JPS6032709B2 - P-containing high weldability corrosion resistant steel - Google Patents

P-containing high weldability corrosion resistant steel

Info

Publication number
JPS6032709B2
JPS6032709B2 JP8534179A JP8534179A JPS6032709B2 JP S6032709 B2 JPS6032709 B2 JP S6032709B2 JP 8534179 A JP8534179 A JP 8534179A JP 8534179 A JP8534179 A JP 8534179A JP S6032709 B2 JPS6032709 B2 JP S6032709B2
Authority
JP
Japan
Prior art keywords
steel
less
corrosion
corrosion resistance
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8534179A
Other languages
Japanese (ja)
Other versions
JPS569356A (en
Inventor
智 門
常安 渡辺
誠 佐藤
研 金谷
一広 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8534179A priority Critical patent/JPS6032709B2/en
Publication of JPS569356A publication Critical patent/JPS569356A/en
Publication of JPS6032709B2 publication Critical patent/JPS6032709B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は海水が関与した腐食環境、あるいは橋梁などの
一般の大気腐食環境の溶接構造物用材料に適した高溶接
性かつ高耐食性の低合金鋼に係わるものである。
[Detailed Description of the Invention] The present invention relates to a low-alloy steel with high weldability and high corrosion resistance that is suitable as a material for welded structures in corrosive environments involving seawater or general atmospheric corrosive environments such as bridges. .

海水が関与する腐食環境には海水構造物が受ける海水浸
濃状態の腐食環境、港湾構造物が受ける海水飛沫と海水
浸濃状態の両方の腐食環境あるいは船舶のバラストタン
クが受ける高温度密閉状態の腐食環境等多様な腐食環境
等がある。
Corrosive environments involving seawater include the corrosive environment of seawater immersion that seawater structures experience, the corrosive environment of both seawater splash and seawater immersion that seawater structures experience, and the high-temperature sealed environment that ships' ballast tanks experience. There are various corrosive environments such as corrosive environments.

このうちでもとくにタンカーのバラストタンクに代表さ
れる船舶のバラストタンクの腐食は非常に激しく、しか
も従来すぐれた耐食鋼がないため、その腐食防止対策が
苦慮されていた。バラストタンクは海水を積んだり空と
なったりし、また場合によっては5ぴ0程度の温度にも
達することがあるので高温度密閉状態となっている。こ
のよいな場合鋼板上には非常に薄い海水の液膜が生じ酸
素が十分に供給されるので局部腐食が非常に激しく生じ
、年間1側以上の腐食速度に達することもある。バラス
トタンクの場合腐食は船の強度劣化につながり安全性の
点で重要な問題とされている。このような海洋構造物の
防食対策としては従来普通炭素鋼を用いてタールェポキ
シ等の塗装、水中部ではZn陽極による電気防食がとら
れている。
Among these, the corrosion of ships' ballast tanks, typified by tanker ballast tanks, is particularly severe, and since there is currently no excellent corrosion-resistant steel, it has been difficult to take measures to prevent corrosion. Ballast tanks are filled with seawater and emptied, and in some cases can reach temperatures as high as 500m, so they are sealed at high temperatures. In this good case, a very thin liquid film of seawater forms on the steel plate and sufficient oxygen is supplied, resulting in very severe local corrosion, sometimes reaching a corrosion rate of more than one side per year. In the case of ballast tanks, corrosion leads to deterioration of the ship's strength and is considered an important issue from a safety standpoint. Conventional anti-corrosion measures for such marine structures include painting ordinary carbon steel with tarepoxy or the like, and electrolytic corrosion protection using Zn anodes in underwater areas.

