JPS6032780A - Preparation of polyamine - Google Patents

Preparation of polyamine

Info

Publication number
JPS6032780A
JPS6032780A JP58140571A JP14057183A JPS6032780A JP S6032780 A JPS6032780 A JP S6032780A JP 58140571 A JP58140571 A JP 58140571A JP 14057183 A JP14057183 A JP 14057183A JP S6032780 A JPS6032780 A JP S6032780A
Authority
JP
Japan
Prior art keywords
reaction
polyamine
catalyst
amine
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58140571A
Other languages
Japanese (ja)
Other versions
JPH0314310B2 (en
Inventor
Sadakatsu Kumoi
雲井 貞勝
Kazuharu Mitarai
御手洗 計治
Yukihiro Tsutsumi
堤 幸弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP58140571A priority Critical patent/JPS6032780A/en
Priority to DE8484109137T priority patent/DE3476995D1/en
Priority to EP84109137A priority patent/EP0135725B1/en
Publication of JPS6032780A publication Critical patent/JPS6032780A/en
Priority to US07/140,861 priority patent/US4845297A/en
Publication of JPH0314310B2 publication Critical patent/JPH0314310B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a polyamine useful as an amine substance, etc. in high yield with suppressing formation of by-products, by reducing catalytically a cycanoethylated N-(2-aminoethyl)piperazine with a specific fatty amine. CONSTITUTION:Acrylonitrile is added to an N-(2-aminoethyl)piperazine to give a cyanoethyl derivative shown by the formula (Y is CH2CH2CN, or H), which is reacted with a primary amino group-containing fatty amine (e.g., methylamine, ethylenediamine, etc.) in a hydrogen gas atmosphere in the presence of a hydrogenating catalyst (e.g., Raney nickel, nickel supported on diatomaceous earth, etc.) under pressure at 1-300kg/cm<2>at 80-190 deg.C, preferably at 5-50kg/cm<2> at 100-170 deg.C to give the desired substance. An amount of the fatty amine added is 1-50wt% based on the cyanoethylated derivative.

Description

【発明の詳細な説明】 ミノエチル)ピペラジンの接触還元反応を行いポリアミ
ンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a polyamine by carrying out a catalytic reduction reaction of (minoethyl)piperazine.

一般に、第一級または/および第二級アミノ基を有する
アミン化合物にアクリロニトリルを付加させたシアノエ
チル化アミン類を水素化触媒存在下接触還元反応を行い
該シアノエチル化アミン類に対応するポリアミンを製造
する方法は広く知られている。また、該シアノエチル化
アミン類に対応するポリアミン収率を更に向上させるた
め反応系へアンモニアを添加し接触還元反応を行う方法
もすでに知られている。
Generally, a polyamine corresponding to the cyanoethylated amine is produced by subjecting a cyanoethylated amine, which is an amine compound having a primary or/and secondary amino group to which acrylonitrile is added, to a catalytic reduction reaction in the presence of a hydrogenation catalyst. The method is widely known. Furthermore, in order to further improve the yield of polyamines corresponding to the cyanoethylated amines, a method is already known in which ammonia is added to the reaction system to carry out a catalytic reduction reaction.

本発明者らは、これらの既知の方法に基づき、N−(2
−アミノエチル)ピペラジン(以下、N−AMPと略す
。)のシアンエチル化体よりポリアミンを製造する方法
について検討したところ、アンモニアを添加しない反応
系ではプロビルアミンが大量に副生じ、該シアノエテル
化体に対応するポリアミンからアミノプロビル基が脱離
した構造をもつ、即ち、より低分子量化したポリアミン
と分子量が550以−ヒの重質アミンを大量に副生じ、
目的とするポリアミン収率が十分満足できるものでない
ことが判明した。
Based on these known methods, the present inventors have determined that N-(2
-Aminoethyl)piperazine (hereinafter abbreviated as N-AMP), a method for producing polyamines from cyanoethylated products revealed that in a reaction system without the addition of ammonia, a large amount of probylamine was produced as a by-product, and the cyanoetherization It has a structure in which the aminopropyl group has been removed from the polyamine corresponding to the body, that is, a polyamine with a lower molecular weight and a large amount of heavy amines with a molecular weight of 550 or more are produced as by-products,
It was found that the desired polyamine yield was not fully satisfactory.

ポリアミンの収量低下による経済的損失のみならず、プ
ロピルアミン(沸点48℃)を主とする低沸点アミン類
の副生量増加は、反応液からの低沸点アミン類の除去2
回収に伴なう操作および装置負担が大となりプロセス上
の不利益をもたらす。
Not only is there an economic loss due to a decrease in the yield of polyamine, but also an increase in the amount of by-products of low-boiling amines, mainly propylamine (boiling point 48°C), due to the removal of low-boiling amines from the reaction solution2.
The operation and equipment burden associated with recovery become large, resulting in disadvantages in the process.

また、上記の反応方法を実施することにより得られた反
応液より触媒を分離回収する際、触媒の変質に伴なう濾
過性の低下現象がみられ、触媒分離操作負担が増大する
。また、回収した触媒を繰り返し使用することにより触
媒使用コストの低減を試みたが、触媒は1回の反応に使
用しただけで被毒を受けほとんど失活しており、高価な
触媒の使用に伴なう経済的損失の増加を招く。
Further, when the catalyst is separated and recovered from the reaction liquid obtained by carrying out the above reaction method, a decrease in filterability due to deterioration of the catalyst is observed, which increases the burden of catalyst separation operations. In addition, attempts were made to reduce the cost of using the catalyst by repeatedly using the recovered catalyst, but the catalyst was poisoned and almost deactivated after being used for one reaction. resulting in increased economic losses.

アンモニアを添加する反応方法では、通常液体アンモニ
ア(沸点−33℃)を添加するため、アンモニアの取扱
い操作や回収、除害に伴なう設備面での煩雑さが加わる
。また、アンモニアの少量添加では目的とするポリアミ
ン収率向上効果が小さく、十分満足しうる収量を獲得す
るには大量のアンモニア添加を必要とする。その際、所
定の反応温度におけるアンモニアガス分圧が極めて大き
くなるため反応に必要な水素ガス分圧をも考慮に入れる
と反応は比較的高い圧力下で実施する必要があり、耐圧
強度の大きな装置を使用しなければならず、また反応後
のアンモニアガス処理量の増加負担は大となり、工業的
には必ずしも有利な製造プロセスとならない。
In reaction methods in which ammonia is added, liquid ammonia (boiling point -33° C.) is usually added, which adds complexity to equipment associated with handling, recovery, and abatement of ammonia. Further, addition of a small amount of ammonia does not have a small effect on improving the target polyamine yield, and it is necessary to add a large amount of ammonia to obtain a sufficiently satisfactory yield. At this time, since the ammonia gas partial pressure at a given reaction temperature becomes extremely large, taking into consideration the hydrogen gas partial pressure required for the reaction, the reaction must be carried out under relatively high pressure, and equipment with high pressure resistance is required. must be used, and the burden of increasing the amount of ammonia gas processed after the reaction is large, so it is not necessarily an advantageous manufacturing process from an industrial perspective.

