
さくなるまで計算を繰返してRVを決定したものである
。In this figure, the vertical axis △X indicates the deviation in the horizontal direction (within the paper plane of Figure 1) from the ideal point of incidence of a certain ray on the spectral plane P, and the axis of gravity indicates the deviation between the considered ray and the diffraction grating G. It shows the position of the intersection in the grating width direction, and in the two curves shown by a solid line and a dotted line, H=0 indicates the aberration for the ray that passes through a point on the horizontal line passing through the center of the grating G, and similarly 51 is an aberration for the light ray passing through a point on the line along the upper and lower lines of the grating G. Although it is difficult to understand with a verbal explanation, when looking for the coordinate date horizontally to the grid G and the coordinate date perpendicular to the grid G as shown in Figure 3, point A in Figure 3 is located at the grid G.
It shows the lateral aberration of the ray A that passed through the upper point A, and the mouth point shows the aberration of the ray exit that passed through the mouth point on the grating G. Also, in FIG. 3, the words "in = 23 Mm, etc." indicate wavelengths. It can be seen from this figure that the aberrations are within 0.1 range over each wavelength. The present invention determines the specifications of a normal Gerniterna type spectrometer so that the aberration A× (the aberration indicated by the solid line in FIG. 4) is minimized for the light ray in the plane of the diagram in FIG. Since the radius of curvature RH of MI is determined,
Starting from there, RV (starting from the same value as RH)
Calculating the amount of aberration △× by changing it little by little, in Figure 3, the aberration shown by the dotted line of H = 51 is overall 4.
The RV is determined by repeating the calculation until the value becomes smaller.
従って本発明はッェルニターナ型分光器について技も好
ましいコリメータ鏡を提供するものである。表Accordingly, the present invention provides a collimating mirror which is also preferred for use in a spectrometer of the Germanic turner type. table
第1図はッェルニターナ型分光器の平面図、第2図は本
発明において用いられるコリメータ凹面鏡の斜視図、第
3図は本発明分光器の収差を示すグラフ、第4図は第3
図に示す収差を現わす光線を説明する分光器の斜視図で
ある。
S・…・・入射スリット、G・・・・・・平面回折格子
、P……スペクトル像面、MI……コリメータ凹面鏡、
M2・・・・・・結像用凹面鏡。
第1図
第2図
第4図
第3図Fig. 1 is a plan view of the Ernitana spectrometer, Fig. 2 is a perspective view of the concave collimator mirror used in the present invention, Fig. 3 is a graph showing aberrations of the spectrometer of the present invention, and Fig. 4 is a graph showing the aberrations of the spectrometer of the present invention.
FIG. 3 is a perspective view of a spectrometer for explaining light rays that exhibit the aberrations shown in the figure. S...Incidence slit, G...Plane diffraction grating, P...Spectral image plane, MI...Collimator concave mirror,
M2... Concave mirror for imaging. Figure 1 Figure 2 Figure 4 Figure 3
Claims (1)
、反対側の側方にスペクトル結像面を形成するように入
射スリツトと回折格子とに対向させてコリメータ凹面鏡
を又回折格子とスペクトル結像面とに対向させて結像凹
面鏡を配置したツエルニターナ型分光器で上記コリメー
タ凹面鏡を上記各凹面鏡及び回折格子を含む平面による
断面の曲率を同平面に垂直な面による断面の曲率より小
とした樽形凹面としたもので、回折格子中心を原点とし
て光学系が構成される平面内にX,Z直交座標を想定し
たとき、各要素の中心座標等を、入射スリツト:X=−
114.712±5%Z=−218.227±5%受光
面:X=213.786±5% Z=−209.490±5% コリメータ鏡:X=−316.561±5%Z=772
.667±5%曲率半径(座標面内)R_Hと 曲率半径(座標面に垂直)R_Vとの比 R_H/R_V=1.0324±0.0015R_H,
R_Vの平均=1985〜2015軸外し角θ=5.3
83°±5%結像凹面鏡:X=321.334±5% Z=784.317±5% 曲率半径=2000.0 軸外し角θ′:8.051°±5% としたことを特徴とする平面回折格子分光器。[Claims] 1. An input slit is arranged on one side of a plane diffraction grating, and a collimator concave mirror is placed opposite the input slit and the diffraction grating so as to form a spectral imaging plane on the opposite side. In addition, in a Zzernyturna spectrometer in which an imaging concave mirror is arranged to face the diffraction grating and the spectral imaging surface, the collimator concave mirror is used to calculate the curvature of the cross section by a plane containing the concave mirrors and the diffraction grating, and the cross section by a plane perpendicular to the same plane. It has a barrel-shaped concave surface with a curvature smaller than X=-
114.712±5% Z=-218.227±5% Light receiving surface: X=213.786±5% Z=-209.490±5% Collimator mirror: X=-316.561±5% Z=772
.. 667±5% Ratio of radius of curvature (in the coordinate plane) R_H to radius of curvature (perpendicular to the coordinate plane) R_V = 1.0324±0.0015R_H,
Average of R_V = 1985-2015 Off-axis angle θ = 5.3
83°±5% imaging concave mirror: X=321.334±5% Z=784.317±5% Radius of curvature=2000.0 Off-axis angle θ': 8.051°±5% A flat diffraction grating spectrometer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16089077A JPS6032814B2 (en) | 1977-12-29 | 1977-12-29 | Planar grating spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16089077A JPS6032814B2 (en) | 1977-12-29 | 1977-12-29 | Planar grating spectrometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5492761A JPS5492761A (en) | 1979-07-23 |
JPS6032814B2 true JPS6032814B2 (en) | 1985-07-30 |
Family
ID=15724568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16089077A Expired JPS6032814B2 (en) | 1977-12-29 | 1977-12-29 | Planar grating spectrometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6032814B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004029298A (en) * | 2002-06-25 | 2004-01-29 | Nikon Corp | Optical demultiplexer/ multiplexer |
-
1977
- 1977-12-29 JP JP16089077A patent/JPS6032814B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5492761A (en) | 1979-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4634276A (en) | Slit imaging system using two concave mirrors | |
JPH09178557A (en) | Concentric spectral unit with ferriprism | |
DE60015239T2 (en) | Wavelength monitoring for lasers | |
JPS5817932B2 (en) | Off-axis image transmission optical system | |
JPH03183904A (en) | Detection of shape of object | |
JPS6346371B2 (en) | ||
CN111183342B (en) | Polychromator system and method | |
DE102012007452B4 (en) | Optical displacement measuring device | |
US3069967A (en) | Apparatus employing stationary optical means and diffraction grating | |
US5384656A (en) | Astigmatism corrected gratings for plane grating and spherical mirror spectrographs | |
JPH0810160B2 (en) | Imaging spectrometer | |
US2874608A (en) | Monochromator optical system | |
JPS6032814B2 (en) | Planar grating spectrometer | |
US3048080A (en) | Spectroscopic device | |
JP3095167B2 (en) | Multi-channel Fourier transform spectrometer | |
Shafer | Correcting for astigmatism in the Czerny–Turner spectrometer and spectrograph | |
JPH0153408B2 (en) | ||
US3428391A (en) | Multiple-prism light dispersing unit for monochromators | |
JPH01244306A (en) | Fizeau interference measuring device | |
JPH0675007B2 (en) | Integrating sphere device | |
JPS6318687B2 (en) | ||
US3472596A (en) | Double monochromator | |
Windt et al. | Laboratory evaluation of conical diffraction spectrographs | |
JPS62209324A (en) | Polychromator | |
JP2001289713A (en) | Spectrophotometer |