JPH0314310B2 - - Google Patents

Info

Publication number
JPH0314310B2
JPH0314310B2 JP58140571A JP14057183A JPH0314310B2 JP H0314310 B2 JPH0314310 B2 JP H0314310B2 JP 58140571 A JP58140571 A JP 58140571A JP 14057183 A JP14057183 A JP 14057183A JP H0314310 B2 JPH0314310 B2 JP H0314310B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
polyamine
pressure
amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58140571A
Other languages
Japanese (ja)
Other versions
JPS6032780A (en
Inventor
Sadakatsu Kumoi
Kazuharu Mitarai
Yukihiro Tsutsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP58140571A priority Critical patent/JPS6032780A/en
Priority to EP84109137A priority patent/EP0135725B1/en
Priority to DE8484109137T priority patent/DE3476995D1/en
Publication of JPS6032780A publication Critical patent/JPS6032780A/en
Priority to US07/140,861 priority patent/US4845297A/en
Publication of JPH0314310B2 publication Critical patent/JPH0314310B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、シアノ゚チル化された−−ア
ミノ゚チルピペラゞンの接觊還元反応を行いポ
リアミンを補造する方法に関する。 䞀般に、第䞀玚たたはおよび第二玚アミノ基
を有するアミン化合物にアクリロニトリルを付加
させたシアノ゚チル化アミン類を氎玠化觊媒存圚
䞋接觊還元反応を行い該シアノ゚チル化アミン類
に察応するポリアミンを補造する方法は広く知ら
れおいる。たた、該シアノ゚チル化アミン類に察
応するポリアミン収率を曎に向䞊させるため反応
系ヘアンモニアを添加し接觊還元反応を行う方法
もすでに知られおいる。 本発明者らは、これらの既知の方法に基づき、
−−アミノ゚チルピペラゞン以䞋、
−AEPず略す。のシアノ゚チル化䜓よりポリア
ミンを補造する方法に぀いお怜蚎したずころ、ア
ンモニアを添加しない反応系ではプロピルアミン
が倧量に副生し、該シアノ゚チル化䜓に察応する
ポリアミンからアミノプロピル基が脱離した構造
をも぀、即ち、より䜎分子量化したポリアミンず
分子量が350以䞊の重質アミンを倧量に副生し、
目的ずするポリアミン収率が十分満足できるもの
ではないこずが刀明した。 ポリアミンの収量䜎䞋による経枈的損倱のみな
らず、プロピルアミン沞点48℃を䞻ずする䜎
沞点アミン類の副生量増加は、反応液からの䜎沞
点アミン類の陀去、回収に䌎う操䜜および装眮負
担が倧ずなりプロセス䞊の䞍利益をもたらす。た
た、䞊蚘の反応方法を実斜するこずにより埗られ
た反応液より觊媒を分離回収する際、觊媒の倉質
に䌎なう過性の䜎䞋珟象がみられ、觊媒分離操
䜜負担が増倧する。たた、回収した觊媒を繰り返
し䜿甚するこずにより觊媒䜿甚コストの䜎枛を詊
みたが、觊媒は回の反応に䜿甚しただけで被毒
を受けほずんど倱掻しおおり、高䟡な觊媒の䜿甚
に䌎なう経枈的損倱の増加を招く。 アンモニアを添加する反応方法では、通垞液䜓
アンモニア沞点−33℃を添加するため、アン
モニアの取扱い操䜜や回収、陀害に䌎なう蚭備面
での煩雑さが加わる。たた、アンモニアの少量添
加では目的ずするポリアミン収率向䞊効果が小さ
く、十分満足しうる収量を獲埗するには倧量のア
ンモニア添加を必芁ずする。その際、所定の反応
枩床におけるアンモニアガス分圧が極めお倧きく
なるため反応に必芁な氎玠ガス分圧ずも考慮に入
れるず反応は比范的高い圧力䞋で実斜する必芁が
あり、耐圧匷床の倧きな装眮を䜿甚しなければな
らず、たた反応埌のアンモニアガス凊理量の増加
負担は倧ずなり、工業的には必ずしも有利な補造
プロセスずならない。 䞊述の劂く、シアノ゚チル化−AEPを垞法
により接觊還元した堎合、反応面からは奜たしく
ない䜎沞点アミン類が倧量に副生し、目的ずする
ポリアミン収量の䜎䞋を招くのみならず、觊媒の
被毒をも匕き起こす。たた、アンモニアを甚いる
こずにより、収率面での改良を可胜ずする方法で
は、倧量のアンモニアガスの添加により惹起され
る操䜜䞊びに装眮面でのマむナス効果が䞍可避で
ある。比范的䜎い反応圧䞋で有甚なポリアミンを
高収量にお補造し、か぀、蚭備面でも汎甚的機噚
を利甚でき、反応および反応液埌凊理操䜜が容易
な改良された該シアノ゚チル化䜓の氎玠化方法が
匷く望たれる。 本発明者らは、これらの事情に鑑み鋭意研究を
重ねた結果、シアノ゚チル化−AEPに第䞀玚
アミノ基を有する脂肪族アミンを添加し、接觊還
元反応を行うこずによりプロピルアミンの副生量
を著しく抑制し、か぀比范的䜎い反応圧のもずで
該シアノ゚チル化䜓に察応するポリアミンを高収
量に補造しうる等の新たな事実を芋出し、本発明
を完成するに至぀た。 すなわち、本発明は、−−アミノ゚チル
ピペラゞンにアクリロニトリルを付加させた䞋蚘
化孊構造匏で瀺されるシアノ゚チル化䜓を氎玠ガ
ス雰囲気、氎玠化觊媒存圚のもずで
The present invention relates to a method for producing a polyamine by carrying out a catalytic reduction reaction of cyanoethylated N-(2-aminoethyl)piperazine. Generally, a polyamine corresponding to the cyanoethylated amine is produced by subjecting a cyanoethylated amine, which is an amine compound having a primary or/and secondary amino group to which acrylonitrile is added, to a catalytic reduction reaction in the presence of a hydrogenation catalyst. The method is widely known. Furthermore, in order to further improve the yield of polyamines corresponding to the cyanoethylated amines, a method is already known in which reaction system hair ammonia is added to carry out a catalytic reduction reaction. Based on these known methods, the present inventors
N-(2-aminoethyl)piperazine (hereinafter referred to as N
-Abbreviated as AEP. ), we investigated a method for producing polyamines from the cyanoethylated product, and found that in a reaction system without the addition of ammonia, a large amount of propylamine was produced as a by-product. In other words, a large amount of polyamine with a lower molecular weight and heavy amine with a molecular weight of 350 or more are produced as by-products,
It was found that the desired polyamine yield was not fully satisfactory. Not only is there an economic loss due to a decrease in the yield of polyamine, but an increase in the amount of by-products of low-boiling amines, mainly propylamine (boiling point 48°C), is caused by the removal of low-boiling amines from the reaction solution, the operations associated with recovery, and This increases the load on the equipment and causes disadvantages in the process. Furthermore, when the catalyst is separated and recovered from the reaction liquid obtained by carrying out the above reaction method, a phenomenon of decrease in transient properties due to deterioration of the catalyst is observed, which increases the burden of catalyst separation operation. In addition, attempts were made to reduce the cost of using the catalyst by repeatedly using the recovered catalyst, but the catalyst was poisoned and almost deactivated after being used for one reaction. resulting in increased economic losses. In the reaction method of adding ammonia, liquid ammonia (boiling point -33°C) is usually added, which adds complexity to the equipment involved in handling, recovering, and abatement of ammonia. Further, addition of a small amount of ammonia does not have a small effect on improving the target polyamine yield, and it is necessary to add a large amount of ammonia to obtain a sufficiently satisfactory yield. In this case, since the ammonia gas partial pressure at a given reaction temperature becomes extremely large, taking into consideration the hydrogen gas partial pressure required for the reaction, the reaction must be carried out under relatively high pressure, and equipment with high pressure resistance is required. Moreover, the burden of increasing the amount of ammonia gas processed after the reaction becomes large, and the production process is not necessarily advantageous from an industrial perspective. As mentioned above, when cyanoethylated N-AEP is catalytically reduced by a conventional method, a large amount of low-boiling point amines, which are undesirable from the reaction point of view, are produced as by-products, which not only leads to a decrease in the desired polyamine yield, but also leads to a decrease in catalyst efficiency. It also causes poisoning. Further, in a method in which it is possible to improve the yield by using ammonia, the addition of a large amount of ammonia gas inevitably causes negative effects in terms of operation and equipment. An improved method for hydrogenating cyanoethylated products, which produces useful polyamines in high yields under relatively low reaction pressures, allows the use of general-purpose equipment, and facilitates reaction and post-treatment of reaction liquids. is strongly desired. In view of these circumstances, the present inventors have conducted intensive research and found that by adding an aliphatic amine having a primary amino group to cyanoethylated N-AEP and performing a catalytic reduction reaction, propylamine by-product was produced. The present inventors have discovered new facts such as the fact that polyamines corresponding to the cyanoethylated product can be produced in high yields while significantly suppressing the amount of polyamines and under relatively low reaction pressures, leading to the completion of the present invention. That is, the present invention provides N-(2-aminoethyl)
A cyanoethylated compound of piperazine with acrylonitrile added to it, represented by the chemical structural formula below, was prepared in a hydrogen gas atmosphere and in the presence of a hydrogenation catalyst.