上述の如く、シアノエチル化N−ARPを常法により接
触還元反応した場合、反応面からは好ましくない低沸点
アミン類が大量に副生じ、目的とするポリアミン収量の
低下を招くのみならず、触媒の被毒をも引き起こす。ま
た、アンモニアを用いることにより、収率面での改良を
可能とする方法では、大量のアンモニアガスの添加によ
り惹起される操作並びに装置面でのマイナス効果が不可
避である。比較的低い反応圧下で有用なポリアミンを高
収量にて製造し、かつ、設備面でも汎用的機器を利用で
き、反応および反応液後処理操作が容易な改良された該
シアンエチル化体の水素化方法が強く望まれる。
As mentioned above, when cyanoethylated N-ARP is subjected to a catalytic reduction reaction using a conventional method, a large amount of low-boiling point amines, which are undesirable from the reaction point of view, are produced as by-products, which not only leads to a decrease in the desired polyamine yield, but also leads to a decrease in catalyst efficiency. It also causes poisoning. Further, in a method in which it is possible to improve the yield by using ammonia, the addition of a large amount of ammonia gas inevitably causes negative effects in terms of operation and equipment. An improved method for hydrogenation of the cyanethylated product, which allows production of useful polyamines in high yields under relatively low reaction pressures, allows the use of general-purpose equipment, and facilitates reaction and reaction solution post-treatment operations. A method is strongly desired.

本発明者らは、これらの事情に鑑み鋭意研究を重ねた結
果、シアノエチル化N−A]iiPに第一級アミノ基を
有する脂肪族アミンを添加し、接触還元反応を行うこと
によりプロピルアミンの副生量を著しく抑制し、かつ比
較的低い反応圧のもとで該シアノエチル化体に対応する
ポリアミンを高収量に製造しうる等の新たな事実を見出
し、本発明を完成するに至った。
As a result of extensive research in view of these circumstances, the present inventors added an aliphatic amine having a primary amino group to cyanoethylated N-A]iiP and performed a catalytic reduction reaction to convert propylamine into The present invention was completed based on new discoveries such as the ability to significantly suppress the amount of by-products and to produce a polyamine corresponding to the cyanoethylated product in high yield under relatively low reaction pressure.

すなわち、本発明は、1’(2−アミノエチル)ピペラ
ジ/にアクリロニトリルを付加させた下記化学構造式で
示されるシアンエチル化体を水素ガス雰囲気1、水素化
触媒存在のもとで (Y=−OH2−aH,ON または−H)接触還元反
応を行うにあたり、第一級アミノ基を有する脂肪族アミ
ンを添加することを特徴とするポリアミンの製造法を提
供するものである。
That is, the present invention provides a cyanethylated compound represented by the following chemical structure in which acrylonitrile is added to 1'(2-aminoethyl)piperazi/ in a hydrogen gas atmosphere 1 and in the presence of a hydrogenation catalyst (Y= -OH2-aH,ON or -H) A method for producing a polyamine is provided, which is characterized in that an aliphatic amine having a primary amino group is added during the catalytic reduction reaction.

本発明に使用される原料は、N−(2−アミノエチル)
ピペラジン(N−ム11!p)にアクリロニトリルを付
加させた下記化学構造式で示されるシアノエチル化体で
ある。
The raw material used in the present invention is N-(2-aminoethyl)
It is a cyanoethylated product represented by the chemical structural formula below, which is obtained by adding acrylonitrile to piperazine (N-mu11!p).

すなわち、N−ム’tcpにアクリロニトリルを等モル
付加させたN−(2−アミノエチル)−N′−(2−シ
アノエチル)ピペラジンまたはN−[’N’−(2−シ
アノエチル)アミノエチルコピペラジンのモノシアノエ
チル化体、N−ARPにアクリロニトリルを2倍モル付
加させたN−(N’−(2−シアノエチル)アミンエチ
ル)−N’−(2−シアノエチル)ピペラジンまたはN
−CM’−ビス(2−シアノエチル)アミノエチル〕ビ
ペ2ジンのジシアノエチル化体、N−AIIIPにアク
リロニトリルを3倍モル付加させたN−ト(ビス(2−
シアノエチル))アミノエテル) −N’−(2−シア
ンエチル)ピペラジンのトリシアノエチル化体などが原
料として例示され使用される。
That is, N-(2-aminoethyl)-N'-(2-cyanoethyl)piperazine or N-['N'-(2-cyanoethyl)aminoethylcopiperazine with equimolar addition of acrylonitrile to N-mu'tcp. monocyanoethylated product, N-(N'-(2-cyanoethyl)aminethyl)-N'-(2-cyanoethyl)piperazine or N-ARP with twice the molar amount of acrylonitrile added.
-CM'-bis(2-cyanoethyl)aminoethyl] dicyanoethylated product of bipe2zine, N-t(bis(2-
A tricyanoethylated product of cyanoethyl))aminoethyl)-N'-(2-cyanoethyl)piperazine is exemplified and used as a raw material.

上記に示すモノシアノエチル化体、ジシアノエチル化体
またはトリシアノエチル化体をそれぞれ単独に原料とし
て用いてもよいし、また生成物のポリアミンの用途によ
っては、モノシアノエテルジシアノエチル化体。
The monocyanoethylated product, dicyanoethylated product, or tricyanoethylated product shown above may be used alone as a raw material, or depending on the use of the polyamine product, the monocyanoethylated product may be used as a dicyanoethylated product.

化1?丁Tフ7フ4チル化体等の原料を任意の組成に混
合して使用してもよい。
Chemical 1? Raw materials such as 4-tylated derivatives of D-T-F7 may be mixed and used in any desired composition.

本発明に使用される水素化触媒は、一般の接触還元反応
に広く使用される金属触媒が使用可能であり、中でもニ
ッケル、銅、白金、ルテニウム。
As the hydrogenation catalyst used in the present invention, metal catalysts widely used in general catalytic reduction reactions can be used, including nickel, copper, platinum, and ruthenium.

パラジウム、ロジウム、イリジウム等が有用である。こ
れらの金属は、ケインウ土、アルミナ、活性白土、活性
炭等の担体に担持させた担持金属触媒のかたちで使用す
ることもできる。
Palladium, rhodium, iridium, etc. are useful. These metals can also be used in the form of supported metal catalysts supported on carriers such as cane earth, alumina, activated clay, and activated carbon.

中でも、触媒の活性や経済性面からニッケル系触媒が本
発明の反応用触媒として最も適している。
Among these, nickel-based catalysts are most suitable as catalysts for the reaction of the present invention in terms of catalytic activity and economic efficiency.