しかし塗装はこの環境では耐久年数が短か〈定期的に補
修せねばならず、電気防食は海上部では全く効果がない
。しかも電極の取り替えが定期的に必要であるので、い
ずれも完全は防食対策ではない。したがって耐食性にす
ぐれた安価な溶接性耐食鋼の使用が最もすぐれた防食対
策と考えられるが、従来の知見では市販の海水鋼(0.
次−0.1P−0.にu−0.州i鋼等)が耐食性が最
もすぐれていることが知られていた。しかしこの種耐海
水鋼は溶接性が悪く、通常の溶接で溶接割れが多発し、
造船その他の溶接構造用鋼としては実用に耐えないもの
であった。
However, paint has a short lifespan in this environment and must be periodically repaired, and cathodic protection is completely ineffective at sea. Furthermore, since the electrodes must be replaced periodically, neither method is a complete anti-corrosion measure. Therefore, the use of inexpensive weldable corrosion-resistant steel with excellent corrosion resistance is considered to be the best anti-corrosion measure, but conventional knowledge suggests that commercially available seawater steel (0.
Next-0.1P-0. to u-0. It was known that steel (such as Shu I steel) had the best corrosion resistance. However, this type of seawater-resistant steel has poor weldability, and weld cracks occur frequently during normal welding.
It was not practical as a steel for welded structures in shipbuilding and other areas.

したがって溶酸性にすぐれ、かつ従来の耐食鋼より耐食
性のよい鋼の開発が強く望まれていた。そこでこのよう
な問題に対処するための鋼として、たとえば特関昭51
一71817号あるいは特関昭52一123918号公
報記載の鋼が従来から知られている。
Therefore, there has been a strong desire to develop a steel that has excellent acid-soluble properties and better corrosion resistance than conventional corrosion-resistant steels. Therefore, as a steel to deal with such problems, for example, Tokkan Sho 51
Steels described in Japanese Patent No. 171817 or Tokukan Sho 52-1123918 have been known.

たとえば特開昭51−71817号の鋼はSi−Mn−
P−Cu−Cr−Ni−N系を基本成分とし、その他V
、Nb、Ti、Zr等を添加した鋼であるが、同鋼は耐
食性の点では良好であるが、高価なNiを含んでいる。
また特開昭52一123918号の銅はTi、Zrを必
須成分として含み、かつNを0.002〜0.015%
含有する。これによって大入熱での溶接熱影響部、特に
ボンド部近傍の鰍姓が優れた耐膜性鋼としている。すな
わちTIN、ZrNの生成による溶接部じん性の向上を
ねらったもので、したがってN含有量も実施例では最低
でも0.0048%と高い値となっている。これに対し
、本発明者らも特開昭53−70911号により、バラ
ストタンク等への使用に適する鋼を提案している。この
鋼は低C−P−Mo系を基本成分とし、高温度密閉状態
下での耐食性にすぐれたものであるが、大入熱溶懐部の
じん性の点では改良の余地が残されていた。
For example, the steel of JP-A-51-71817 is Si-Mn-
The basic component is P-Cu-Cr-Ni-N, and other V
, Nb, Ti, Zr, etc., and although this steel has good corrosion resistance, it also contains expensive Ni.
Further, the copper disclosed in JP-A-52-123918 contains Ti and Zr as essential components, and 0.002 to 0.015% N.
contains. This makes it a film-resistant steel with excellent welding heat-affected zone, especially near the bond area, under high heat input. That is, the aim is to improve the toughness of the welded part by generating TIN and ZrN, and therefore the N content is as high as at least 0.0048% in the examples. In response to this, the present inventors have also proposed a steel suitable for use in ballast tanks and the like in Japanese Patent Laid-Open No. 70911/1983. This steel has a low C-P-Mo system as its basic component and has excellent corrosion resistance under high-temperature sealed conditions, but there is still room for improvement in terms of the toughness of the high heat input weld pocket. Ta.

そこで本発明者らは腐食環境における腐食量、と溶接性
に及ぼす諸合金元素の影響を検討した結果、Pを含有す
る鋼においては、極低C、極低N化するも比較高い強度
と、従来の耐食鋼に倍する耐食性がえられること、しか
も従来の高P、N含有鋼は溶接性が悪いとあきらめられ
ていたのを、極低C化、極低N化することで解決するこ
とが出釆るという新たな知見を得た。
Therefore, the present inventors investigated the amount of corrosion in a corrosive environment and the influence of various alloying elements on weldability.As a result, steel containing P has relatively high strength despite extremely low C and N. Achieving twice the corrosion resistance of conventional corrosion-resistant steels, and solving the problem of conventional high-P and N-containing steels, which had been given up due to their poor weldability, by making them extremely low in C and N. We obtained new knowledge that