【匏】 −CH2−CH2CNたたは− 接觊還元反応を行うにあたり、第䞀玚アミノ基を
有する脂肪族アミンを添加するこずを特城ずする
ポリアミンの補造法を提䟛するものである。 本発明に䜿甚される原料は、−−アミノ
゚チルピペラゞン−AEPにアクリロニ
トリルを付加させた䞋蚘化孊構造匏で瀺されるシ
アノ゚チル化䜓である。
[Formula] (Y= -CH 2 -CH 2 CN or -H) Provides a method for producing a polyamine, characterized in that an aliphatic amine having a primary amino group is added during the catalytic reduction reaction. It is. The raw material used in the present invention is a cyanoethylated product represented by the chemical structural formula below, which is obtained by adding acrylonitrile to N-(2-aminoethyl)piperazine (N-AEP).

【匏】 −CH2CH2CNたたは− すなわち、−AEPにアクリロニトリルを等
モル付加させた−−アミノ゚チル−N′−
−シアノ゚チルピペラゞンたたは−
〔N″−−シアノ゚チルアミノ゚チル〕ピペ
ラゞンのモノシアノ゚チル化䜓、−AEPにア
クリロニトリルを倍モル付加させた−〔N″−
−シアノ゚チルアミノ゚チル〕−N′−−
シアノ゚チルピペラゞンたたは−〔N″−ビス
−シアノ゚チルアミノ゚チル〕ピペラゞン
のゞシアノ゚チル化䜓、−AEPにアクリロニ
トリルを倍モル付加させた−〔N″−ビス
−シアノ゚チルアミノ゚チル〕−N′−
−シアノ゚チルピペラゞンのトリシアノ゚チル
化䜓などが原料ずしお䟋瀺される。 䞊蚘に瀺すモノシアノ゚チル化䜓、ゞシアノ゚
チル化䜓たたはトリシアノ゚チル化䜓をそれぞれ
単独に原料ずしおも甚いおよいし、たたは生成物
のポリアミンの甚途によ぀おは、モノシアノ゚チ
ル化䜓、ゞシアノ゚チル化䜓、トリシアノ゚チル
化䜓等の原料を任意の組成に混合しお䜿甚しおも
よい。 本発明に䜿甚される氎玠化觊媒は、䞀般の接觊
還元反応に広く䜿甚される金属觊媒が䜿甚可胜で
あり、䞭でもニツケル、銅、癜金、ルテニりム
パラゞりムロゞりム、むリゞりム等が有甚であ
る。これらの金属は、ケむ゜り土、アルミナ、掻
性癜土、掻性炭等の担䜓に担持させた担持金属觊
媒のかたちで䜿甚するこずもできる。 䞭でも、觊媒の掻性や経枈性面からニツケル系
觊媒が本発明の反応甚觊媒ずしお最も適しおい
る。ニツケル系觊媒ずしおは、ラネヌニツケルや
ケむ゜り土に担持させた安定化ニツケル、その他
銅、クロム、鉄、亜鉛等の金属を添加したニツケ
ルを䞻成分ずするケむ゜り土担持ニツケル等が䜿
甚される。䞊蚘に䟋瀺した劂く、金属成分ずしお
ニツケルを䞻成分ずし、ニツケル以倖の異皮金属
を添加したもの、たたそれらの異皮金属ニツケル
を䞻成分ずし、ニツケル以倖の異皮金属を添加し
たもの、たたそれらの異皮金属をニツケルず共に
各皮担䜓に担持したものが觊媒ずしお䜿甚可胜で
あり、添加される異皮金属の皮類は、特に限定さ
れるものではない。觊媒の䜿甚量は反応速床ず関
連する生産性面や、ポリアミン収率ぞの圱響等を
も勘案し適圓な添加量が遞ばれ、特に限定される
ものでない。䞀般的には該原料シアノ゚チル化䜓
に察し、〜20重量が添加される。重量以
䞋の觊媒添加量では、反応速床が遅くなり生産性
面で奜たしくない。20重量以䞊の添加量では反
応速床や目的ずするポリアミン収率により奜たし
い圱響を及がすこずもなく、単に觊媒量の増加に
よる分離操䜜負担が増えるのみで特に有利ずはな
らない。本発明の反応方法に基づき䜿甚された觊
媒は、反応に䜿甚埌もなお高掻性を保持しおいる
ため、通垞反応液から過あるいはデカンテヌシ
ペン等の操䜜で分離回収され、繰り返し第回目
以降の反応に䜿甚するこずができ、觊媒䜿甚コス
ト䜎枛に倧きく寄䞎し、経枈的に倧きな利益をも
たらすこずができる。 本発明に䜿甚される第䞀玚アミノ基を有する脂
肪族アミンずしおは、−NH2は炭玠数〜
のアルキル基で衚わされらるアルキルアミン
類、NH2−R′−NH−R″−nNH2
R′およびR″は炭玠数〜のアルキレン
基ポリアルキレンポリアミンずしおは分子内に
環状のピペラゞン環を含有する化合物も包含され
るで衚わされるゞアミン類たたはポリアルキレ
ンポリアミン類である。 代衚的な化合物を具䜓的に䟋瀺するず、アルキ
ルアミン類ずしおメチルアミン゚チルアミン
プロピルアミンブチルアミンシクロヘキシル
アミン−゚チルヘキシルアミン等が挙げられ
る。たたゞアミン類ずしお゚チレンゞアミンプ
ロパンゞアミンブタンゞアミン、ヘキサメチレ
ンゞアミンシクロヘキシルゞアミン等が挙げら
れる。ポリアルキレンポリアミン類ずしおはゞ゚
チレントリアミン−−アミノ゚チルピ
ペラゞントリ゚チレンテトラミンゞプロピレ
ントリアミントリプロピレンテトラミン−
−アミノプロピル゚チレンゞアミン等が挙
げられる。アルキルアミン類は原料たたは生成物
からのシアノ゚チル基たたはアミノプロピル基の
脱離反応を抑制するずずもに、觊媒の被毒を抑え
る効果があるが、メチルアミンや゚チルアミンの
ような䜎沞点アミンを甚いた堎合、反応液からの
回収操䜜面で倚少の負担の増加を䌎なうため、沞
点60℃以䞊の第䞀玚アルキルアミンを䜿甚するこ
ずが奜たしい。曎には、プロピルアミンや分子量
400以䞊の重質アミンずい぀た奜たしくない副生
物の生成を抑え、目的ずする有甚なポリアミンを
比范的䜎い反応圧力䞋で高収率に補造しうる実甚
性に優れた添加剀アミンずしお゚チレンゞアミ
ンプロパンゞアミンゞ゚チレントリアミン
ゞプロピレントリアミン−−アミノ゚チ
ルピペラゞン−アミノ゚チルプロパンゞア
ミン等のゞアミンたたはポリアルキレンポリアミ
ンが挙げられる。これらの比范的䜎分子量のゞア
ミンたたはポリアルキレンポリアミンは、觊媒の
被毒をも著しく抑え、極めお着色の少ない高品質
ポリアミンからなる反応液を䞎えるのみならず、
反応液からの脂肪族アミンの蒞留による分離回収
が極めお容易で、工業操䜜性にも優れおおり最も
奜たしく䜿甚される。 これらの脂肪族アミンの原料該シアノ゚チル化
䜓に察し、通垞〜50重量ずなるよう添加し反
応が実斜される。重量以䞋の添加量では䜎沞
点アミンの副生量を抑える効果が小さく、たた被
毒による觊媒掻性の䜎䞋をもたらす。50重量以
䞊添加しおも反応面で曎なる優れた効果は埗られ
ず、反応系䞭に加えられた倧過剰の脂肪アミンを
反応液より回収する負担が増えるのみで、特に有
利ずはならない。 第䞀玚アミノ基を有する脂肪族アミンであれ
ば、反応面や操䜜面で数々の優れた効果をもたら
し、添加する脂肪族アミンの皮類やその添加量は
特に限定されるものでないが、生成ポリアミンの
品質や分子量分垃に倚少圱響を及がすため、生成
ポリアミノンの甚途に応じお脂肪族アミンの皮類
や量を適宜遞択するこずが奜たしい。䟋えば、ア
ルキレンゞアミンを添加し反応を行぀た堎合、該
シアノ゚チル化䜓に察応したポリアミンの他に、
分子内にアミノ基を曎に個倚く有するポリアミ
ンが生成する。䞀般に工業的に生産されおいるテ
トラ゚チレンペンタミンやペンタ゚チレンヘキサ
ミンのような比范的分子量の高いポリアルキレン
ポリアミンは各皮化孊構造の異なるポリアミンの
混合物であり、倚くの産業分野においお極めた有
甚なアミン玠材ずしお倚甚されおいる。これらの
実甚性面を勘案するず、本発明の反応方法は脂肪
族アミンの皮類を遞び添加するこずにより倚様な
機胜性を有するポリアミン混合物をフレキシブル
に補造できる極めお工業的に優れたポリアミンの
補造法を提䟛するこずができる利点を有す。 本発明の反応は、氎玠ガス加圧䞋で実斜され、
その圧力範囲は特に限定されるものでないが通垞
〜300Kgcm2加圧䞋で実斜するこずができる。
より奜たしくは〜50Kgcm2の加圧䞋で実斜され
る。䞀般にニトリル基の氎玠化反応においおは、
氎玠圧は目的ずするアミン収率に倧きな圱響を䞎
えるこずが知られおおり、70Kgcm2以䞊の比范的
高い氎玠圧を適甚する堎合が倚い。しかし、本発
明の劂く第䞀玚アミノ基を有する脂肪族アミンを
反応系ぞ添加した堎合、〜50Kgcm2の比范的䜎
い氎玠加圧䞋で反応を行぀おも目的ずするポリア
ミンを高収率に補造しうるこずが刀明した。 すなわち、該脂肪族アミンの添加は、䜎氎玠圧
䞋での反応を可胜にし、反応装眮やコンプレツサ
ヌ等の蚭備面で極めお有利ずなる。氎玠圧の䜎䞋
は反応時間を延長させるこずによりカバヌできる
が、実甚面からの生産性を考慮しお、氎玠圧
Kgcm2以䞊で通垞実斜される。氎玠圧の䞊限界も
特に限定されるものでない。氎玠圧の遞定は反応
速床に重芁な圱響を䞎えるため、発熱反応に䌎な
う陀熱等を考慮し適圓に蚭定するこずが奜たし
い。 反応枩床も反応速床やポリアミン収率に重芁な
圱響を䞎える。本発明の反応は通垞80〜190℃、
奜たしくは100〜170℃で実斜される。80℃以䞋で
は反応速床が遅く実甚的でない。190℃以䞊では
生成ポリアミンの分解がおこり、䜎沞点アミンの
副生量が急激に増加するずずもに、分子量350以
䞊の重質アミンの生成量が増え、目的ずするポリ
アミン収率の䜎䞋を招く。 氎玠化反応に際し、ニトリルやアミンに察し反
応䞍掻性な有機溶剀や垌釈剀を添加し反応を行぀
おもよいが、反応液量の増加による反応噚䜿甚効
率の䜎䞋をもたらし、特に有利ずはならない。 反応噚ぞ原料を䟛絊する方法は特に限定される
ものでない。最初に反応噚ぞ原料シアノ゚チル化
䜓ず觊媒及び第䞀玚アミンを仕蟌んだ埌、氎玠ガ
スを導入し、所定枩床にお反応を行぀おもよい
し、たた、予め觊媒ず第䞀玚アミン及び必芁に応
じ反応䞍掻性な溶媒を加え、所定枩床、所定氎玠
圧䞋にお原料シアノ゚チル化䜓を定量ポンプで䟛
絊しながら反応を実斜するこずも可胜である。 本発の反応方法は、加圧反応噚を甚い氎玠ガス
雰囲気のもず、攬拌しながら反応を行う所謂懞濁
觊媒系で通垞実斜されるが、固定床反応方匏で行
぀おも第䞀玚アミノ基含有脂肪族アミンの添加に
よる反応に及がす奜たしい効果は同様にあらわ
れ、反応方匏は特に限定されるものでない。 本発明の方法により埗られた反応液は、觊媒を
分離陀去した埌、副生した少量の䜎沞点アミン類
ず、添加した該脂肪族アミンが蒞留により陀去さ
れる。生成ポリアミンの甚途によ぀おは、そのた
たポリアミン混合物ずしお補品化しおもよいし、
たた、モノシアノ゚チル化䜓の氎添生成物に盞圓
するテトラミン、ゞシアノ゚チル化䜓の氎添生成
物に盞圓するペンタミントリシアノ゚チル化䜓
の氎添生成物に盞圓するヘキサミン、曎には、副
反応により生成するヘプタミン等の各留分に粟留
し補品化しおもよい。前者のポリアミン混合物ず
しお補品化した堎合でも、本発明の方法から埗ら
れた反応液は、わずかに黄色に着色した極めおき
れいな生成液であるため、その商品䟡倀は倧ずい
える。 以䞊述べたように、−−アミノ゚チル
ピペラゞンのシアノ゚チル化䜓の劂き分子内に
個のアミノ基を有するシアノ゚チル化䜓原料を氎
玠化し、比范的分子量の倧きいポリアルキレンポ
リアミンを補造する方法においお、本発明の反応
方法を適甚するこずにより、既知技術にみられた
激しい觊媒被毒重質化アミン類・プロピルアミン
副生量の顕著な増加等の欠点を倧幅に改善しうる
に至぀た。たた、本発明の反応方法は、觊媒の再
䜿甚によるコスト䜎枛の道を拓くずずもに、目的
ずする有甚なポリアミン収率の向䞊を可胜にし、
曎には、氎玠圧等反応条件の枩和化を実珟し、蚭
備・操䜜面でも極めお有利な工業プロセスの確立
を達成せしめた。 以䞋、実斜䟋により曎に本発明を説明するが、
本発明はこれによ぀お特に限定されるものではな
い。 実斜䟋〜 300mlのステンレス補電磁攬拌匏オヌトクレヌ
プに衚に瀺される−−アミノ゚チルピ
ペラゞン−AEPのシアノ゚チル化䜓150
ず゚チレンゞアミン30ラネヌニツケル7.5
ドラむベヌスを仕蟌み、気盞郚を氎玠ガスで
眮換した。所定の反応枩床たで加熱し、氎玠ガス
を加圧反応圧30Kgcm2にお反応を行぀た。反応枩
床は原料である−AEPのシアノ化䜓の皮類に
応じお衚に瀺される枩床にお氎玠化反応を実斜
した。氎玠ガスの吞収が停止した埌、同枩床にお
曎に20分間反応を持続した。反応液を冷华埌、觊
媒を過陀去し、埗られたわずかに黄色に着色し
お液をガスクロマトグラフにより定量分析した。
たた、分子量400以䞊の重質化アミンは、高速液
䜓クロマトグラフにより定量分析した。その結果
を衚に瀺す。
[Formula] (Y= -CH 2 CH 2 CN or -H) In other words, N-(2-aminoethyl)-N'- which is obtained by adding an equimolar amount of acrylonitrile to N-AEP
(2-cyanoethyl)piperazine or N-
[N″-(2-cyanoethyl)aminoethyl] monocyanoethylated piperazine, N-[N″- with double mole of acrylonitrile added to N-AEP
(2-cyanoethyl)aminoethyl]-N'-(2-
Cyanoethyl)piperazine or dicyanoethylated N-[N″-bis(2-cyanoethyl)aminoethyl]piperazine, N-[N″-{bis(2-cyanoethyl) prepared by adding 3 times the mole of acrylonitrile to N-AEP )}aminoethyl]-N′-(2
-cyanoethyl)piperazine tricyanoethylated product, etc. are exemplified as raw materials. The monocyanoethylated product, dicyanoethylated product, or tricyanoethylated product shown above may be used as a raw material alone, or depending on the use of the polyamine product, the monocyanoethylated product, the dicyanoethylated product, or the tricyanoethylated product may be used as a raw material. , tricyanoethylated products, and the like may be mixed and used in any desired composition. As the hydrogenation catalyst used in the present invention, metal catalysts widely used in general catalytic reduction reactions can be used, including nickel, copper, platinum, ruthenium,