ニッケル系触媒としては、ラネーニッケルやケイソウ土
に担持させた安定化ニッケル、その他銅。
Nickel-based catalysts include Raney nickel, stabilized nickel supported on diatomaceous earth, and other copper.

クロム、鉄、亜鉛等の金属を添加したニッケルを主成分
とするケイソウ土担持ニッケル等が使用される。上記に
例示した如(、金属成分としてニッケルを主成分とし、
ニッケル以外の異種金属を添加したもの、またそれらの
異種金属をニッケルと共に各種担体に担持したものが触
媒として使用可能であり、添加される異種金属の種類は
、特に限定されるものではない。触媒の使用量は反応速
度と関連する生産性面や、ポリアミン収率への影響等を
も勘案し適当な添加量が選ばれ、特に限定されるもので
ない。一般的には該原料シアンエチル化体に対し、1〜
20重量%が添加される。1重量%以下の触媒添加量で
は、反応速度が遅くなり生産性面で好ましくない。20
重量−以上の添加量では反応速度や目的とするポリアミ
ン収率により好ましい影響を及ぼすこともなく、単に触
媒量の増加による分離操作負担が増えるのみで特に有利
とはならない。本発明の反応方法に基づき使用された触
媒は、反応に使用後もなお高活性を保持しているため、
通常反応液から濾過あるいはデカンテーション等の操作
で分離回収され、繰り返し第2回目以降の反応に使用す
ることができ、触媒使用コスト低減に大きく寄与し、経
済的に大きな利益をもたらすことができる。
Diatomaceous earth-supported nickel, which is mainly composed of nickel to which metals such as chromium, iron, and zinc are added, is used. As exemplified above (with nickel as the main metal component,
Catalysts to which a different metal other than nickel is added, or those supported together with nickel on various carriers, can be used as catalysts, and the type of the added different metal is not particularly limited. The amount of the catalyst to be used is not particularly limited, and is selected as an appropriate amount in consideration of the productivity related to the reaction rate, the influence on the polyamine yield, and the like. Generally, 1 to 1 to
20% by weight is added. If the amount of catalyst added is less than 1% by weight, the reaction rate becomes slow, which is not preferable in terms of productivity. 20
If the amount added is more than -20% by weight, it will not have a favorable effect on the reaction rate or the desired polyamine yield, and will simply increase the burden of separation operations due to the increase in the amount of catalyst, and will not be particularly advantageous. Since the catalyst used in the reaction method of the present invention still maintains high activity even after being used in the reaction,
It is usually separated and recovered from the reaction solution by operations such as filtration or decantation, and can be used repeatedly in the second and subsequent reactions, greatly contributing to reducing the cost of catalyst use and bringing great economic benefits.

本発明に使用される第一級アミン基を有する脂肪族アミ
ンとしては、R−NH,(Rは炭素数1〜8のアルキル
基)で表わされるアルキルアミン類。
The aliphatic amine having a primary amine group used in the present invention is an alkylamine represented by R-NH, (R is an alkyl group having 1 to 8 carbon atoms).

NH2−R’4NH−R’) MHI (n =0 、
1 、2 : R’およびR#は炭素数2〜6のアルキ
レン基;ポリアルキレンポリアミンとしては分子内に環
状のピペラジン環を含有する化合物も包含される)で表
わされるジアミン類またはポリアルキレンポリアミン類
である。
NH2-R'4NH-R') MHI (n = 0,
1, 2: R' and R# are alkylene groups having 2 to 6 carbon atoms; polyalkylene polyamines also include compounds containing a cyclic piperazine ring in the molecule) or polyalkylene polyamines. It is.

代表的な化合物を具体的に例示すると、アルキルアミン
類としてメチルアミン、エチルアミン。
Specific examples of representative compounds include methylamine and ethylamine as alkylamines.

プロピルアミン、ブチルアミン、シクロヘキシルアミン
、2−エチルヘキシルアミン等が挙げられる・。またジ
アミン類としてエチレンジアミン、プロパンジアミン、
ブタンジアミ/、ヘキサメチレンジアミン、シクロヘキ
シルジアミン等が挙げられる。ポリアルキレンポリアミ
ン類としてはジエチレントリアミン、N−(2−アミノ
エチル)ピペラジン、トリエチレンテトラミン、ジグロ
ビレントリアミン、トリプロピレンテトラミンeN (
3−アミノプロピル)エチレンジアミン等が挙げられる
。アルキルアミン類は原料または生成物からのシアンエ
チル基またはアミノプロピル基の脱離反応を抑制すると
ともに、触媒の被毒を抑える効果があるが、メチルアミ
ンやエチルアミンのような低沸点アミンを用いた場合、
反応液からの回収操作面で多少の負担の増加を伴なうた
め、沸点60℃以上の第一級アルキルアミンを使用する
ととが好ましい。更には、プロピルアミンや分子量40
0以上の重質アミンといった好ましくな〜N副生物の生
成を抑え、目的とする有用なポリアミンを比較的低い反
応圧力下で高収率に製造しうる実用性に優れた添加剤ア
ミンとしてエチレンジアミ ・ン、プロピレンジアミン
、ジエチレントリアミン。
Examples include propylamine, butylamine, cyclohexylamine, 2-ethylhexylamine, etc. In addition, diamines include ethylenediamine, propanediamine,
Examples include butanediamine, hexamethylenediamine, cyclohexyldiamine, and the like. Examples of polyalkylene polyamines include diethylenetriamine, N-(2-aminoethyl)piperazine, triethylenetetramine, diglobylenetriamine, tripropylenetetramine eN (
Examples include 3-aminopropyl)ethylenediamine. Alkylamines have the effect of suppressing the elimination reaction of cyanethyl groups or aminopropyl groups from raw materials or products, as well as suppressing catalyst poisoning. case,
It is preferable to use a primary alkylamine having a boiling point of 60° C. or higher, since this involves a slight increase in the burden on the recovery operation from the reaction solution. Furthermore, propylamine and molecular weight 40
Ethylenediamine is an additive amine with excellent practicality that suppresses the formation of undesirable ~N by-products such as heavy amines of 0 or more, and can produce the desired useful polyamine in high yield under relatively low reaction pressure. propylene diamine, diethylene triamine.

ジプロピレントリアミン、N−(2−アミノエチル)ピ
ペラジン、N−アミノエチルプロパンジアミン等のジア
ミンまたはポリアルキレンポリアミンが挙げられる。こ
れらの比較的低分子量のジアミンまたはポリアルキレン
ポリアミンは、触媒の被毒をも著しく抑え、極めて着色
の少ない高品質ポリアミンからなる反応液を与えるのみ
ならず、反応液からの脂肪族アミンの蒸留による分離回
収が極めて容易で、工業操作性にも優れており最も好ま
しく使用される。
Examples include diamines or polyalkylene polyamines such as dipropylene triamine, N-(2-aminoethyl)piperazine, and N-aminoethylpropanediamine. These relatively low molecular weight diamines or polyalkylene polyamines not only significantly suppress the poisoning of the catalyst and provide a reaction solution consisting of high quality polyamine with extremely little coloring, but also provide a reaction solution consisting of a high quality polyamine with very little coloration. It is most preferably used because it is extremely easy to separate and recover and has excellent industrial operability.