すなわち、最近Nを低減する製鋼技術が発達し、か)る
低N鋼がえられるようになったことに着目し、Nを極力
低減せしめた鋼について種々検討し、次のようなことが
分かった。まずPはフェライト中の固溶度がオーステナ
ィト中より高いため極低C鋼では均一に固綾分散してい
ること、パーラィト組織を含む鋼では、溶接時セメンタ
イトとN、Pとの相互作用により、Pによる腕化作用が
大きくなり、Pを含むパーラィト部は脆性クラツク、溶
接割れの起点となりやすいが、樋化C化しパーラィト部
分を少なくすることにより、フェライト、カーバイト界
面でのクラツクの発生額向を少なく出来ること、さらに
Pの悪影響を極低N化することにより、消去出来ること
を確認した。したがって溶接時、オーステナィト城に加
熱V急冷されても、P、NおよびCに起因する溶接冷間
割れおよび継手縦化の発生煩向はなく、むしろ大入熱溶
接継手で高いじん性がえられる。
In other words, focusing on the recent development of steelmaking technology that reduces N and the fact that it has become possible to obtain low-N steel, we have conducted various studies on steels that reduce N as much as possible, and have found the following. Ta. First, P has a higher solid solubility in ferrite than in austenite, so it is uniformly dispersed in ultra-low C steel, and in steel containing pearlite structure, due to the interaction between cementite, N, and P during welding, The arm-forming effect of P increases, and pearlite parts containing P tend to become brittle cracks and the starting point of weld cracks, but by reducing the pearlite part by turning it into a trough, it is possible to reduce the occurrence of cracks at the ferrite-carbide interface. It was confirmed that the negative effects of P can be reduced by minimizing the negative effects of P. Therefore, during welding, even if the austenite is heated and rapidly cooled by V, there is no problem of weld cold cracking or vertical joint verticalization caused by P, N, and C, and in fact, high toughness can be obtained with high heat input welded joints. .

またPは溶接金属の熱間割れ性を大きくする成分として
、出来るだけ低くするよう指導されてきたが、極低C、
N化することによりPの凝固隅折が極めて少なくなり、
溶接金属割れの点でも全く問題がないことが確認された
In addition, P is a component that increases the hot cracking properties of weld metal, and guidance has been given to reduce it as much as possible, but extremely low C,
By converting to N, the solidification corner breakage of P is extremely reduced.
It was also confirmed that there were no problems with weld metal cracking.

これにはFe−P−C−低N系での凝固反応がC量0.
11%以下では6鉄凝固となり、包晶反応がなくなるこ
とが一因と考えられるが、鋼塊凝固時のC、Nの梶析の
ため、溶鋼C量は0.07%以下N量を0.004%以
下にすることにより溶接性およびポンド鰯性の改善が可
能となった。すなわちC、Mn等の偏析があってもPが
均一に分散凝固し、溶接金属および熱影響部の熱間割れ
および溶接部のボンド靭性にもPが悪影響を与えないC
量は0.07%以下NO。004%以下である。
This is because the coagulation reaction in the Fe-P-C-low N system has a C content of 0.
If it is less than 11%, 6-iron solidification occurs, which is thought to be due to the absence of peritectic reaction, but due to the casing of C and N during solidification of the steel ingot, the amount of C in molten steel is 0.07% or less. By reducing the content to .004% or less, it became possible to improve weldability and poundability. In other words, even if there is segregation of C, Mn, etc., P is uniformly dispersed and solidified, and P does not adversely affect hot cracking in the weld metal and heat affected zone and bond toughness of the weld zone.
The amount is 0.07% or less NO. 0.004% or less.

さらにPはフェライト嵐溶強化の最大元素として知られ
ているが、Pの溶接性に対する悪影響を除去したことに
より、極低C鋼にもかかわらず、P増量により比較的高
い強度特性かえられることが解つた。
Furthermore, although P is known to be the most important element for ferrite storm welding strengthening, by eliminating the negative effect of P on weldability, it is possible to change relatively high strength properties by increasing the amount of P, even in extremely low C steels. I solved it.