Palladium, rhodium, iridium, etc. are useful. These metals can also be used in the form of supported metal catalysts supported on carriers such as diatomaceous earth, alumina, activated clay, and activated carbon. Among them, nickel-based catalysts are most suitable as catalysts for the reaction of the present invention in terms of catalyst activity and economy. As the nickel-based catalyst, used are Raney nickel, stabilized nickel supported on diatomaceous earth, and nickel supported on diatomaceous earth whose main component is nickel to which other metals such as copper, chromium, iron, and zinc are added. As exemplified above, products whose main component is nickel as a metal component and to which a different metal other than nickel is added; Metals supported on various carriers together with nickel can be used as catalysts, and the types of different metals to be added are not particularly limited. The amount of the catalyst to be used is not particularly limited, and is selected in consideration of the productivity related to the reaction rate, the influence on the polyamine yield, etc., and is not particularly limited. Generally, it is added in an amount of 1 to 20% by weight based on the cyanoethylated raw material. If the amount of catalyst added is less than 1% by weight, the reaction rate becomes slow, which is not preferable in terms of productivity. If the amount added is 20% by weight or more, it will not have a favorable effect on the reaction rate or the desired polyamine yield, and will simply increase the burden of separation operations due to an increase in the amount of catalyst, and will not be particularly advantageous. The catalyst used in the reaction method of the present invention still maintains high activity even after being used in the reaction, so it is usually separated and recovered from the reaction solution by filtration or decantation, and is repeated from the second time onwards. It can be used in reactions such as this, greatly contributing to reducing the cost of catalyst use, and bringing great economic benefits. The aliphatic amine having a primary amino group used in the present invention is R-NH 2 (R is 1 to 1 carbon atoms).
8 alkyl group), NH2 -R'(-NH-R'')- nNH2 (n=0,1,
2; R′ and R″ are diamines or polyalkylene polyamines represented by alkylene groups having 2 to 6 carbon atoms; polyalkylene polyamines also include compounds containing a cyclic piperazine ring in the molecule. To give specific examples of representative compounds, examples of alkylamines include methylamine, ethylamine,
Examples include propylamine, butylamine, cyclohexylamine, 2-ethylhexylamine, and the like. Examples of diamines include ethylenediamine, propanediamine, butanediamine, hexamethylenediamine, and cyclohexyldiamine. Examples of polyalkylene polyamines include diethylenetriamine, N-(2-aminoethyl)piperazine, triethylenetetramine, dipropylenetriamine, tripropylenetetramine, N-
(3-aminopropyl)ethylenediamine and the like. Alkylamines have the effect of suppressing the elimination reaction of cyanoethyl groups or aminopropyl groups from raw materials or products, as well as suppressing catalyst poisoning, but when low-boiling point amines such as methylamine or ethylamine are used, , it is preferable to use a primary alkylamine having a boiling point of 60° C. or higher, since this involves a slight increase in the operational burden of recovery from the reaction solution. Furthermore, propylamine and molecular weight
Ethylenediamine is an additive amine with excellent practicality that suppresses the formation of undesirable by-products such as heavy amines of 400 or more, and can produce the desired useful polyamine in high yield under relatively low reaction pressure. Propanediamine, diethylenetriamine,
Examples include diamines or polyalkylene polyamines such as dipropylene triamine, N-(2-aminoethyl)piperazine, and N-aminoethylpropanediamine. These relatively low molecular weight diamines or polyalkylene polyamines not only significantly suppress poisoning of the catalyst and provide a reaction solution consisting of high quality polyamine with extremely little coloring, but also
It is most preferably used because it is extremely easy to separate and recover aliphatic amines from the reaction solution by distillation and has excellent industrial operability. The reaction is carried out by adding usually 1 to 50% by weight of the raw material of these aliphatic amines to the cyanoethylated product. If the amount added is less than 1% by weight, the effect of suppressing the amount of by-products of low-boiling amines will be small, and the catalyst activity will be lowered due to poisoning. Adding more than 50% by weight does not provide any further excellent effects in terms of reaction, and only increases the burden of recovering the large excess of fatty amine added to the reaction system from the reaction solution, which is not particularly advantageous. . If it is an aliphatic amine having a primary amino group, it will bring many excellent effects in terms of reaction and operation, and there are no particular limitations on the type of aliphatic amine to be added or the amount added. It is preferable to select the type and amount of the aliphatic amine as appropriate depending on the intended use of the produced polyaminone since it has some influence on the quality and molecular weight distribution of the aliphatic amine. For example, when alkylene diamine is added and the reaction is carried out, in addition to the polyamine corresponding to the cyanoethylated product,
A polyamine having one more amino group in the molecule is produced. Polyalkylene polyamines with relatively high molecular weight, such as tetraethylene pentamine and pentaethylene hexamine, which are generally produced industrially, are a mixture of polyamines with different chemical structures, and are extremely useful amine materials in many industrial fields. It is often used as. Taking these practical aspects into consideration, the reaction method of the present invention provides an extremely industrially superior method for producing polyamines that can flexibly produce polyamine mixtures with various functionalities by selecting and adding the type of aliphatic amine. It has advantages that can be provided. The reaction of the present invention is carried out under hydrogen gas pressure,