これらの脂肪族アミンは原料核シアノエチル化体に対し
、通常1〜50重itsとなるよう添加し反応が実施さ
れる。1重ilチ以下の添加量では低沸点アミンの副生
量を抑える効果が小さく、また被毒による触媒活性の低
下をもたらす。5o重量係以上添加しても反応面で更な
る優れた効果は得られず、反応系中に加えられた大過剰
の脂肪族アミンを反応液より回収する負担が増えるのみ
で、特に有利とはならない。
These aliphatic amines are added to the cyanoethylated raw material core in an amount of usually 1 to 50 weights, and the reaction is carried out. If the amount added is less than 1 part il, the effect of suppressing the amount of by-products of low-boiling amines will be small, and the catalyst activity will be lowered due to poisoning. Adding more than 50% by weight does not provide any further excellent effects on the reaction, and only increases the burden of recovering the large excess of aliphatic amine added to the reaction system from the reaction solution, which is not particularly advantageous. No.

第一級アミノ基を有する脂肪族アミンであれば、反応面
や操作面で数々の優れた効果をもたらし、添加する脂肪
族アミンの種類やその添加量は特に限定されるものでな
いが、生成ポリアミンの品質や分子量分布に多少形t#
を及ぼすため、生成ポリアミンの用途に応じて脂肪族ア
ミンの種類や量を適宜選択することが好ましい。例えば
、アルキレンジアミンを添加し反応を行った場合、該シ
アノエチル化体に対応したポリアミンの他に、分子内に
アミン基を更に1個多く有するポリアミンが生成する。
If it is an aliphatic amine having a primary amino group, it will bring many excellent effects in terms of reaction and operation, and there are no particular limitations on the type of aliphatic amine to be added or the amount added. The quality and molecular weight distribution of T#
Therefore, it is preferable to appropriately select the type and amount of aliphatic amine depending on the intended use of the produced polyamine. For example, when an alkylene diamine is added and a reaction is carried out, a polyamine having one more amine group in the molecule is produced in addition to the polyamine corresponding to the cyanoethylated product.

一般に工業的に生産されているナト2エチレンペンタミ
ンやペンタエチレンへキサミンのような比較的分子量の
高いポリアルキレンポリアミンは各種化学構造の異なる
ポリアミンの混合物であり、多くの産業分野において極
めて有用なアミン素材として多用されている。これらの
実用性面を勘案すると、本発明の反応方法は脂肪族アミ
ンの種類を選び添加することにより多様な機能性を有す
るポリアミン混合物をフレキシブルに製造できる極めて
工業的に優れたポリアミンの製造法を提供することがで
きる利点を有す。
Polyalkylene polyamines with relatively high molecular weight, such as nato-2-ethylene pentamine and penta-ethylene hexamine, which are generally produced industrially, are a mixture of polyamines with different chemical structures, and are extremely useful amines in many industrial fields. It is widely used as a material. Taking these practical aspects into consideration, the reaction method of the present invention provides an extremely industrially superior method for producing polyamines that can flexibly produce polyamine mixtures with various functionalities by selecting and adding the type of aliphatic amine. It has the advantages that it can provide.

本発明の反応は、水素ガス加圧下で実施され、その圧力
範囲は特に限定されるものでないが、通常1〜500 
kq/ cm ”加圧下で実施することができる。より
好ましくは5〜50Kf/c、Jの加圧下で実施される
The reaction of the present invention is carried out under pressure of hydrogen gas, and the pressure range is not particularly limited, but usually 1 to 500
It can be carried out under a pressure of 5 to 50 Kf/cm, more preferably 5 to 50 Kf/cm, J.

一般に二)Uル基の水素化反応においては、水素圧は目
的とするアミン収率に大きな影響を与えることが知られ
ており、70に9/cm”以上の比較的高い水素圧を適
用する場合が多い。しかし、本発明の如く第一級アミノ
基を有する脂肪族アミンを反応系へ添加した場合、5〜
sokg/c−の比較的低い水素加圧下で反応を行って
も目的とするポリアミンを高収率に製造しうろことが判
明した。
In general, in the hydrogenation reaction of 2) U groups, it is known that hydrogen pressure has a large effect on the desired amine yield, so a relatively high hydrogen pressure of 9/cm" or higher is applied to 70. However, when an aliphatic amine having a primary amino group is added to the reaction system as in the present invention,
It was found that the desired polyamine could be produced in high yield even if the reaction was carried out under a relatively low hydrogen pressure of sokg/c-.

すなわち、該脂肪族アミンの添加は、低水素圧下での反
応を可能にし、反応装置やコンプレッサー等の設備面で
極めて有利となる。水素圧の低下は反応時間を延長させ
ることによりカバーできるが、実用面からの生産性を考
慮して、水素圧5kg/ cm ”以上で通常実施され
る。水素圧の上限界も特に限定されるものでない。水素
圧の選定は反応速度に重要な影響を与えるため、発熱反
応に伴なう除熱等を考慮し適当に設定することが好まし
い。
That is, the addition of the aliphatic amine enables the reaction under low hydrogen pressure, which is extremely advantageous in terms of equipment such as reaction equipment and compressors. The decrease in hydrogen pressure can be compensated for by extending the reaction time, but in consideration of practical productivity, it is usually carried out at a hydrogen pressure of 5 kg/cm or more.The upper limit of hydrogen pressure is also particularly limited. Since the selection of hydrogen pressure has an important effect on the reaction rate, it is preferable to set it appropriately taking into consideration the heat removal accompanying the exothermic reaction.

反応温度も反応速度やポリアミン収率に重要な影響を与
える。本発明の反応は通常80〜190℃、好ましくは
100〜170℃で実施される。
Reaction temperature also has an important effect on reaction rate and polyamine yield. The reaction of the present invention is usually carried out at a temperature of 80 to 190°C, preferably 100 to 170°C.

8[1’C以下では反応速度が遅く実用的でない。Below 8[1'C, the reaction rate is slow and impractical.

190℃以上では生成ポリアミンの分解がおこり、低沸
点アミンの副生量が急激に増加するとともに、分子量5
50以上の重質アミンの生成量が増え、目的とするポリ
アミン収率の低下を招く。
At temperatures above 190°C, the produced polyamine decomposes, and the amount of low-boiling amine by-products increases rapidly, and the molecular weight decreases to 5.
The amount of heavy amines of 50 or more produced increases, leading to a decrease in the desired polyamine yield.

