JPS6032753A - Production of beta-phenylserine compound - Google Patents

Production of beta-phenylserine compound

Info

Publication number
JPS6032753A
JPS6032753A JP58139455A JP13945583A JPS6032753A JP S6032753 A JPS6032753 A JP S6032753A JP 58139455 A JP58139455 A JP 58139455A JP 13945583 A JP13945583 A JP 13945583A JP S6032753 A JPS6032753 A JP S6032753A
Authority
JP
Japan
Prior art keywords
benzaldehyde
compound
reaction
phenylserine
glycine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58139455A
Other languages
Japanese (ja)
Other versions
JPH0212464B2 (en
Inventor
Ryuichi Mita
三田 隆一
Toshio Kato
敏雄 加藤
Chojiro Higuchi
長二郎 樋口
Teruhiro Yamaguchi
彰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP58139455A priority Critical patent/JPS6032753A/en
Priority to CA000459603A priority patent/CA1228075A/en
Priority to AU31237/84A priority patent/AU569099B2/en
Priority to US06/636,289 priority patent/US4605759A/en
Priority to GB08419442A priority patent/GB2146020B/en
Priority to MX202211A priority patent/MX157830A/en
Priority to NL8402400A priority patent/NL191706C/en
Priority to IT22145/84A priority patent/IT1180208B/en
Priority to KR1019840004586A priority patent/KR870000738B1/en
Priority to FR8412222A priority patent/FR2550190B1/en
Priority to DE19843428442 priority patent/DE3428442A1/en
Priority to CH3718/84A priority patent/CH660184A5/en
Publication of JPS6032753A publication Critical patent/JPS6032753A/en
Publication of JPH0212464B2 publication Critical patent/JPH0212464B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound, by reacting glycine with benzaldehyde in a mixed solvent of water and a hydrophobic organic solvent in the presence of an alkali, treating the reaction mixture with an acid to separate the titled compound in almost pure form the aqueous layer in high yield, and recycling the organic solvent layer containing benzaldehyde. CONSTITUTION:Glycine is made to react with a benzaldehyde compound in a mixed solvent composed of (A) water and (B) a hydrophobic organic solvent capable of dissolving the benzaldehyde compound and inert to the reaction (e.g. hydrocarbon, alcohol, ether, etc.) in the presence of an alkali, optionally using 0.01-2.0g, based on 100g of glycine, of a phase-transfer catalyst to obtain a salt of N-benzylidene-beta-phenylserine compound. The reaction mixture is added with a mineral acid to dissolve the produced beta-phenyl-serine compound as a mineral acid salt in the aqueous layer and the by-produced benzaldehyde compound in the organic solvent layer. Both layers are separated from each other, and the aqueous layer is neutralized to obtain the objective compound.

Description

【発明の詳細な説明】 本発明はβ−フェニルセリン類の改良された製造法に関
する。本発明のβ−フェニルセリン類はそれ自身α−ア
ミノ酸の一種であり、生理活性物質として有用であるば
かシでなく、β−フェニルアラニン誘導体製造時の中間
体としても有用な化合物である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for producing β-phenylserines. The β-phenylserines of the present invention are themselves a type of α-amino acid, and are not only useful as physiologically active substances, but also compounds useful as intermediates in the production of β-phenylalanine derivatives.

従来、β−フェニルセリン類の製造法としては1)グリ
シンの銅錯体とペンズア?レデヒド類とを反応させて製
造する方法(例えば、西ドイツ特許960、722号)
がある。しかしながら、この方法は銅塩を使用するとい
うことで産業上、公害面で問題であり、廃水処理が面倒
になるだけでなく、一般に収率も低いなどの欠点を有す
る製造法である。
Conventionally, the methods for producing β-phenylserine are 1) copper complex of glycine and penzua? A method of producing by reacting redehydes (for example, West German Patent No. 960, 722)
There is. However, this method uses copper salts, which poses problems in terms of industrial pollution, makes wastewater treatment troublesome, and is generally a production method that has drawbacks such as low yields.