かもパーラィト率の少ない鋼はフェライトとの局部電池
活動がなく、かつPはフェライトの耐食性をいちじるし
く高めるので、本発明の知見によりつくられた鋼は溶接
構造用鋼としての十分な溶接性と従来の耐食鋼に倍する
耐食性をもつにいたつたのである。
Steels with a low percentage of pearlite have no local cell activity with ferrite, and P significantly increases the corrosion resistance of ferrite. Therefore, the steel made based on the knowledge of the present invention has sufficient weldability as a welded structural steel and has the same properties as conventional steels. It has achieved corrosion resistance twice that of corrosion-resistant steel.

以下本発明の成分範囲に示せば第1表のごとく*3グル
ープに分類される。
Below, the component ranges of the present invention are classified into *3 groups as shown in Table 1.

第1表 本発明鋼の成分範囲(多) 本発明の成分範囲において各成分元素を第1表のごとく
定めた理由を次に説明する。
Table 1 Component range of the steel of the present invention (many) The reason why each component element is defined as shown in Table 1 in the component range of the present invention will be explained below.

まず基本成分系において、Cは従来耐食性には影響がな
いとされていたが、従来の研究は0.05%以上程度の
Cについての知見であった。本発明者らの知見によれば
、低N鋼の場合0.07%までは耐食性を向上させる効
果はないが、0.07%以下では低ければ低いほど既述
の理由により耐食性が向上する。またP、Cu、Moを
含有している場合はその効果はより大きい。さらにCが
一般に溶酸性を低下させる元素であることはよく知られ
ているが、C量を0.07%以下に限定した理由は既述
の通りである。
First, in the basic component system, C was conventionally thought to have no effect on corrosion resistance, but previous research has found knowledge about C at about 0.05% or more. According to the findings of the present inventors, in the case of low N steel, there is no effect of improving corrosion resistance up to 0.07%, but below 0.07%, the lower the content, the more the corrosion resistance improves for the reasons mentioned above. Moreover, when P, Cu, and Mo are contained, the effect is even greater. Furthermore, although it is well known that C is an element that generally reduces acidity, the reason for limiting the amount of C to 0.07% or less is as described above.

Siは熔鋼の脱酸のために添加されるが、耐食性には悪
影響を及ぼし、とくに1.0%を超えると耐食性がかな
り低下するので上限を1.0%とした。
Si is added to deoxidize molten steel, but it has an adverse effect on corrosion resistance, and in particular, if it exceeds 1.0%, the corrosion resistance is considerably reduced, so the upper limit was set at 1.0%.

Mn‘ま耐食性には無影響であるが脱酸、熱間加工性、
溶接性内上のために添加する。また極低炭素鋼であるの
で強度不足を補うため、Mn添加によって強度を出す必
要がある。これらの目的にはMnが多いほど良いが2.
5%を超えて添加してもその効果は小さいので2.5%
以下とさた。
Although it has no effect on Mn' corrosion resistance, it improves deoxidation, hot workability,
Added to improve weldability. Furthermore, since it is an ultra-low carbon steel, it is necessary to increase the strength by adding Mn to compensate for the lack of strength. For these purposes, the more Mn there is, the better.
Even if it is added in excess of 5%, the effect is small, so 2.5%
The following.

Pは耐食性に最も効果を及ぼす元素であるが、通常の0
.15%C鋼では極めて溶接性を阻害する元素である。
P is the element that has the most effect on corrosion resistance, but the normal 0
.. In 15% C steel, it is an element that extremely inhibits weldability.

0.07%以下の極低炭素鋼ではPの添加される場合は
Moは0.05〜1.0%、Cuは0.02〜1.0%
、さらに望ましくは0.02%以上0.15%未満、N
iは0.05〜2‐0%、C〇は○‐01〜1.0%、
Wは0.01〜1‐0%が望ましい。とともに耐食性は
一層向上し、0.03%以上に添加するのが好ましい。
In ultra-low carbon steel of 0.07% or less, when P is added, Mo is 0.05-1.0% and Cu is 0.02-1.0%.
, more preferably 0.02% or more and less than 0.15%, N
i is 0.05~2-0%, C〇 is ○-01~1.0%,
W is preferably 0.01 to 1-0%. At the same time, corrosion resistance is further improved, and it is preferable to add 0.03% or more.