水素化反応に際し、ニトリルやアミンに対し反応不活性
な有機溶剤や希釈剤を添加し反応を行ってもよいが、反
応液量の増加による反応器使用効率の低下をもたらし、
特に有利とはならない。
During the hydrogenation reaction, an inactive organic solvent or diluent may be added to the nitrile or amine, but this will reduce the efficiency of reactor usage due to an increase in the amount of reaction liquid.
It's not particularly advantageous.

反応器へ原料を供給する方法は特に限定されるものでは
ない。最初に反応器へ原料シアノエチル化体と触媒及び
第一級アミンを仕込んだ後、水素ガスを導入し、所定温
度にて反応を行ってもよいし、また、予め触媒と第一級
アミン及び必要に応じ反応不活性な溶媒を加え、所定温
度、所定水素圧下にて原料シアンエチル化体を定量ポン
プで供給しながら反応を実施することも可能である。
The method of supplying raw materials to the reactor is not particularly limited. After first charging the raw material cyanoethylated product, catalyst and primary amine into the reactor, hydrogen gas may be introduced and the reaction may be carried out at a predetermined temperature, or the catalyst, primary amine and necessary It is also possible to add a reaction-inert solvent depending on the reaction conditions and carry out the reaction at a predetermined temperature and under a predetermined hydrogen pressure while supplying the raw material cyanethylated product using a metering pump.

氷見の反応方法は、加圧反応器を用い水素ガス雰囲気の
もと、攪拌しながら反応を行う所謂懸濁触媒系で通常実
施されるが、固定床反応方式で行っても第一級アミン基
含有脂肪族アミンの添加による反応に及ぼす好ましい効
果は同様にあられれ、反応方式は特に限定されるもので
ない。
Himi's reaction method is usually carried out using a so-called suspended catalyst system in which the reaction is carried out under a hydrogen gas atmosphere with stirring using a pressurized reactor, but even when carried out in a fixed bed reaction method, primary amine groups are The addition of the aliphatic amine contained can similarly have a favorable effect on the reaction, and the reaction method is not particularly limited.

本発明の方法により得られた反応液は、触媒を分離除去
した後、副生じた少量の低沸点アミン類と、添加した該
脂肪族アミンが蒸留により除去される。生成ポリアミン
の用途によっては、そのままポリアミン混合物として製
品化してもよいし、また、モノシアノエチル化体の水添
生成物に相当するテトラミン、ジシアノエチル化体の水
添住成物に相当するペンタミン、トリシアノエチル化体
の水添生成物に相当するヘキサミン、更には、副反応に
より生成するヘプタミン等の各留分に精留し製品化して
もよい。前者のポリアミン混合物として製品化した場合
でも、本発明の方法から得られた反応液は、わずかに黄
色に着色した極めてきれいな生成液であるため、その商
品価値は大といえる。
After the catalyst is separated and removed from the reaction solution obtained by the method of the present invention, a small amount of by-product low-boiling amines and the added aliphatic amine are removed by distillation. Depending on the use of the produced polyamine, it may be commercialized as a polyamine mixture as it is, or it may be commercialized as a polyamine mixture as it is, or it may be used as a product such as tetramine, which corresponds to the hydrogenated product of monocyanoethylated product, pentamine, or triamine, which corresponds to the hydrogenated product of dicyanoethylated product. Hexamine corresponding to the hydrogenated product of the cyanoethylated product, and further fractions such as heptamine produced by side reactions may be rectified to produce products. Even when the former is commercialized as a polyamine mixture, the reaction liquid obtained by the method of the present invention is a very clean product liquid with a slight yellow color, so its commercial value can be said to be high.

以上述べたように、N−(2−アミノエテル)ピペラジ
ンのシアノエチル化体の如き分子内に3個のアミノ基を
有するシアノエチル化体原料を水素化し、比較的分子量
の大きいポリアルキレンポリアミンを製造する方法圧お
いて、本発明の反応方法を適用することにより、既知技
術にみられた激しい触媒被毒9重質化アミ□ン類・プロ
ピルアミン副生量の顕著な増加等の欠点を大幅に改善し
うるに至った。また、本発明の反応方法は、触媒の再使
用によるコスト低減の道を拓くとともに、目的とする有
用なポリアミン収率の向上を可能にし、更には、水素圧
等反応条件の温和化を実現し、設備・操作面でも極めて
有利な工業プロセスの確立を達成せしめた。
As described above, a method for producing a polyalkylene polyamine having a relatively large molecular weight by hydrogenating a cyanoethylated raw material having three amino groups in the molecule, such as a cyanoethylated N-(2-aminoether)piperazine. By applying the reaction method of the present invention under high pressure, the drawbacks such as severe catalyst poisoning and significant increase in the amount of 9-heavy amines and propylamine by-products, which were observed in known techniques, can be greatly improved. I came to the conclusion. In addition, the reaction method of the present invention opens the way to cost reduction by reusing the catalyst, makes it possible to improve the target useful polyamine yield, and furthermore realizes mild reaction conditions such as hydrogen pressure. , we have achieved the establishment of an industrial process that is extremely advantageous in terms of equipment and operation.

以下、実施例により更に本発明を説明するが、本発明は
これによって特に限定されるものではな(−0 実施例1〜5 300dのステンレス製電磁攪拌式オートクレーブに表
1に示されるN−(2−アミノエチル)ピペラジン(N
−Air)のシアノエチル化体150vとエチレンジア
ミ750 F 、ラネーニッケル7、5 ? (ドライ
ベース)を仕込み、気相部を水素ガスで置換した。所定
の反応温度まで加熱し、水素ガスを加圧9反応圧50 
kg/ cm ”にて反応を行った。反応温度は原料で
あるN−AKPのシアノエチル化体の種類に応じ表1に
示される温度にて水素化反応を実施した。水素ガスの吸
収が停止した後、同温度にて更に20分間反応を持続し
た。
Hereinafter, the present invention will be further explained with reference to Examples, but the present invention is not particularly limited thereto. 2-aminoethyl)piperazine (N
-Air) cyanoethylated product 150v, ethylenediami 750F, Raney nickel 7,5? (dry base) was charged, and the gas phase was replaced with hydrogen gas. Heat to a predetermined reaction temperature and pressurize hydrogen gas to 9 reaction pressure 50
The hydrogenation reaction was carried out at the reaction temperature shown in Table 1 depending on the type of cyanoethylated N-AKP used as the raw material.The hydrogenation reaction was carried out at the temperature shown in Table 1. Thereafter, the reaction was continued for an additional 20 minutes at the same temperature.

反応液を冷却後、触媒を濾過除去し、得られたわずかに
黄色に着色した液をガスクロマトグラフにより定量分析
した。また、分子量400以上の重質化アミンは、高速
液体クロマトグラフにより定量分析した。その結果を表
1に示す。
After cooling the reaction solution, the catalyst was removed by filtration, and the resulting slightly yellow colored solution was quantitatively analyzed by gas chromatography. Further, heavy amines having a molecular weight of 400 or more were quantitatively analyzed by high performance liquid chromatography. The results are shown in Table 1.