また、2)グリシンとベンズアルデヒド類とをプルカリ
存在下に反応させた後、酸処理して、β−フェニルセリ
ン類を製造する方法も、よく知られた製造法の一つでち
る。例えば、KerIneth N、F、Sha−w 
and 5idney W、Fox 、 Journa
l of AmerIca−n Chemical 5
ociety 、 75 、3419(1953)によ
れば、グリノンとベンズアルデヒドとを水酸化大トリウ
ムの存在下に水中で反応させた後、塩酸で処理してβ−
フェニルセリンを70%の収率で得ている。しかしなが
ら、この方法は前記文献中にも記載されているようピグ
リシンとべ/ズアルデヒドの反応生成物であるN−ベン
ジリデン−β−フェニルセリンのナトリウム塩の析出が
一時に生じ、反応混合物が全体的に固化してしまい、そ
の為機械的攪拌ができなくなるという大きな問題がある
。また、この反応は反応機構的には反応式(1)に示す
ように先ず1モルのグリシンに1モルのベンズアルデヒ
ドが縮合しN−ペンジリデングリシンが生成シフ、この
ものにさらに1モルのベンズアルデヒドが付加してN−
ベンジリデン−β−フェニルセリンが生成する。このト
I−ベノジリデンーβ−フェニルセリンを酸処理するこ
とによって目的のβ−フェニルセリンが生成するもので
ある。
In addition, 2) a method of reacting glycine and benzaldehydes in the presence of Phulkali and then treating with acid to produce β-phenylserine is also one of the well-known production methods. For example, KerIneth N, F, Sha-w
and 5idney W, Fox, Journa
l of AmerIcan Chemical 5
Society, 75, 3419 (1953), glinone and benzaldehyde are reacted in water in the presence of thorium hydroxide, and then treated with hydrochloric acid to form β-
Phenylserine is obtained with a yield of 70%. However, as described in the above-mentioned literature, in this method, the sodium salt of N-benzylidene-β-phenylserine, which is a reaction product of piglycine and benzaldehyde, is precipitated at once, and the reaction mixture as a whole is A major problem is that it solidifies, making mechanical stirring impossible. In addition, in terms of reaction mechanism, as shown in reaction formula (1), 1 mol of benzaldehyde is first condensed with 1 mol of glycine to form N-penzylidene glycine, which is then further condensed with 1 mol of benzaldehyde. Add N-
Benzylidene-β-phenylserine is produced. The desired β-phenylserine is produced by acid-treating this I-benozylidene-β-phenylserine.

従って、反応にはグリシン1モルに対して2モルのベン
ズアルデヒドが必要であり、このうち1モルは中間生成
物のN−ベンジリデン−β−フェニルセリンを酸処理す
る過程で再びベンズアルデヒドとして再生されるが、従
来の方法ではこの再生されたベンズアルデヒドを生成物
のlターフェニルセリンと分離するために、β−フェニ
ルセリンの結晶をアルコールで洗浄することによって付
着ベンズアルデヒドを除いている。そのためβ−フェニ
ルセリンを分離した沢液からのベンズアルデヒドの回収
も繁雑化する欠点も持ち合わせている。
Therefore, the reaction requires 2 moles of benzaldehyde per 1 mole of glycine, and 1 mole of this is regenerated as benzaldehyde during the acid treatment of the intermediate product N-benzylidene-β-phenylserine. In the conventional method, in order to separate this regenerated benzaldehyde from the product l-terphenylserine, the adhered benzaldehyde is removed by washing the β-phenylserine crystals with alcohol. Therefore, it also has the disadvantage that recovery of benzaldehyde from the sap from which β-phenylserine has been separated is complicated.

このように従来公知の製造法は種々の欠点があシ、工業
的製造法とするには必ずしも満足(−得る方法ではない
のが現状である。
As described above, the conventionally known production methods have various drawbacks, and the current situation is that they are not necessarily satisfactory for industrial production.

本発明者らは、9−フェニルセリン類の製造上の一ト記
のような従来技術の問題点をふまえて該化合物の工業的
製造法を鋭意検討した結果、本発明の方法に到達17た
。即ち、本発明の方法はグリシンとベンズアルデヒド類
をアルカリ存在下に反応させ、更に酸処理してβ−フエ
、−ルセリン類を製造するに際して、該反応を水と疎水
性有機溶媒との混合溶媒中で行うことを特徴と1〜でい
る。
The present inventors have conducted extensive studies on industrial methods for producing 9-phenylserines based on the problems of the prior art, such as the following: . That is, in the method of the present invention, glycine and benzaldehydes are reacted in the presence of an alkali, and then treated with an acid to produce β-hue, -lucerine, and the reaction is carried out in a mixed solvent of water and a hydrophobic organic solvent. The main feature is that it is done in 1~.

本発明の方法において使用される原料のべ/ズアルデヒ
ド類は未置換または置換基を有するベンズアルデヒドで
あり、置換ベンズアルデヒドの置子、ニトロ基、シアノ
基またはフェニル基を有するものであり、その置換位置
ならびに置換基の数には特に限定はない。
The raw material benzaldehyde used in the method of the present invention is unsubstituted or substituted benzaldehyde, and has a substituted benzaldehyde holder, nitro group, cyano group, or phenyl group, and its substitution position There is also no particular limitation on the number of substituents.