Although the pressure range is not particularly limited, it can usually be carried out under a pressure of 1 to 300 kg/cm 2 .
More preferably, it is carried out under a pressure of 5 to 50 kg/cm 2 . Generally, in the hydrogenation reaction of nitrile groups,
It is known that hydrogen pressure has a large effect on the desired amine yield, and a relatively high hydrogen pressure of 70 Kg/cm 2 or more is often applied. However, when an aliphatic amine having a primary amino group is added to the reaction system as in the present invention, the desired polyamine can be obtained in high yield even when the reaction is carried out under relatively low hydrogen pressure of 5 to 50 kg/ cm2 . It was found that it could be manufactured at a high rate. That is, the addition of the aliphatic amine enables the reaction under low hydrogen pressure, which is extremely advantageous in terms of equipment such as reactors and compressors. The decrease in hydrogen pressure can be compensated for by extending the reaction time, but considering productivity from a practical standpoint, hydrogen pressure of 5
Usually carried out at Kg/cm 2 or more. The upper limit of the hydrogen pressure is also not particularly limited. Since the selection of hydrogen pressure has an important influence on the reaction rate, it is preferable to set it appropriately taking into consideration the heat removal accompanying the exothermic reaction. Reaction temperature also has an important effect on reaction rate and polyamine yield. The reaction of the present invention is usually carried out at 80 to 190°C.
Preferably it is carried out at 100-170°C. Below 80°C, the reaction rate is slow and impractical. At temperatures above 190°C, the polyamine produced will decompose, and the amount of by-products of low-boiling amines will rapidly increase, and the amount of heavy amines with a molecular weight of 350 or more will increase, leading to a decrease in the desired polyamine yield. During the hydrogenation reaction, an inactive organic solvent or diluent may be added to the nitrile or amine to carry out the reaction, but this is not particularly advantageous as it reduces the efficiency of reactor usage due to an increase in the amount of reaction liquid. . The method of supplying raw materials to the reactor is not particularly limited. After first charging the raw material cyanoethylated product, catalyst and primary amine into the reactor, hydrogen gas may be introduced and the reaction may be carried out at a predetermined temperature, or the catalyst, primary amine and necessary It is also possible to carry out the reaction by adding a reaction-inert solvent depending on the reaction conditions and supplying the raw material cyanoethylated product with a metering pump at a predetermined temperature and under a predetermined hydrogen pressure. The reaction method of the present invention is usually carried out using a so-called suspended catalyst system in which the reaction is carried out under a hydrogen gas atmosphere using a pressurized reactor while stirring, but even if it is carried out in a fixed bed reaction method, the reaction is first class. The addition of the amino group-containing aliphatic amine has a similar favorable effect on the reaction, and the reaction method is not particularly limited. After the catalyst is separated and removed from the reaction solution obtained by the method of the present invention, a small amount of by-produced low-boiling amines and the added aliphatic amine are removed by distillation. Depending on the use of the produced polyamine, it may be commercialized as a polyamine mixture as it is, or
In addition, tetramine corresponding to the hydrogenation product of the monocyanoethylated product, pentamine corresponding to the hydrogenation product of the dicyanoethylated product, hexamine corresponding to the hydrogenation product of the tricyanoethylated product, and furthermore, by a side reaction, The resulting heptamine and other fractions may be rectified into products. Even when the former is commercialized as a polyamine mixture, the reaction liquid obtained by the method of the present invention is a very clean product liquid with a slight yellow color, so its commercial value can be said to be high. As mentioned above, N-(2-aminoethyl)
3 in a molecule such as a cyanoethylated form of piperazine.
By applying the reaction method of the present invention to a method for producing a polyalkylene polyamine having a relatively large molecular weight by hydrogenating a cyanoethylated raw material having 2 amino groups, it is possible to eliminate the severe catalyst poisoning and heavy deterioration seen in known techniques. It has now been possible to significantly improve the drawbacks such as a significant increase in the amount of modified amines and propylamine by-products. In addition, the reaction method of the present invention opens the way to cost reduction by reusing the catalyst, and also makes it possible to improve the yield of the desired useful polyamine.
Furthermore, we have achieved milder reaction conditions such as hydrogen pressure, and achieved the establishment of an industrial process that is extremely advantageous in terms of equipment and operation. The present invention will be further explained below with reference to Examples.
The present invention is not particularly limited thereby. Examples 1 to 3 150 g of cyanoethylated N-(2-aminoethyl)piperazine (N-AEP) shown in Table 1 was placed in a 300 ml stainless steel electromagnetic stirring autoclave.
and ethylenediamine 30g, Raney nickel 7.5g
(dry base) was charged, and the gas phase was replaced with hydrogen gas. The reaction was carried out by heating to a predetermined reaction temperature and pressurizing hydrogen gas at a reaction pressure of 30 kg/cm 2 . The hydrogenation reaction was carried out at the reaction temperature shown in Table 1 depending on the type of cyanated product of N-AEP as a raw material. After the absorption of hydrogen gas stopped, the reaction was continued for an additional 20 minutes at the same temperature. After the reaction solution was cooled, the catalyst was removed, and the resulting slightly yellow colored solution was quantitatively analyzed by gas chromatography.
In addition, heavy amines with a molecular weight of 400 or more were quantitatively analyzed using high performance liquid chromatography. The results are shown in Table 1.