表1 トリアミン;?J−(2−アミノエチル)ピペラジン。Table 1 Triamine;? J-(2-aminoethyl)piperazine.

N−(5−アミノプロピル)ピペラジン餐;5入□イア
、7〜カh 4 、5@@i、ヶの5ち2個が第一級ア
ミノ基であるポリアルキレンポリアミン ヘキサミン; 分子内にアミ7基を6個有し、そのうち
2ないし5個が第一級アミ7基であるポリアルキレンポ
リアミン 原料シアノエチル化体の組成 モノシアノエチル化体: N−AMP 214゜モノシ
アノエチル化体97.9 重量% ジシアノエチル化体; モノシアノエチル化体6.4チ
ジ7アノ工チル化体92.8チ ドリシアノエチル化体[L8重重量 上リシアノエチル化体; ジシアノエチル化体14.7
%トリシアノエチル化体85.3重量係 重質アミン ; 分子址350以上のポリアルキレンポ
リアミン 実施例4 実施例1と同一の反応器に、N−AMPのジンアノエチ
ル化体150F、1.3−プロパンジアミyz Of 
、 9ネーニツケル6v(ドライベース)を仕込み気相
部を水素ガスで置換し、更に加圧した。反応温度を13
5〜140’Cの範囲にコントロールし、反応圧25k
g/cm”にて水素化反応を行った。反応開始後1時間
で水素吸収が完了したため、140℃で更に20分間持
続した。反応液を冷却後、触媒を戸別し、黄色に着色し
た反応液をガスクロマトグラフにて定量分析した。重質
化アミンの定量分析は高速液体クロマトグラフにより行
ったっ 上記反応液より分離回収したラネーニッケルをそのまま
繰り返し5回同一反応条件にて反応に使用した。第1回
目と第3回目の反応結果を表2に示した。
N-(5-aminopropyl)piperazine; 5 □ia, 7~kah 4, 5@@i, polyalkylene polyamine hexamine in which two of the 5 are primary amino groups; Composition of the cyanoethylated polyalkylene polyamine raw material having 6 7 groups, of which 2 to 5 are primary 7 groups Monocyanoethylated product: N-AMP 214° Monocyanoethylated product 97.9% by weight Dicyanoethylated product; Monocyanoethylated product 6.4 Thidi7 Ano-engineered product 92.8 Dicyanoethylated product [L8 weight based lycyanoethylated product; Dicyanoethylated product 14.7
% tricyanoethylated product 85.3% by weight heavy amine; polyalkylene polyamine with a molecular mass of 350 or more Example 4 In the same reactor as in Example 1, zineanoethylated product 150F of N-AMP, 1,3-propanediamyz Of
, 9Ni 6V (dry base) was charged, the gas phase was replaced with hydrogen gas, and the pressure was further increased. The reaction temperature is 13
Control in the range of 5-140'C, reaction pressure 25k
The hydrogenation reaction was carried out at a rate of 1.5 g/cm". Hydrogen absorption was completed 1 hour after the start of the reaction, so the temperature was continued for another 20 minutes at 140°C. After the reaction solution was cooled, the catalyst was removed from door to door, and the reaction mixture was colored yellow. The liquid was quantitatively analyzed using a gas chromatograph.The quantitative analysis of the heavy amine was performed using a high performance liquid chromatograph.The Raney nickel separated and recovered from the above reaction liquid was used in the reaction as it was, repeated five times under the same reaction conditions.First Table 2 shows the reaction results of the first and third tests.

表2 実施例5 実施例1と同一の反応器にジオキサン50t。Table 2 Example 5 50 tons of dioxane was placed in the same reactor as in Example 1.

ラネーニッケル7、5 t (ドライペース)とエチレ
ンジアミン7.5fを仕込み気相部を水素ガスで置換し
、更に加圧した。反応温度155℃9反応圧55ゆ/C
m ”の条件下にて原料であるN−Al!!Pのジシア
ノエチル化体150tを定量ポンプにて2時間で供給し
た。供給後、更に1時間同一条件下で反応を行った後、
冷却し、触媒を戸別した。わずかに黄色に着色した反応
液を実施例1と同じ分析法にて組成分析を行った。その
結果、プロピルアミン1.Of、)ジアミン113r、
テトラミン9.41、ペンタミン122.1v、ヘキサ
ミ/11.2f。
7.5 tons of Raney nickel (dry pace) and 7.5 tons of ethylenediamine were charged, the gas phase was replaced with hydrogen gas, and the mixture was further pressurized. Reaction temperature 155℃ 9 Reaction pressure 55yu/C
150 t of dicyanoethylated material of N-Al!!P, which is a raw material, was supplied over 2 hours using a metering pump under the conditions of ``m''. After the supply, the reaction was further carried out under the same conditions for 1 hour, and then
After cooling, the catalyst was distributed from house to house. The composition of the slightly yellow colored reaction solution was analyzed using the same analytical method as in Example 1. As a result, propylamine 1. Of,) diamine 113r,
Tetramine 9.41, Pentamine 122.1v, Hexame/11.2f.

重質アミン1[LOrが得られた。Heavy amine 1 [LOr was obtained.

実施例6 実施例1と同一の反応器にN−AFiPのジンアノエチ
ル化体150 y 、エチレンジアミン15f。
Example 6 In the same reactor as in Example 1, 150 y of dianoethylated N-AFiP and 15f of ethylenediamine were added.

ケイソウ土担持65チニッケル(還元安定型ニッケル)
6fを仕込み気相部を水素ガスで置換し、更に加圧した
。反応温度135℃2反応圧31kg/ cm ”で水
素化反応を行った。反応開始後1.3時間で水素吸収が
完了し、更に同一条件で10分間持続した。反応液を冷
却後、触媒を戸別した。わずかに黄色に着色した反応液
を実施例1と同一分析法にて組成分析を行った。その結
果、プロピルアミン[LOr、)ジアミン0?、テトラ
イン7.9?、ペンタミン119.5 t 、ヘキサミ
ン16,51゜重質アミン1α6vが得られた。
65mm nickel supported on diatomaceous earth (reduction stable nickel)
6f was charged, the gas phase was replaced with hydrogen gas, and the pressure was further increased. The hydrogenation reaction was carried out at a reaction temperature of 135°C and a reaction pressure of 31 kg/cm. Hydrogen absorption was completed 1.3 hours after the start of the reaction, and the reaction was continued for another 10 minutes under the same conditions. After cooling the reaction solution, the catalyst was The slightly yellow colored reaction solution was analyzed for its composition using the same analytical method as in Example 1.The results showed that propylamine [LOr, )diamine 0?, tetraline 7.9?, and pentamine 119.5? t, hexamine 16,51° heavy amine 1α6v was obtained.