しかし、0.02%を超えて添加される場合は0.04
%以下のC量でも溶接性が劣化してくるので、上限を0
.20%とした。
However, if added in excess of 0.02%, 0.04%
% or less, the weldability deteriorates, so the upper limit is set to 0.
.. It was set at 20%.

AIは脱酸および組織細粒化のため、また耐食性の点か
ら添加するが、P、Cu等耐食性向上元素の効果をより
一層大きくする効果も有する。
Al is added for deoxidation and grain refinement, and from the viewpoint of corrosion resistance, but it also has the effect of further increasing the effect of corrosion resistance improving elements such as P and Cu.

しかしながら0.2%をこえて添加するとむしろ鋼の清
浄を害しじん性が劣化するため上限を0.2%とした。
一方、0.003%未満の含有量では、これらの効果が
得られないため、下限を0.003%とした。
However, if more than 0.2% is added, the cleanliness of the steel will be impaired and the toughness will deteriorate, so the upper limit was set at 0.2%.
On the other hand, if the content is less than 0.003%, these effects cannot be obtained, so the lower limit is set to 0.003%.

Mo、CuNi、Co、Wはいずれも耐食性を向上させ
る効果を有する元素であり、このうちCu、Niは全体
腐食に対する抵抗性を大にし、Mo、Co、Wは局部腐
食に対する抵抗性を大にする。いずれもPと複合添加さ
れて著しい効果を発揮する。これらの元素も第1項の発
明に1種あるいは2以上複合添加されて効果を発揮し、
添加量が増すほどその効果は大きい。しかし、4.0%
を超える場合耐食性向上効果は飽和し、逆に籾性や溶接
性を阻害する悪影響が現われるので、1種以上合わせて
4.0%以下とした。なお、これら諸元素は4.0%以
下複合添加されて耐食性の効果を発揮するが、2種以上
複合添加NについてはPの溶接性および溶接継手のじん
性に対する悪影響をなくし、Cとの相互作用により、溶
接割れ感受性を低するので、0.004%以下に抑える
Mo, CuNi, Co, and W are all elements that have the effect of improving corrosion resistance. Among these, Cu and Ni increase resistance to general corrosion, and Mo, Co, and W increase resistance to local corrosion. do. Both of them exhibit remarkable effects when added in combination with P. These elements are also effective when added singly or in combination of two or more to the invention of item 1,
The greater the amount added, the greater the effect. However, 4.0%
If the content exceeds the above, the effect of improving corrosion resistance will be saturated, and on the contrary, there will be an adverse effect of inhibiting grain quality and weldability. Note that these elements are added in a combined amount of 4.0% or less to exhibit the effect of corrosion resistance, but the combined addition of two or more types of N eliminates the negative effects of P on weldability and the toughness of welded joints, and improves the mutual interaction with C. This action lowers the susceptibility to weld cracking, so it is kept to 0.004% or less.

その理由については既述の通りである。以上が本発明に
おける基本成分系であるが、発明ではこの他さらにNb
、V、Ti、Zr、Ta、B(A群)のうち1種以上0
.2%以下を添加し、溶接性を損なうことなく、高張力
化出来るので本発明鋼の用途が広まる。
The reason for this is as described above. The above is the basic component system in the present invention, but the invention further includes Nb
, V, Ti, Zr, Ta, B (group A), one or more 0
.. By adding 2% or less, it is possible to increase the tensile strength without impairing weldability, thereby expanding the applications of the steel of the present invention.