【衚】 実斜䟋  実斜䟋ず同䞀の反応噚に、−AEPのゞシ
アノ゚チル化䜓150、−プロパンゞアミ
ン20、ラネヌニツケルドラむベヌスを
仕蟌み気盞郚を氎玠ガスで眮換し、曎に加圧し
た。反応枩床を135〜140℃の範囲にコントロヌル
し、反応圧25Kgcm2にお氎玠化反応を行぀た。反
応開始埌時間で氎玠吞収が完了したため、140
℃で曎に20分間持続した。反応液を冷华埌、觊媒
を別し、黄色に着色した反応液をガスクロマト
グラフにお定量分析した。重質化アミンの定量分
析は高速液䜓クロマトグラフにより行぀た。 䞊蚘反応液より分離回収したラネヌニツケルを
そのたた繰り返し回同䞀反応条件にお反応に䜿
甚した。第回目ず第回目の反応結果を衚に
瀺した。
[Table] Example 4 Into the same reactor as in Example 1, 150 g of dicyanoethylated N-AEP, 20 g of 1,3-propanediamine, and 6 g of Raney nickel (dry base) were charged, and the gas phase was replaced with hydrogen gas. Then, further pressure was applied. The reaction temperature was controlled within the range of 135 to 140°C, and the hydrogenation reaction was carried out at a reaction pressure of 25 kg/cm 2 . Hydrogen absorption was completed within 1 hour after the start of the reaction, so 140
It was continued for an additional 20 minutes at °C. After cooling the reaction solution, the catalyst was separated, and the yellow colored reaction solution was quantitatively analyzed using a gas chromatograph. Quantitative analysis of heavy amines was performed using high performance liquid chromatography. The Raney nickel separated and recovered from the above reaction solution was used in the reaction repeatedly three times under the same reaction conditions. Table 2 shows the reaction results of the first and third reactions.