実施例7.8 実施例1と同一の反応器にN−AEPのジシアノエチル
化体150t、耐硫黄性ニッケル触媒(Ni45〜47
%、Or2〜5% 、Qu3〜496゜ケイソウ土27
〜29%、黒鉛4〜5チ、Niの形Ni+Ni0)7.
5 ?、実施例7ではジエチレントリアミン1st、実
施例8ではN−(2−アミノエテル)ピペラジン15f
を夫々仕込み、気相部を水素ガスで置換し更に加圧した
。反応温度140℃1反応圧28kg/C11tで水素
化反応を行った。反応開始後1.2時間で水素吸収が完
了した後、更に15分間同一条件で持続した。反応液を
冷却後、触媒を戸別し、わずかに黄色に着色した液を実
施例1と同一分析法にて組成分析した。その結果、実施
例7ではプロピルアミンα79.テトラミン性5?、ペ
ンタミン121.5F、ヘキサミンa2t、ヘプタミン
&8f9重質アミン17.2 fが得られた。また、実
施例8ではプロピルアミンα7f、フートラミya3F
、べyJアミン19.8F。
Example 7.8 Into the same reactor as in Example 1, 150 tons of dicyanoethylated N-AEP and a sulfur-resistant nickel catalyst (Ni45-47
%, Or2~5%, Qu3~496゜Diatomaceous earth 27
~29%, graphite 4-5%, Ni form Ni+Ni0)7.
5? , diethylenetriamine 1st in Example 7, N-(2-aminoether)piperazine 15f in Example 8
The gas phase was replaced with hydrogen gas and further pressurized. The hydrogenation reaction was carried out at a reaction temperature of 140° C. and a reaction pressure of 28 kg/C11t. After hydrogen absorption was completed 1.2 hours after the start of the reaction, the same conditions were continued for an additional 15 minutes. After cooling the reaction solution, the catalyst was separated from each other, and the composition of the slightly yellow colored solution was analyzed using the same analysis method as in Example 1. As a result, in Example 7, propylamine α79. Tetraminergic 5? , pentamine 121.5F, hexamine a2t, heptamine &8f9 heavy amine 17.2f were obtained. In addition, in Example 8, propylamine α7f, Futrami ya3F
, BayJ Amine 19.8F.

ヘキサミンa、St、ヘプタミン7.2 f 、重質ア
ミン1a22が得られた。
Hexamine a, St, heptamine 7.2 f and heavy amine 1a22 were obtained.

実施例9 実施例1と同一の反応器にN−AIIIPのジシアノエ
チル化体150f、モノエチルアミン152゜ラネーニ
ッケル6tを仕込み気相部を水素ガス置換し、更に水素
を加圧した。反応温度135℃。
Example 9 In the same reactor as in Example 1, 150 f of the dicyanoethylated N-AIIIP, 152° of monoethylamine, and 6 tons of Raney nickel were charged, the gas phase was replaced with hydrogen gas, and hydrogen was further pressurized. Reaction temperature: 135°C.

反応圧55 kg /e1m ”にて水素化反応を行っ
た。反応開始後t4時間で水素吸収が完了し、更に同一
条件で10分間持続した。反応液を冷却後、触媒を戸別
し、得られた反応液を実施例1と同一の分析法にて組成
分析を行った。その結果、プロピルアミン1.2F、)
リアミンof、テトラミン14.8t、ペンタミン12
工sy、ヘキサミンQ、4f。
The hydrogenation reaction was carried out at a reaction pressure of 55 kg/e1 m''. Hydrogen absorption was completed 4 hours after the start of the reaction, and the reaction was continued for another 10 minutes under the same conditions. After cooling the reaction solution, the catalyst was separated from each other, and the obtained The composition of the reaction solution was analyzed using the same analysis method as in Example 1. As a result, propylamine 1.2F,
Reamine of, Tetramine 14.8t, Pentamine 12
Engineering Sy, Hexamine Q, 4f.

重質アミン12.Ofが得られた。Heavy amines12. Of was obtained.

比較例1 実施例1と同一の反応器にN−ムupのジシアノエチル
化体150f、ラネーニッケル7、5 t (ドライベ
ース)を仕込み気相を水素ガスで置換し更に水素ガスを
加圧した。反応温度140℃9反応圧30に9/cm”
にて水素化反応を行った。反応開始後7時間で水素吸収
が完了した。その後更に同温度で30分間反応を持続し
た。反応液を冷却し触媒を炉別し、褐色に着色した反応
液を実施例1と同一の分析方法にて定量分析した。その
結果、プロピルアミン17.9 t 、 )リアミンA
1F、テトラミン22.7 t 、ペンタミン845 
嗟#重質アミン21.01が得られた。
Comparative Example 1 In the same reactor as in Example 1, 150 f of dicyanoethylated N-up and 7.5 t of Raney nickel (dry base) were charged, the gas phase was replaced with hydrogen gas, and the hydrogen gas was further pressurized. Reaction temperature: 140℃9 Reaction pressure: 30℃/cm”
A hydrogenation reaction was carried out. Hydrogen absorption was completed 7 hours after the start of the reaction. Thereafter, the reaction was continued for an additional 30 minutes at the same temperature. The reaction solution was cooled, the catalyst was separated, and the brown colored reaction solution was quantitatively analyzed using the same analysis method as in Example 1. As a result, propylamine 17.9 t, )riamine A
1F, Tetramine 22.7 t, Pentamine 845
21.01 of a heavy amine was obtained.

上記反応により分離回収した触媒を同一反応条件にて繰
り返し第2回目の反応に使用したが、水素吸収は全く認
められなかった。
The catalyst separated and recovered in the above reaction was repeatedly used in a second reaction under the same reaction conditions, but no hydrogen absorption was observed.

比較例2 実施例1と同一の反応器にN−AIIIPのジシアノエ
チル化体150f、ラネー;ツケルz5?(ドライベー
ス)を仕込み気相を水素ガスで置換した。液体アンモニ
ア1aOfを試料導入管に採取し、水素ガスにて加圧し
反応器へ導入した。反応温度140℃9反応圧55 k
g /cta ”にて水素化反応を行った。反応開始後
3時間40分で水素ガス吸収が完了した。その後更に同
温度で30分間反応を持続した。反応液を冷却し、内圧
を開放し、アンモニアをパージした。黄褐色に着色した
反応液を実施例1と同一の分析方法にて生成物を定量し
た。その結果、プロピルアミン44f、)リアミy1.
Of、テトラミン22A3t、ベアfiミy1074t
、ヘキサミン1.5 f 、重質アミン16.3fが得
られた。
Comparative Example 2 In the same reactor as in Example 1, dicyanoethylated N-AIIIP 150f and Raney; Tsukel z5? (dry base) and the gas phase was replaced with hydrogen gas. Liquid ammonia 1aOf was collected into a sample introduction tube, pressurized with hydrogen gas, and introduced into the reactor. Reaction temperature 140℃9 reaction pressure 55k
The hydrogenation reaction was carried out at 3 hours and 40 minutes after the start of the reaction.The reaction was then continued for an additional 30 minutes at the same temperature.The reaction solution was cooled and the internal pressure was released. , and ammonia was purged. The yellow-brown colored reaction solution was analyzed to quantify the products using the same analytical method as in Example 1. As a result, propylamine 44f,) rearmy y1.
Of, Tetramin 22A3t, Bear fi mi y1074t
, 1.5 f of hexamine, and 16.3 f of heavy amine were obtained.