またNb、V、Tiの諸元素は鋼中Cを炭化物として固
定するので、低C化の効果を助長しPの効果を大きくす
る働きも有する。さりこ腐食環境によっては、たとえば
原油タンクや原油輸送ラインパイプのように、日2S腐
食に起因する日が鋼中へ侵入し、鋼中介在物とくに硫化
物部に集積して腐食割れを生じる場合がある。また希土
類元素(原子番号57−71番の元素の1種以上及びY
)、Caは鋼中介在物とくに硫化物を減少ないいま変質
させる効果を有する諸元素(B群)であり、本発明鋼に
添加されて、日の関与する腐食環境においても効果的な
耐食鋼とするものである。以上の諸元素はいずれも単独
あるいは複合添加されるが、添加量が増すほど上述の溶
接性、強度向上、耐食性に及ぼす効果は大きくなる。し
かし合計で0.2%を超える場合、添加量に見合う効果
も小さくなり轍性の低下もきたすので、1種以上を計0
.2%以上とした。
Furthermore, since the various elements Nb, V, and Ti fix C in the steel as carbides, they also have the function of promoting the effect of lowering C and increasing the effect of P. Depending on the corrosive environment, for example, in crude oil tanks or crude oil transportation line pipes, heat caused by 2S corrosion may penetrate into the steel and accumulate inclusions in the steel, especially sulfides, causing corrosion cracks. There is. In addition, rare earth elements (one or more elements with atomic numbers 57-71 and Y
), Ca is an element (group B) that has the effect of reducing or altering inclusions in steel, especially sulfides, and is added to the steel of the present invention to create corrosion-resistant steel that is effective even in a corrosive environment involving sunlight. That is. All of the above elements may be added singly or in combination, and the greater the amount added, the greater the effect on the above-mentioned weldability, strength improvement, and corrosion resistance. However, if the total amount exceeds 0.2%, the effect commensurate with the amount added will be small and the rutting property will be reduced.
.. 2% or more.

なお上述のA群単独またはA+B群複合添加量を夫々0
.2%に制限することで耐食性、材質性向上に効果があ
るが、2種以上添加する場合はNbo.01〜0.07
%、VO.01〜0.07%、Tio.003〜0.0
3%、Zro.003〜0.雌%、Tao.003〜0
.07%、BO.01%以下、希土類元素0.1%以下
、Cao.1%以下の範囲が望ましい。
In addition, the amount of the above-mentioned group A alone or the combination of groups A+B is 0.
.. Limiting it to 2% is effective in improving corrosion resistance and material properties, but if two or more types are added, Nbo. 01-0.07
%, VO. 01-0.07%, Tio. 003~0.0
3%, Zro. 003~0. % female, Tao. 003~0
.. 07%, BO. 01% or less, rare earth elements 0.1% or less, Cao. A range of 1% or less is desirable.

また1種のみの添加では0.2%迄添加してもよい。上
述の本発明鋼は全て通常の製銃製鋼、圧延によって容易
に製造可能である。
Moreover, when only one type is added, it may be added up to 0.2%. All of the above-mentioned steels of the present invention can be easily manufactured by conventional gun steel manufacturing and rolling.

さらに本発明鋼は通常の熱頚匡のままで上述のすぐれた
特性を発揮するが、熱艇後遺常の焼入れ、競もどしある
いは蛾ならし等の熱処理を施してもその性能はさらに優
ることはあっても劣ることはない。次に本発明鋼の効果
を実施例にもとづいて以下に具体的に述べる。
Furthermore, although the steel of the present invention exhibits the above-mentioned excellent properties as it is in a normal heat-bonded state, its performance will not be even better even if it is subjected to heat treatment such as quenching, reinforcing, or taming, which is common after hot boating. Even if there is, it will not be inferior. Next, the effects of the steel of the present invention will be specifically described below based on examples.

実施列 第2表に供試材の化学成分と耐食性を示す。implementation row Table 2 shows the chemical composition and corrosion resistance of the test materials.

耐食性は耐海水性をみるために行なったタンカーバラス
トタンクにおける1年間の裏船試験結果および耐候I性
をみるための半田園地帯において2年間行なった大気暴
露試験の二つの結果を示した。ともにSM鋼の腐食量を
100とした場合の腐食比率で示してある。第2表にお
いて試料No.1〜4が比較材であり、No.9〜No
.78が本発明鋼である。
Corrosion resistance was determined by the results of a one-year backboard test in a tanker ballast tank to determine seawater resistance, and a two-year atmospheric exposure test conducted in a semi-rural area to determine weather resistance. Both are shown as corrosion ratios when the amount of corrosion of SM steel is set as 100. In Table 2, sample No. 1 to 4 are comparative materials, and No. 9~No
.. 78 is the steel of the present invention.