【衚】 実斜䟋  実斜䟋ず同䞀の反応噚にゞオキサン50、ラ
ネヌニツケル7.5ドラむベヌスず゚チレン
ゞアミン7.5を仕蟌み気盞郚を氎玠ガスで眮換
し、曎に加圧した。反応枩床135℃、反応圧35
Kgcm2の条件䞋にお原料である−AEPのゞシ
アノ゚チル化䜓150を定量ポンプにお時間で
䟛絊した。䟛絊埌、曎に時間同䞀条件䞋で反応
を行぀た埌、冷华し、觊媒を別した。わずかに
黄色に着色した反応液を実斜䟋ず同じ分析法に
お組成分析を行぀た。その結果、プロピルアミン
1.0トリアミン0.3テトラミン9.4ペン
タミン122.1ヘキサミン11.2重質アミン
10.0が埗られた。 実斜䟋  実斜䟋ず同䞀の反応噚に−AEPのゞシア
ノ゚チル化䜓150゚チレンゞアミン15ケ
む゜り土担持65ニツケル還元安定型ニツケ
ルを仕蟌み気盞郚を氎玠ガスで眮換し、曎
に加圧した。反応枩床135℃反応圧31Kgcm2で
氎玠化反応を行぀た。反応開始埌1.3時間で氎玠
吞収が完了し、曎に同䞀条件で10分間持続した。
反応液を冷华埌、觊媒を別した。わずかに黄色
に着色した反応液を実斜䟋ず同䞀分析法にお組
成分析を行぀た。その結果、プロピルアミン0.8
トリアミンテトラミン7.9ペンタ
ミン119.3ヘキサミン16.3重質アミン10.6
が埗られた。 実斜䟋  実斜䟋ず同䞀の反応噚に−AEPのゞシア
ノ゚チル化䜓150耐硫黄性ニツケル觊媒
Ni45〜47Cr2〜Cu3〜ケむ゜
り土27〜29黒鉛〜Niの圢NiNiO
7.5、実斜䟋ではゞ゚チレントリアミン15、
実斜䟋では−−アミノ゚チルピペラゞ
ン15を倫々仕蟌み、気盞郚を氎玠ガスで眮換し
曎に加圧した。反応枩床140℃、反応圧28Kgcm2
で氎玠化反応を行぀た。反応開始埌1.2時間で氎
玠吞収が完了した埌、曎に15分間同䞀条件で持続
した。反応液を冷华埌、觊媒を別し、わずかに
黄色に着色した液を実斜䟋ず同䞀分析法にお組
成分析した。その結果、実斜䟋ではプロピルア
ミン0.7テトラミン8.5ペンタミン121.3
ヘキサミン0.2ヘプタミン6.8重質ア
ミン17.2が埗られた。たた、実斜䟋ではプロ
ピルアミン0.7テトラミン8.3ペンタミン
119.8ヘキサミン0.3ヘプタミン7.2重
質アミノ18.2が埗られた。 実斜䟋  実斜䟋ず同䞀の反応噚に−AEPのゞシア
ノ゚チル化䜓150モノ゚チルアミン15ラ
ネヌニツケルを仕蟌み気盞郚を氎玠ガス眮換
し、曎に氎玠を加圧した。反応枩床135℃、反応
圧35Kgcm2にお氎玠化反応を行぀た。反応開始埌
1.4時間で氎玠吞収が完了し、曎に同䞀条件で10
分間持続した。反応液を冷华埌、觊媒を別し、
埗られた反応液を実斜䟋ず同䞀の分析法にお組
成分析を行぀た。その結果、プロピルアミン1.2
トリアミンテトラミン14.8ペンタ
ミン123.3、ヘキサミン0.4、重量アミン12.0
が埗られた。 比范䟋  実斜䟋ず同䞀の反応噚に−AEPのゞシア
ノ゚チル化䜓150ラネヌニツケル7.5ドラ
むベヌスを仕蟌み気盞を氎玠ガスで眮換し曎に
氎玠ガスを加圧した。反応枩床140℃、反応圧30
Kgcm2にお氎玠化反応を行぀た。反応開始埌時
間で氎玠吞収が完了した。その埌曎に同枩床で30
分間反応を持続した。反応液を冷华し觊媒を別
し、耐色に着色した反応液を実斜䟋ず同䞀の分
析方法にお定量分析した。その結果、プロピルア
ミン17.9トリアミン3.1テトラミン22.7
ペンタミン84.3重質アミン21.0が埗ら
れた。 䞊蚘反応により分離回収した觊媒を同䞀反応条
件にお繰り返し第回目の反応に䜿甚したが、氎
玠吞収は党く認められなか぀た。 比范䟋  実斜䟋ず同䞀の反応噚に−AEPのゞシア
ノ゚チル化䜓150ラネヌニツケル7.5ドラ
むベヌスを仕蟌み気盞を氎玠ガスで眮換した。
液䜓アンモニア15.0を詊料導入管に採取し、氎
玠ガスにお加圧し反応噚ぞ導入した。反応枩床
140℃反応圧35Kgcm2にお氎玠化反応を行぀た。
反応開始埌時間40分で氎玠ガス吞収が完了し
た。その埌曎に同枩床で30分間反応を持続した。
反応液を冷华し、内圧を開攟し、アンモニアをパ
ヌゞした。黄耐色に着色した反応液を実斜䟋ず
同䞀の分析方法にお生成物を定量した。その結
果、プロピルアミン6.4トリアミン1.0テ
トラミン22.0ペンタミン107.3ヘキサミ
ン1.5重質アミン16.3が埗られた。 比范䟋  実斜䟋ず同䞀の反応噚に−AEPのゞシア
ノ゚チル化䜓150ラネヌニツケル7.5ドラ
むベヌスを仕蟌み気盞を氎玠ガスで眮換した。
液䜓アンモニアを5.0詊料導入管に採取し、氎
玠ガスにお加圧し反応噚ぞ導入した。反応枩床
140℃、反応圧35Kgcm2にお氎玠化反応を行぀た
ずころ、理論量の60氎玠を吞収したずころで反
応は停止しおした぀た。
[Table] Example 5 In the same reactor as in Example 1, 50 g of dioxane, 7.5 g of Raney nickel (dry base) and 7.5 g of ethylenediamine were charged, the gas phase was replaced with hydrogen gas, and the pressure was further increased. Reaction temperature 135℃, reaction pressure 35
Under conditions of Kg/cm 2 , 150 g of dicyanoethylated N-AEP as a raw material was supplied using a metering pump over 2 hours. After the supply, the reaction was further carried out under the same conditions for 1 hour, then cooled and the catalyst was separated. The composition of the slightly yellow colored reaction solution was analyzed using the same analytical method as in Example 1. As a result, propylamine
1.0g, triamine 0.3g, tetramine 9.4g, pentamine 122.1g, hexamine 11.2g, heavy amine
10.0g was obtained. Example 6 In the same reactor as in Example 1, 150 g of dicyanoethylated N-AEP, 15 g of ethylenediamine, and 6 g of 65% nickel supported on diatomaceous earth (reduction stable nickel) were charged, and the gas phase was replaced with hydrogen gas. Further pressure was applied. The hydrogenation reaction was carried out at a reaction temperature of 135°C and a reaction pressure of 31 kg/cm 2 . Hydrogen absorption was completed 1.3 hours after the start of the reaction, and continued for an additional 10 minutes under the same conditions.
After cooling the reaction solution, the catalyst was separated. The composition of the slightly yellow colored reaction solution was analyzed using the same analytical method as in Example 1. As a result, propylamine 0.8
g, triamine 0g, tetramine 7.9g, pentamine 119.3g, hexamine 16.3g, heavy amine 10.6
g was obtained. Examples 7 and 8 In the same reactor as in Example 1, 150 g of dicyanoethylated N-AEP was added, and a sulfur-resistant nickel catalyst (Ni45-47%, Cr2-3%, Cu3-4%, diatomaceous earth 27-29 %, graphite 4-5%, Ni form Ni+NiO)
7.5 g, in Example 7 15 g of diethylenetriamine,
In Example 8, 15 g of N-(2-aminoethyl)piperazine was charged in each case, and the gas phase was replaced with hydrogen gas and further pressurized. Reaction temperature 140℃, reaction pressure 28Kg/cm 2
A hydrogenation reaction was carried out. After hydrogen absorption was completed 1.2 hours after the start of the reaction, the same conditions were maintained for an additional 15 minutes. After cooling the reaction solution, the catalyst was separated, and the composition of the slightly yellow colored solution was analyzed using the same analysis method as in Example 1. As a result, in Example 7, 0.7 g of propylamine, 8.5 g of tetramine, 121.3 g of pentamine
g, hexamine 0.2 g, heptamine 6.8 g, and heavy amine 17.2 g were obtained. In addition, in Example 8, 0.7 g of propylamine, 8.3 g of tetramine, and pentamine
119.8 g, hexamine 0.3 g, heptamine 7.2 g, and heavy amino 18.2 g were obtained. Example 9 In the same reactor as in Example 1, 150 g of dicyanoethylated N-AEP, 15 g of monoethylamine, and 6 g of Raney nickel were charged, the gas phase was replaced with hydrogen gas, and hydrogen was further pressurized. The hydrogenation reaction was carried out at a reaction temperature of 135° C. and a reaction pressure of 35 Kg/cm 2 . After starting the reaction
Hydrogen absorption was completed in 1.4 hours, and further 10 hours under the same conditions.
Lasted for minutes. After cooling the reaction solution, separate the catalyst,
The composition of the obtained reaction solution was analyzed using the same analytical method as in Example 1. As a result, propylamine 1.2
g, triamine 0g, tetramine 14.8g, pentamine 123.3g, hexamine 0.4g, weight amine 12.0
g was obtained. Comparative Example 1 In the same reactor as in Example 1, 150 g of dicyanoethylated N-AEP and 7.5 g of Raney nickel (dry base) were charged, the gas phase was replaced with hydrogen gas, and the hydrogen gas was further pressurized. Reaction temperature 140℃, reaction pressure 30
The hydrogenation reaction was carried out at Kg/cm 2 . Hydrogen absorption was completed 7 hours after the start of the reaction. Then further at the same temperature for 30
The reaction lasted for minutes. The reaction solution was cooled, the catalyst was separated, and the brown colored reaction solution was quantitatively analyzed using the same analysis method as in Example 1. As a result, propylamine 17.9g, triamine 3.1g, tetramine 22.7
g, pentamine 84.3 g, and heavy amine 21.0 g were obtained. The catalyst separated and recovered in the above reaction was repeatedly used in a second reaction under the same reaction conditions, but no hydrogen absorption was observed. Comparative Example 2 In the same reactor as in Example 1, 150 g of dicyanoethylated N-AEP and 7.5 g of Raney nickel (dry base) were charged, and the gas phase was replaced with hydrogen gas.
15.0 g of liquid ammonia was collected into a sample introduction tube, pressurized with hydrogen gas, and introduced into the reactor. reaction temperature
The hydrogenation reaction was carried out at 140°C and a reaction pressure of 35 kg/cm 2 .
Hydrogen gas absorption was completed 3 hours and 40 minutes after the start of the reaction. Thereafter, the reaction was continued for an additional 30 minutes at the same temperature.
The reaction solution was cooled, the internal pressure was released, and ammonia was purged. The product was quantified using the same analytical method as in Example 1 for the yellowish brown colored reaction solution. As a result, 6.4 g of propylamine, 1.0 g of triamine, 22.0 g of tetramine, 107.3 g of pentamine, 1.5 g of hexamine, and 16.3 g of heavy amine were obtained. Comparative Example 3 In the same reactor as in Example 1, 150 g of dicyanoethylated N-AEP and 7.5 g of Raney nickel (dry base) were charged, and the gas phase was replaced with hydrogen gas.
5.0 g of liquid ammonia was collected in a sample introduction tube, pressurized with hydrogen gas, and introduced into the reactor. reaction temperature
When the hydrogenation reaction was carried out at 140°C and a reaction pressure of 35 kg/cm 2 , the reaction stopped when 60% of the theoretical amount of hydrogen was absorbed.