ベンズアルデヒド類として、例えば、0−トルアルデヒ
ド、m−)ルアルデヒド、p−トルアルデヒド、p’−
エチルベンズアルデヒド、0−アニスアルデヒド、m−
アニスアルデヒド、p−アニスアルデヒド、6,4−メ
チレンジオキシベンズアルテヒド、m−フェノ千ジベン
ズアルデヒド、m−ベンジルオキシベンズアルデヒド、
p−ベンジルオキシベンズアルデヒド、3.4−ジベン
ジルオキシペンズアルデヒド、0−クロルベンズアルデ
ヒド、m−クロルベンズアルデヒドv I) −りo 
/l/ベンズアルデヒド m−−ブロムベンズアルデヒド、p−ブロムベンズアル
デヒド、2.4−ジクロルベンズアルデヒド、3、4−
ジクロルベンズアルデヒド、o−ニトロベンズアルデヒ
ド、m−ニトロベンズアルデヒド、p−二トロベンズア
ルデヒド、、p−シアノベンズアルデヒド、p−ジフェ
ニルアルデヒド等があげられ,乙。
Examples of benzaldehydes include 0-tolualdehyde, m-)lualdehyde, p-tolualdehyde, p'-
Ethylbenzaldehyde, 0-anisaldehyde, m-
Anisaldehyde, p-anisaldehyde, 6,4-methylenedioxybenzaldehyde, m-phenothousandibenzaldehyde, m-benzyloxybenzaldehyde,
p-benzyloxybenzaldehyde, 3,4-dibenzyloxybenzaldehyde, 0-chlorobenzaldehyde, m-chlorobenzaldehyde v I) -rio
/l/benzaldehyde m--bromobenzaldehyde, p-bromobenzaldehyde, 2,4-dichlorobenzaldehyde, 3,4-
Examples include dichlorobenzaldehyde, o-nitrobenzaldehyde, m-nitrobenzaldehyde, p-nitrobenzaldehyde, p-cyanobenzaldehyde, p-diphenylaldehyde, etc.

これらのベンズアルデヒド類の使用量はグリ′ンンに対
して2モル以上、好ましくは20・〜30モル比の範囲
である。
The amount of these benzaldehydes to be used is 2 moles or more, preferably in a range of 20 to 30 moles relative to green.

本発明の方法で用いられる疎水性有機溶媒とはベンズア
ルデヒド類を溶解し、且つ反応に対して不活性であり、
水と多少の相互宕解度をもってよいが水層と有機層の2
層を形成するものであれば特に制限はない。具体的には
ベンゼン、トルエン、キシレンまたはエチルベンゼンな
どの炭化水素系溶媒、塩化メチレン、ジクロロメタン、
クロロホルム、四塩化炭素、ジクロロエタン、ジクロ【
コエチレン、トリクロロエチレン、クロロベンゼン、6
− ジクロロベンゼンt7’vU.)ジクロロベンゼン
などのハロゲン化炭化水素倍媒、1−ブタノール、2−
ブタノール、インブタノール、1−ペンタノ−ル、2−
ペンタノール、3−ペンタノール、1−ヘプタツール、
2−ヘプタツールまたはろ−ヘプタノールなどのアルコ
ール系溶媒1.ジエチルエーテル、ジプロピルエーテル
、またはシイ、ノブチルエーテルなどのエーテル系溶媒
、メチルイソブチルケトン捷たはジインブチルケトンな
どのケトン系の溶媒あるいは酢酸エステルまたはリン酸
エステルなどのエステル系の溶媒を挙げる事ができるが
、勿論これらに限定されるものではない。これらの溶媒
は通常は単独で用いられるが、2種類以上を混合して用
いても反応には何ら支障はない。
The hydrophobic organic solvent used in the method of the present invention is one that dissolves benzaldehydes and is inert to the reaction.
It may have some degree of mutual solubility with water, but the two layers, the aqueous layer and the organic layer.
There is no particular restriction as long as it forms a layer. Specifically, hydrocarbon solvents such as benzene, toluene, xylene or ethylbenzene, methylene chloride, dichloromethane,
Chloroform, carbon tetrachloride, dichloroethane, dichloro[
Coethylene, trichloroethylene, chlorobenzene, 6
- dichlorobenzene t7'vU. ) Halogenated hydrocarbon doublers such as dichlorobenzene, 1-butanol, 2-
Butanol, imbutanol, 1-pentanol, 2-
pentanol, 3-pentanol, 1-heptatool,
Alcoholic solvents such as 2-heptatool or ro-heptanol1. Examples include ether solvents such as diethyl ether, dipropyl ether, butyl ether, ketone solvents such as methyl isobutyl ketone or diimbutyl ketone, and ester solvents such as acetate ester or phosphate ester. However, it is not limited to these examples. These solvents are usually used alone, but there is no problem in the reaction when two or more of them are used in combination.