第2表、第3表で、C量が低くP、Cu、Moを含むN
o.4は耐海水性は良好であるが、N量が高く、P量が
過大のため、第3表の大入熱溶接性の指標となる再現熱
影響部のvEo(0℃におけるシャルピー衝撃値)が低
い。しかるに本発明鋼の低C、低N鋼はいずれも耐食性
、溶接割れ停止予熱温度、再現熱影響部のじん性が高く
、高溶接性耐食鋼にふさわしい特性を示している。以上
のべたごと〈、本発明鋼はその耐食性および溶接性はき
わめてすぐれており、しかも容易にかつ安価に製造する
ことができるので、工業上非常に有用である。
In Tables 2 and 3, N containing P, Cu, and Mo has a low C content.
o. 4 has good seawater resistance, but because the N content is high and the P content is excessive, vEo (Charpy impact value at 0°C) of the reproduced heat affected zone, which is an index of high heat input weldability in Table 3, is low. However, both the low C and low N steels of the present invention have high corrosion resistance, high weld cracking stop preheating temperature, and toughness of the reproduced heat affected zone, and exhibit characteristics suitable for highly weldable corrosion resistant steels. In conclusion, the steel of the present invention has extremely excellent corrosion resistance and weldability, and can be manufactured easily and inexpensively, making it very useful industrially.

第2表 第 2 表くつづき) * クリーンバラスト.タンクにおける1年間の実船テ
スト結果、従来のSM材を100とした場合の腐食比率
Table 2 (Continued from Table 2) *Clean ballast. Results of a one-year actual ship test in a tank, corrosion ratio when conventional SM material is set as 100.

** 相模原市Kおける2年間の大気暴露試験結果、S
M材の腐食減量を100とする。
** Results of two-year atmospheric exposure test in Sagamihara City, S
Let the corrosion weight loss of M material be 100.

第3表※JIS Z3158による ※※ 最高加熱温度13.50℃、80 0〜5 0
0℃冷却砲間80秒、熱肘ィクル(80KJイ伽、板厚
2 5皿m)。
Table 3 *Based on JIS Z3158** Maximum heating temperature 13.50℃, 800~50
Cooled at 0°C for 80 seconds, then heated in a heated oven (80KJ, plate thickness 25 m).

Claims (1)

【特許請求の範囲】 1 C0.07%以下、Si1.0%以下、Mn2.5
%以下、P0.03〜0.20%、Al0.003〜0
.2%を含み、さらにMo、Cu、Ni、Co、Wのう
ち1種以上合せて4%以下含み、さらにNを0.004
%以下に制限し、残部は実質的に鉄からなる含P高溶接
性耐食鋼。 2 C0.07%以下、Si1.0%以下、Mn2.5
%以下、P0.03〜0.20%、Al0.003〜0
.2%を含み、さらにMo、Cu、Ni、Co、Wのう
ち1種以上合せて4%以下含み、Nb、V、Ti、Zr
、Ta、Bのうち1種以上合せて0.2%以下含み、さ
らにNを0.004%以下に制限し、残部は実質的に鉄
からなる含P高溶接性耐食鋼。 3 C0.07%以下、Si1.0%以下、Mn2.5
%以下、P0.03〜0.20%、Al0.003〜0
.2%を含み、さらにMo、Cu、Ni、Co、Wのう
ち1種以上合せて4%以下含み、Nb、V、Ti、Zr
、Ta、B(A群)のうち1種以上合せて0.2%以下
、希土類元素、Ca(B群)のうち1種以上合せて0.
2%以下を含み、かつA群+B群の合計が0.2%以下
で、さらにNを0.004%以下に制限し、残部は実質
的に鉄からなる含P高溶接性耐食鋼。
[Claims] 1 C 0.07% or less, Si 1.0% or less, Mn 2.5
% or less, P0.03-0.20%, Al0.003-0
.. Contains 2%, further contains 4% or less of one or more of Mo, Cu, Ni, Co, and W in total, and further contains 0.004 N.
% or less, and the remainder is substantially iron. 2 C0.07% or less, Si1.0% or less, Mn2.5
% or less, P0.03-0.20%, Al0.003-0
.. Contains 2% and further contains 4% or less of one or more of Mo, Cu, Ni, Co, W in total, Nb, V, Ti, Zr
, Ta, and B in a total of 0.2% or less, N is further limited to 0.004% or less, and the remainder is substantially iron. 3 C0.07% or less, Si1.0% or less, Mn2.5
% or less, P0.03-0.20%, Al0.003-0
.. Contains 2% and further contains 4% or less of one or more of Mo, Cu, Ni, Co, W in total, Nb, V, Ti, Zr
, Ta, and B (Group A) in total of 0.2% or less, rare earth elements, and Ca (Group B) in total of 0.2% or less.
2% or less, and the total of group A + group B is 0.2% or less, and N is further limited to 0.004% or less, and the remainder is substantially iron.
JP8534179A 1979-07-05 1979-07-05 P-containing high weldability corrosion resistant steel Expired JPS6032709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8534179A JPS6032709B2 (en) 1979-07-05 1979-07-05 P-containing high weldability corrosion resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8534179A JPS6032709B2 (en) 1979-07-05 1979-07-05 P-containing high weldability corrosion resistant steel