比較例5 実施例1と同一の反応器にN−AIIIPのジシアノエ
チル化体150t、ラネーニッケルZ5f(ドライベー
ス)を仕込み気相を水素ガスで置換した。液体アンモニ
アをaof試料導入管に採取し、水素ガスにて加圧し反
応器へ導入した。反応温度140℃9反応圧55 kg
 / Cm *にて水素化反応を行ったところ、理論量
の60%水素を吸収したところで反応は停止してしまっ
た。
Comparative Example 5 In the same reactor as in Example 1, 150 tons of dicyanoethylated N-AIIIP and Raney nickel Z5f (dry base) were charged, and the gas phase was replaced with hydrogen gas. Liquid ammonia was collected into an Aof sample introduction tube, pressurized with hydrogen gas, and introduced into the reactor. Reaction temperature: 140℃9 Reaction pressure: 55 kg
/ Cm*, the reaction stopped when 60% of the theoretical amount of hydrogen was absorbed.

特許出願人 東洋曹達工業株式会社 手続補正書 昭和59年5月30日 特許庁長官 若 杉 和 夫 殿 1事件の表示 昭和58年特許願第140571 号 2発明の名称 ポリアミンの製造方法 3補正をする者 事件との関係 特許出願人 電話番号(585)3311 4補正命令の日付 6補正の対象 明細書の1発明の詳細な説明」の欄 7補正の内容 (1) 明細書第10頁、18行目の「プロピレンジア
ミン」を「プロパンジアミン」と補正する。
Patent Applicant Toyo Soda Kogyo Co., Ltd. Procedural Amendment May 30, 1980 Commissioner of the Patent Office Kazuo Wakasugi 1 Indication of Case 1982 Patent Application No. 140571 2 Name of Invention Process for Producing Polyamine 3 Amendment Relationship with the case Patent applicant telephone number (585) 3311 4. Date of amendment order 6. 1. Detailed explanation of the invention in the specification to be amended 7. Contents of the amendment (1) Page 10 of the specification, line 18 Correct the "propylene diamine" in the eyes to "propanediamine".

(2) 明細書第24頁、10行目および11行目の「
チ」を11と補正する。
(2) On page 24 of the specification, lines 10 and 11, “
Correct "CH" to 11.

Claims (2)

【特許請求の範囲】[Claims] (1)N−(2−アミノエチル)ピペラジンにアクリロ
ニトリルを付加させた下記化学構造式で示されるシアノ
エチル化体を、水素ガス雰囲気、水素化触媒存在のもと
で接触還元反応を行うにあたり、第一級アミ7基を有す
る脂肪族アミンを添加することを特徴とするポリアミン
の製造方法。
(1) When carrying out a catalytic reduction reaction of the cyanoethylated product shown by the chemical structural formula below, which is obtained by adding acrylonitrile to N-(2-aminoethyl)piperazine, in a hydrogen gas atmosphere and the presence of a hydrogenation catalyst, A method for producing a polyamine, which comprises adding an aliphatic amine having 7 primary amine groups.
(2)水素化触媒が2ネーニツケルまたはケイツク土担
持ニッケルである特許請求の範囲第(1)項記載の製造
方法。
(2) The production method according to claim (1), wherein the hydrogenation catalyst is 2N nickel or nickel supported on silica earth.
JP58140571A 1983-08-02 1983-08-02 Preparation of polyamine Granted JPS6032780A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58140571A JPS6032780A (en) 1983-08-02 1983-08-02 Preparation of polyamine
DE8484109137T DE3476995D1 (en) 1983-08-02 1984-08-01 Process for producing polyamines
EP84109137A EP0135725B1 (en) 1983-08-02 1984-08-01 Process for producing polyamines
US07/140,861 US4845297A (en) 1983-08-02 1987-12-30 Process for producing polyamines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58140571A JPS6032780A (en) 1983-08-02 1983-08-02 Preparation of polyamine

Publications (2)

Publication Number Publication Date
JPS6032780A true JPS6032780A (en) 1985-02-19
JPH0314310B2 JPH0314310B2 (en) 1991-02-26

Family

ID=15271778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58140571A Granted JPS6032780A (en) 1983-08-02 1983-08-02 Preparation of polyamine

Country Status (1)

Country Link
JP (1) JPS6032780A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883202B2 (en) 2009-05-05 2014-11-11 Tekmira Pharmaceuticals Corporation Lipid compositions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883202B2 (en) 2009-05-05 2014-11-11 Tekmira Pharmaceuticals Corporation Lipid compositions
US9694077B2 (en) 2009-05-05 2017-07-04 Arbutus Biopharma Corporation Lipid compositions
US10456473B2 (en) 2009-05-05 2019-10-29 Arbutus Biopharma Corporation Lipid compositions

Also Published As

Publication number Publication date
JPH0314310B2 (en) 1991-02-26

Similar Documents

Publication Publication Date Title
JP2659040B2 (en) Method for producing aliphatic polyamine
JPH06279368A (en) Production of bisaminomethylcyclohexane
EP0618895B1 (en) Process for the preparation of an aminonitrile by partial hydrogenation of a nitrile compound with two or more nitrile groups
US3998881A (en) Hydrogenation of phthalonitriles using rhodium catalyst
US4845297A (en) Process for producing polyamines
US6245932B1 (en) Cyanoethylation of cycloaliphatic vicinal primary diamines
JPS6032780A (en) Preparation of polyamine
US6114277A (en) Process for preparing cyano group-containing aromatic methylamines
CA1126761A (en) Hydrogenation of aromatic amines
JP4291483B2 (en) Method for producing cyclohexanebis (methylamine) s
JPS6092246A (en) Preparation of polyamine
US3232989A (en) Aromatic dinitro compounds
JP3347185B2 (en) Method for producing serine or a derivative thereof
JPH0227334B2 (en)
KR860002165B1 (en) The process for preparing of amino benzylamine
CA2250770C (en) Process for preparing cyano group-containing aromatic methylamines
US4935545A (en) Process for the disproportionation of alkylated aromatic primary amines
US4801751A (en) Process for the disproportionation of alkylated aromatic primary amines
JPS617237A (en) Preparation of aminobenzylamine
JPS60146849A (en) Preparation of aminobenzylamine
US5124485A (en) Catalysts and methods of separation thereof
JPH03109361A (en) Preparation of bis(aminomethyl)norcamphanes
JPH0269448A (en) Production of p-phenylenediamines
KR100549701B1 (en) Method for producing cyano group-containing aromatic methylamine
JP2762642B2 (en) Method for producing polyethylene polyamine