これらの有機溶媒の使用量は反応温度において原料のベ
ンズアルデヒド類を溶解しうる量以上であれば特に制限
はないが、反応操作上、ベンズアルデヒド類に対して通
常05〜20重量倍、好1しくは05〜10重量倍の範
囲で使用される。
The amount of these organic solvents used is not particularly limited as long as it is at least the amount that can dissolve the raw material benzaldehyde at the reaction temperature, but for the sake of reaction operation, it is usually 05 to 20 times the weight of the benzaldehyde, preferably 1. It is used in a range of 0.05 to 10 times the weight.

本発明の方法では、反応は上記の疎水性有機溶媒の少な
くとも1種以上と水との混合溶媒中で実施される。この
混合溶媒において水と有機溶媒との割合については特に
制限はないが、好首しくは水100重量部に対17、有
機溶媒が20〜500重量部である。
In the method of the present invention, the reaction is carried out in a mixed solvent of at least one of the above hydrophobic organic solvents and water. Although there is no particular restriction on the ratio of water and organic solvent in this mixed solvent, it is preferably 17 to 100 parts by weight of water and 20 to 500 parts by weight of organic solvent.

また本発明の方法で反応はアルカリの存在下にお4八で
実施される。使用されるアルカリと17ては水酸化リチ
ウム、水酸化ナトリウム、水酸化カリウム、水酸化カル
シウムまたは水酸化マグネシウムなどのアルカリ金属ま
たはアルカリ土類金属の水酸化物が好〕トシい。その吠
用量は理論量以上用いれば問題ないが、好ましくは12
〜30当量の範囲で使用する。勿論ろO当量を越えて用
いても反応1(は何ら支障はないが、後述の反応後の酸
処理時に使用する酸の使用量が増大し2あまり実用的で
はない。
In the method of the invention, the reaction is also carried out in the presence of an alkali. The alkali used is preferably an alkali metal or alkaline earth metal hydroxide such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide or magnesium hydroxide. There is no problem if the amount of barking is greater than the theoretical amount, but preferably 12
It is used in the range of ~30 equivalents. Of course, even if the amount of O equivalent is exceeded, there is no problem in reaction 1 (reaction 1), but the amount of acid used in the acid treatment after the reaction increases, which is not very practical in 2.

また、本発明の方法において、必要に応じて相間移動触
媒を用いて反応させることができる。相間移動触媒とし
てはテトラメチルアンモニウムクロライド2、ベンジル
トリメチルアンモニウムクロライド、ベンジルトリエチ
ルアンモニウムクロライト、ベンフルトリブチルアンモ
ニウムクロライド、テトラブチルアンモニウムハイドロ
ゼンサルフエイトまたはトリオクチルメチルアンモニウ
ムフロラ・イドなどの四級アンモニウム塩、ならびにテ
トラブチルホスホニウムクロライド、テトラブチルホス
ホニウムブロマイド1.ヘキサデシルトリブチルホスホ
ニウムクロライドまたはエチルトリオクチルホスホニウ
ムブロマイドなどの四級ホスホニウム塩を挙げることが
できる。これらの相聞移動触媒の使用tfd、触媒量で
良く、具体的には原料のグリシン1001i′に対して
001〜20グの使用量で十分である。
Furthermore, in the method of the present invention, a phase transfer catalyst can be used for the reaction if necessary. Phase transfer catalysts include quaternary ammonium salts such as tetramethylammonium chloride 2, benzyltrimethylammonium chloride, benzyltriethylammonium chloride, benfurtributylammonium chloride, tetrabutylammonium hydrogen sulfate or trioctylmethylammonium floride; and tetrabutylphosphonium chloride, tetrabutylphosphonium bromide 1. Mention may be made of quaternary phosphonium salts such as hexadecyltributylphosphonium chloride or ethyltrioctylphosphonium bromide. Any tfd or catalytic amount of these phase transfer catalysts may be used, and specifically, an amount of 001 to 20 grams per glycine 1001i' as a raw material is sufficient.

必要に応じてこれらの相間移動触媒を添加することによ
り反応が促進され、β−フェニルセリン類の収率が向上
する。この相間移動触媒の添加効果はとくに、アルカリ
使用量が原料グリシンに対して15当量以下の場合にお
いて顕著である。
By adding these phase transfer catalysts as necessary, the reaction is promoted and the yield of β-phenylserines is improved. The effect of adding this phase transfer catalyst is particularly remarkable when the amount of alkali used is 15 equivalents or less relative to the raw material glycine.