Claims (1)

【特蚱請求の範囲】  −−アミノ゚チルピペラゞンにアク
リロニトリルを付加させた䞋蚘化孊構造匏で瀺さ
れるシアノ゚チル化䜓を、氎玠ガス
【匏】 −CH2CH2CNたたは−雰囲気、氎玠化觊媒
存圚のもずで接觊還元反応を行うたにあたり、第
䞀玚アミノ基を有する脂肪族アミンを添加するこ
ずを特城ずするポリアミンの補造方法。  氎玠化觊媒がラネヌニツケルたたはケむ゜り
土担持ニツケルである特蚱請求の範囲第項蚘茉
の補造方法。
[Claims] A cyanoethylated product represented by the chemical structural formula below, which is obtained by adding acrylonitrile to 1 N-(2-aminoethyl)piperazine, is treated with hydrogen gas [Formula] (Y= -CH 2 CH 2 CN or - H) A method for producing a polyamine, which comprises adding an aliphatic amine having a primary amino group during the catalytic reduction reaction in an atmosphere and in the presence of a hydrogenation catalyst. 2. The manufacturing method according to claim 1, wherein the hydrogenation catalyst is Raney nickel or diatomaceous earth supported nickel.
JP58140571A 1983-08-02 1983-08-02 Preparation of polyamine Granted JPS6032780A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58140571A JPS6032780A (en) 1983-08-02 1983-08-02 Preparation of polyamine
EP84109137A EP0135725B1 (en) 1983-08-02 1984-08-01 Process for producing polyamines
DE8484109137T DE3476995D1 (en) 1983-08-02 1984-08-01 Process for producing polyamines
US07/140,861 US4845297A (en) 1983-08-02 1987-12-30 Process for producing polyamines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58140571A JPS6032780A (en) 1983-08-02 1983-08-02 Preparation of polyamine