本発明の方法において、原料及び溶媒類の装入順序には
特に限定はなく、任意の順序で刀口えて反応を行えば良
い。−例として、グリシノ、水、アルデヒドを溶解した
有機溶媒および必要に応じて相間移動触媒を装入後、攪
拌下にアルカリを固形または水溶液の形態で装入または
滴下して反応を行う。反応温度、時間は0〜80℃、3
〜50時間、好ましくは10〜60℃、5〜30時間で
ある。このようにしてN−ベンジリデン−β−フェニル
セリン類のアルカリ塩が生成する。
In the method of the present invention, there is no particular limitation on the order in which raw materials and solvents are charged, and the reaction may be carried out in any order. - For example, after charging glycino, water, an organic solvent in which an aldehyde is dissolved, and if necessary a phase transfer catalyst, the reaction is carried out by charging or dropping an alkali in the form of a solid or aqueous solution while stirring. Reaction temperature and time are 0-80℃, 3
-50 hours, preferably 10-60°C, 5-30 hours. In this way, an alkali salt of N-benzylidene-β-phenylserine is produced.

本発明の方法では、上記の反応によシ生成したN−ベン
ジリチン−β−フェニルセリン類のアルカリ金属または
アルカリ土類金属塩は反応系より単離することなく、つ
ぎの酸処理を施すことによって簡単にβ−フェニルセリ
ン類と17て単離することができる。即ち1寸−ベンジ
リデン−β−フェニルセリン生成の反応マスに前記反応
に使用したグリシンとアルカリの合計光−1以上の鉱酸
を加え0〜80℃、好ましくは10〜60℃で処理する
とN−ベンジリデン−β−フェニルセリンは容易に加水
分解され相当するβ−フェニルセリン類が生成し、さら
に過剰に存在する酸により鉱酸塩となって水に溶解する
。使用される酸と1−では塩酸、硫酸、リン酸、ホウ酸
などの鉱酸であり、その使用量は生成したβ−フェニル
セリン類を鉱酸塩と0 するに十分す量、即ちグリシンとベンズアルデヒド類と
の反応に使用したアルカリとグリシンとの合計当量以上
である。一方、この酸処理操作によってN−ベンジリデ
ン基が加水分解されて副生ずるベンズアルデヒド類は有
機溶媒に溶解する。酸処理後水層と有機溶媒層とを分液
操作で分離し、水層を水酸化ナトリウムなどのアルカリ
で中和すれば、β−フェニルセリン類の結晶が析出する
ので濾過して単離する。このようにしてβ−フェニルセ
リン類がほぼ純粋に且つ好収率で製造することができる
。一方、有機溶媒層はこの中に溶解するベンズアルデヒ
ド類を改めて回収する必要はなく、実質反応に消費され
た分を補給するだけでそのまX循環使用することができ
る。
In the method of the present invention, the alkali metal or alkaline earth metal salt of N-benzyritine-β-phenylserine produced by the above reaction is not isolated from the reaction system, but is treated with the following acid treatment. It can be easily isolated as β-phenylserine. That is, when the reaction mass of 1-benzylidene-β-phenylserine is added with a mineral acid having an amount of 1 or more of the total light of the glycine and alkali used in the reaction and treated at 0 to 80°C, preferably 10 to 60°C, N- Benzylidene-β-phenylserine is easily hydrolyzed to produce the corresponding β-phenylserine, which is further converted into a mineral acid salt by the excess acid and dissolved in water. The acid used is a mineral acid such as hydrochloric acid, sulfuric acid, phosphoric acid, or boric acid, and the amount used is sufficient to convert the produced β-phenylserine to a mineral salt, that is, a mineral acid such as glycine. This is more than the total equivalent of the alkali and glycine used in the reaction with benzaldehyde. On the other hand, by this acid treatment operation, the N-benzylidene group is hydrolyzed and benzaldehydes produced as by-products are dissolved in the organic solvent. After the acid treatment, the aqueous layer and the organic solvent layer are separated by a liquid separation operation, and the aqueous layer is neutralized with an alkali such as sodium hydroxide to precipitate β-phenylserine crystals, which are isolated by filtration. . In this way, β-phenylserine can be produced almost pure and in good yield. On the other hand, it is not necessary to recover the benzaldehyde dissolved therein, and the organic solvent layer can be used for X-cycle as it is by simply replenishing the amount consumed in the reaction.

本発明の方法によれば、前記公知方法の水溶媒中での攪
拌の問題が解決できるのみならず、β−フェニルセリン
類とベンズアルデヒド類の分離の問題も、β−フェニル
セリン類を鉱酸塩と17て水層にベンズアルデヒド類を
有機溶媒層にそれぞれ溶解させて、分液操作で簡単に分
離できる利点が1 ある。!、だ、有機溶媒層に回収されるベンズアルデヒ
ド類は有機溶媒層から改めて回収操作を行う必要はなく
、実質反応に消費された分のベンズアルデヒド類を補給
するだけでその−まま有機溶媒層を循環使用できること
も本発明の犬き々特徴である。本発明の方法は、上記の
ように、従来技術の問題点を一挙に解決でき、且つ製造
プロセスを簡略化することができ、工業的製法と1〜で
の意義は大きなものである。
According to the method of the present invention, it is possible not only to solve the problem of stirring in an aqueous solvent in the known method, but also to solve the problem of separation of β-phenylserine and benzaldehyde. One advantage is that benzaldehydes can be dissolved in the aqueous layer and the organic solvent layer, respectively, and easily separated by a liquid separation operation. ! The benzaldehyde recovered in the organic solvent layer does not need to be recovered from the organic solvent layer again, and the organic solvent layer can be recycled and used as is by simply replenishing the amount of benzaldehyde consumed in the reaction. The dog of the present invention is also characterized by its ability to As described above, the method of the present invention can solve the problems of the prior art at once and simplify the manufacturing process, and has great significance compared to the industrial manufacturing method.

以下、実施例によって本発明をさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 グリシン607に水400fl、ベンズアルデヒド21
21及びトルエン120グを装入する。1o−15℃で
攪拌しなから45係水酸化ナトリウム177.8fをお
よそ2時間かけて滴下した。その後反応温度を徐々に2
0℃に昇温し20・〜25℃で20時間反応させた。反
応後65%塩酸292oグを40℃以下の温度で45分
間で滴下しさらに室温下1時間攪拌した。静置ののち下
層の水層を分2 液にて分離し高速液体クロマトグラフィーにて分析の結
果、θ−フェニルセリン生成率6±926=4 (、:
寸グリシン)であった。水層は室温下に45係水酸化ナ
トリウムでPH=6まで中和し0〜5℃に冷却し同温度
で1時間かきまぜた後沢過し冷水で洗浄したのち50℃
で減圧乾燥することによfi131.41のβ−フェニ
ルセリンの白色結晶を得だ。このものの高速液体クロマ
トグラフィーでの純度分析の結果は905%であり、ま
た示差熱分析の結果結晶水を1分子有することを確認し
た。収率820チ(対グリシン)融点:198〜200
℃(分解)元素分析値(%) CHN COH□3NO4としての計算値 54,266.57
703測定値 54,186,377.15 実施例2 実施例1において得られた回収ベンズアルデヒドのトル
エン層に新たにベンズアルデヒド890vを追加装入す
る他は実施例1と同様に反応を行なって1306’Pの
β−フエニルセリンヲ得り。
Example 1 Glycine 607, water 400 fl, benzaldehyde 21
21 and 120 g of toluene were charged. While stirring at 1°C to 15°C, 177.8f of 45% sodium hydroxide was added dropwise over about 2 hours. Then gradually increase the reaction temperature to 2
The temperature was raised to 0°C and the reaction was carried out at 20-25°C for 20 hours. After the reaction, 292 og of 65% hydrochloric acid was added dropwise over 45 minutes at a temperature of 40° C. or lower, and the mixture was further stirred at room temperature for 1 hour. After standing still, the lower aqueous layer was separated in 2 portions and analyzed by high performance liquid chromatography. The θ-phenylserine production rate was 6 ± 926 = 4 (,:
(glycine). The aqueous layer was neutralized to pH=6 with 45% sodium hydroxide at room temperature, cooled to 0-5℃, stirred at the same temperature for 1 hour, filtered, washed with cold water, and then heated to 50℃.
By drying under reduced pressure, white crystals of β-phenylserine with a fi of 131.41 were obtained. Purity analysis of this product by high performance liquid chromatography was 905%, and differential thermal analysis confirmed that it had one molecule of water of crystallization. Yield 820% (relative to glycine) Melting point: 198-200
°C (decomposition) elemental analysis value (%) CHN Calculated value as COH□3NO4 54,266.57
703 Measured value 54,186,377.15 Example 2 The reaction was carried out in the same manner as in Example 1 except that 890v of benzaldehyde was newly added to the toluene layer of recovered benzaldehyde obtained in Example 1. β-phenylserine was obtained.

6 実施例ろ 実施例1においてトルエンの代わりにジクロロエタン2
00f、45%水酸化すトリウムの代わりに50係水酸
化カリウム2241Ftだ反応温度、時間を60〜65
℃、18時間にする以外は実施例1と同様に行なって1
29.51i’のβ−フェニルセリンを得た。純度90
9%、収率81.2 % (対グリシン)。
6 Example 2 In Example 1, dichloroethane 2 was used instead of toluene.
00f, 50% potassium hydroxide 2241Ft instead of 45% thorium hydroxide. Reaction temperature, time 60-65
18 hours in the same manner as in Example 1.
29.51i' of β-phenylserine was obtained. Purity 90
9%, yield 81.2% (based on glycine).