Publications (2)

Publication Number Publication Date
JPS6032780A JPS6032780A (en) 1985-02-19
JPH0314310B2 true JPH0314310B2 (en) 1991-02-26

Family

ID=15271778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58140571A Granted JPS6032780A (en) 1983-08-02 1983-08-02 Preparation of polyamine

Country Status (1)

Country Link
JP (1) JPS6032780A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180094137A (en) 2009-05-05 2018-08-22 알닐람 파마슈티칌슀 읞윔포레읎티드 Lipid compositions

Also Published As

Publication number Publication date
JPS6032780A (en) 1985-02-19

Similar Documents

Publication Publication Date Title
CN109689614B (en) In the presence of a catalyst supported on ZrO 2 Method for hydrogenating nitriles in the presence of ruthenium catalysts
JPH0347156A (en) Reductive amination of carbonitrile and analogous compound
US5689003A (en) Ruthenium hydrogenation catalysts
JPS6233211B2 (en)
EP0618895B1 (en) Process for the preparation of an aminonitrile by partial hydrogenation of a nitrile compound with two or more nitrile groups
CA1078872A (en) Hydrogenation of terephthalonitrile
CN1089751C (en) Process for preparing aliphatic 'alpha' 'omega' -aminonitriles
JP4142861B2 (en) Cyanoethylation of cycloaliphatic primary vicinal diamines
US4845297A (en) Process for producing polyamines
US3998881A (en) Hydrogenation of phthalonitriles using rhodium catalyst
US2166151A (en) Catalytic hydrogenation of adiponitriles to produce hexamethylene diamines
JPH0314310B2 (en)
JPH04221325A (en) Cyanobutylation of amines using 2-pentene- nitrile
US6114277A (en) Process for preparing cyano group-containing aromatic methylamines
US4717774A (en) Process for the preparation of toluene diamines
JPH0326182B2 (en)
CN100352799C (en) Process for the preparation of tertiary amines from primary amines and nitriles
JPH04295448A (en) Method of continuously manufacturing tertiary aliphatic methylamine
CA2250770C (en) Process for preparing cyano group-containing aromatic methylamines
JP2511505B2 (en) Process for producing p-phenylenediamines
JPS62187437A (en) Production of polyethylenepolyamine
JPS6210047A (en) Production of tertiary amine
JP4210795B2 (en) 2-Imidazoline production method
KR860002165B1 (en) The process for preparing of amino benzylamine
JP3930207B2 (en) Method for producing norbornanedimethyleneamines