実施例4 水500 ?中にグリシン602および水酸化ナトリウ
ム48′yを加えて溶解する。次にトリオクチルメチル
アンモニウムクロリド0.5 fを添加したのち25〜
60℃で攪拌しながらベンズアルデヒド169.6fを
トルエン1502に溶解した溶液をおよそ1時間かけて
滴下装入し、さらに25〜35℃で20時間反応させた
。反応後、35チ塩酸209グを40℃以下の温度で滴
下装入し室温下に1時間攪拌した。静置ののち下層の水
層を分液し、水層は室温下に45%水酸ナトリウムでp
H=6まで中和し0〜5℃で1時間かき捷ぜたのち濾過
し冷水で洗浄乾燥して125.5ii’のβ−フェニル
セリ4 ンを得た。純度906%、収率7B、3%(対グリシン
)実施例5〜B 有機溶媒を種々変えて実施例1に準じてグリシンとベン
ズアルデヒドとからβ−フェニルセリン合成反応を行っ
た。結果を表−1に示す。
Example 4 Water 500? Glycine 602 and sodium hydroxide 48'y are added and dissolved therein. Next, after adding 0.5 f of trioctylmethylammonium chloride,
A solution of benzaldehyde 169.6f dissolved in toluene 1502 was added dropwise over approximately 1 hour while stirring at 60°C, and the reaction was further carried out at 25 to 35°C for 20 hours. After the reaction, 209 g of 35-thihydrochloric acid was added dropwise at a temperature of 40°C or lower, and the mixture was stirred at room temperature for 1 hour. After standing still, the lower aqueous layer was separated, and the aqueous layer was purified with 45% sodium hydroxide at room temperature.
The mixture was neutralized to H=6, stirred at 0-5°C for 1 hour, filtered, washed with cold water and dried to obtain 125.5ii' of β-phenylserine. Purity: 906%, Yield: 7B, 3% (based on glycine) Examples 5 to B A reaction for synthesizing β-phenylserine from glycine and benzaldehyde was carried out in the same manner as in Example 1, using various organic solvents. The results are shown in Table-1.

実施例9〜13 実施例1の方法に準じてベンズアルデヒドの代わりに各
種の置換ベンズアルデヒドを用いて反応を行った。結果
を表−2に示す。
Examples 9 to 13 Reactions were conducted according to the method of Example 1 using various substituted benzaldehydes instead of benzaldehyde. The results are shown in Table-2.

/′ 、、、/” 5 実施例14 実施例1において、水酸化ナトリウム使用量をグリシン
に対し15及び21当量としそれぞれに相間移動触媒と
してトリオクチルベンジルアンモニウムクロリドを0.
5 f添加して反応させて、反応後場酸処理して得られ
た水層中のβ−フェニルセリン生成率を同時に実施した
相間移動触媒無添加の場合と比較した結果を表−3に示
す。
/',,,/'' 5 Example 14 In Example 1, the amount of sodium hydroxide used was 15 and 21 equivalents to glycine, and trioctylbenzylammonium chloride was used as a phase transfer catalyst at 0.0.
Table 3 shows the results of a comparison of the β-phenylserine production rate in the aqueous layer obtained by adding 5f and performing the in-situ acid treatment after the reaction with the case in which no phase transfer catalyst was added.

表−6 15有 25〜35720 F36.8無 776 21 有 90.5 無 896 8 306−Table-6 15 Yes 25-35720 F36.8 No 776 21 Yes 90.5 None 896 8 306-

Claims (1)

【特許請求の範囲】 1)グリシンとベンズアルデヒド類とをアルカリ存在下
に反応させ、ついで酸処理l−てβ−フェニルセリン類
を製造に際し、水と疎水性有機溶媒とからなる混合溶媒
中で反応させることを特徴とするβ−フェニルセリン類
の製造法 2)反応を相間移動触媒の共存下に行う特許請求の範囲
第1項記載の方法
[Claims] 1) Glycine and benzaldehydes are reacted in the presence of an alkali, and then treated with an acid to produce β-phenylserines in a mixed solvent of water and a hydrophobic organic solvent. 2) A method for producing β-phenylserines, characterized in that the reaction is carried out in the presence of a phase transfer catalyst.
JP58139455A 1983-08-01 1983-08-01 Production of beta-phenylserine compound Granted JPS6032753A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP58139455A JPS6032753A (en) 1983-08-01 1983-08-01 Production of beta-phenylserine compound
CA000459603A CA1228075A (en) 1983-08-01 1984-07-25 PROCESS FOR PRODUCTION OF .beta.-PHENYLSERINE
AU31237/84A AU569099B2 (en) 1983-08-01 1984-07-27 Production of beta-phenylserine
US06/636,289 US4605759A (en) 1983-08-01 1984-07-31 Process for production of β-phenylserine
GB08419442A GB2146020B (en) 1983-08-01 1984-07-31 Production of b-phenylserine
MX202211A MX157830A (en) 1983-08-01 1984-07-31 PROCEDURE FOR THE PRODUCTION OF BETA-PHENYLSERINE
NL8402400A NL191706C (en) 1983-08-01 1984-07-31 Process for the preparation of a beta-phenylserine.
IT22145/84A IT1180208B (en) 1983-08-01 1984-07-31 PROCEDURE FOR THE PRODUCTION OF BETA-PHENYLSERINE
KR1019840004586A KR870000738B1 (en) 1983-08-01 1984-08-01 Process for production of -phenylserine
FR8412222A FR2550190B1 (en) 1983-08-01 1984-08-01 PROCESS FOR THE PREPARATION OF B-PHENYLSERINE
DE19843428442 DE3428442A1 (en) 1983-08-01 1984-08-01 METHOD FOR PRODUCING SS PHENYL SERINE
CH3718/84A CH660184A5 (en) 1983-08-01 1984-08-01 METHOD FOR PRODUCING BETA-PHENYLSERINES.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58139455A JPS6032753A (en) 1983-08-01 1983-08-01 Production of beta-phenylserine compound

Publications (2)

Publication Number Publication Date
JPS6032753A true JPS6032753A (en) 1985-02-19
JPH0212464B2 JPH0212464B2 (en) 1990-03-20

Family

ID=15245611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58139455A Granted JPS6032753A (en) 1983-08-01 1983-08-01 Production of beta-phenylserine compound

Country Status (1)

Country Link
JP (1) JPS6032753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243878A (en) * 1986-04-11 1987-10-24 ユニチカ株式会社 Production of base cloth for yacht saling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049252A (en) * 1973-08-22 1975-05-01
JPS5612321A (en) * 1979-05-24 1981-02-06 Lepetit Spa Manufacture of serine derivative
JPS58121258A (en) * 1982-01-14 1983-07-19 Sumitomo Chem Co Ltd Preparation of 3-(3,4-dihydroxyphenyl)serine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049252A (en) * 1973-08-22 1975-05-01
JPS5612321A (en) * 1979-05-24 1981-02-06 Lepetit Spa Manufacture of serine derivative
JPS58121258A (en) * 1982-01-14 1983-07-19 Sumitomo Chem Co Ltd Preparation of 3-(3,4-dihydroxyphenyl)serine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243878A (en) * 1986-04-11 1987-10-24 ユニチカ株式会社 Production of base cloth for yacht saling

Also Published As

Publication number Publication date
JPH0212464B2 (en) 1990-03-20

Similar Documents

Publication Publication Date Title
JP4342940B2 (en) Process for producing 5-methyl-1-phenyl-2 (1H) pyridinone
EP0441004B1 (en) Process for preparing aromatic nitriles
JPS6032753A (en) Production of beta-phenylserine compound
KR870000738B1 (en) Process for production of -phenylserine
JPH10338694A (en) Production of 3-alkenylcephem compound
US4501919A (en) Process for the production of serine derivatives
US4384118A (en) 4-(3-Iodopropargyloxy) pyrimidine derivatives
WO1994002490A1 (en) Process for producing cephem compound
WO2000020424A1 (en) PROCESS FOR THE PREPARATION OF β-HYDROXY ESTERS
JP3962531B2 (en) Method for producing 1,3-di (2-p-hydroxyphenyl-2-propyl) benzene
JPH03271273A (en) Production of 2-chloro-5-(aminomethyl)pyridine
JP4183781B2 (en) Method for producing S, S- (6-methylquinoxaline-2,3-diyl) dithiocarbonate
JP4318755B2 (en) Purification method of substituted p-nitrodiphenyl ethers
US10807962B2 (en) Process for the synthesis of firocoxib
JP2894366B2 (en) Method for producing deacetylcolchicine
CN116535327A (en) Method for improving stability of aromatic difluoromethyl compound in preparation and use
JP4076643B2 (en) Method for producing acetals
JP2500316B2 (en) 1,4,5,8-Tetrakis (halogenomethyl) naphthalene derivative and method for producing the same
JPH05178833A (en) Production of n-cyanoacetamidine derivative
JPS5993059A (en) Preparation of cytosines
JPS59494B2 (en) Purification method for benzotrifluoride derivatives
JPS5993060A (en) Preparation of cytosines
GB2051790A (en) Process for the production of serine derivatives
JPH04996B2 (en)
JP2002275167A (en) Method for 5-substituted oxazole compound production