Publications (2)

Publication Number Publication Date
JPS569356A JPS569356A (en) 1981-01-30
JPS6032709B2 true JPS6032709B2 (en) 1985-07-30

Family

ID=13855944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8534179A Expired JPS6032709B2 (en) 1979-07-05 1979-07-05 P-containing high weldability corrosion resistant steel

Country Status (1)

Country Link
JP (1) JPS6032709B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915901A (en) * 1984-12-18 1990-04-10 Nippon Steel Corporation Reinforcing steel having resistance to salt and capable of preventing deterioration of concrete
JPS61257456A (en) * 1985-05-07 1986-11-14 Kobe Steel Ltd High toughness and high phosphorus type weather resistant steel having superior weldability and giving welded joint of superior performance
CA1292135C (en) * 1986-02-25 1991-11-19 Haruo Shimada Concrete reinforcing steel bar or wire
JPS63317627A (en) * 1987-06-18 1988-12-26 Kawasaki Steel Corp Semiprocessing non-oriented silicon steel sheet combining low iron loss with high magnetic permeability and its production
JP2572447B2 (en) * 1988-07-01 1997-01-16 新日本製鐵株式会社 Coastal corrosion-resistant steel and method of manufacturing the same
US5494706A (en) * 1993-06-29 1996-02-27 Nkk Corporation Method for producing zinc coated steel sheet
JPH0734272A (en) * 1993-07-15 1995-02-03 Sumitomo Metal Ind Ltd Corrosion inhibiting method for ballast tank
KR100466497B1 (en) * 2000-12-21 2005-01-13 주식회사 포스코 Device for manufact uring the hot strip with high seaside corrosion resistance

Also Published As

Publication number Publication date
JPS569356A (en) 1981-01-30

Similar Documents

Publication Publication Date Title
JP5119595B2 (en) Corrosion resistant steel for shipbuilding
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
JP4687531B2 (en) Steel for crude oil tank and method for producing the same
JP5861335B2 (en) Welded joint with excellent corrosion resistance
KR20040076818A (en) Crude oil tank having welding coupling excellent in corrosion resistance
JPH0244896B2 (en)
JP4506244B2 (en) Steel for bottom plate of crude oil tank
JP4325421B2 (en) Seawater resistant
WO2020138490A1 (en) Weld structure and method for producing same
JPS6032709B2 (en) P-containing high weldability corrosion resistant steel
JP3576472B2 (en) Welding material for low carbon martensitic stainless steel and arc welding method for low carbon martensitic stainless steel
KR850001766B1 (en) Phosphirous containing seawater-resistance steel of improved weldability
CA2085095A1 (en) Line pipe having good corrosion-resistance and weldability
JP2002266052A (en) Marine steel having excellent coating film life property
JP2001107180A (en) Corrosion resistant steel for oil loading tank
JP2003105487A (en) Corrosion resistant steel sheet for tank having excellent corrosion resistance in weld zone, and welding method therefor
JP2011094184A (en) Highly corrosion resistant painted steel
GB2247246A (en) Process for producing highly corrosion-resistant low-alloy steel for line pipe
JP3854554B2 (en) Submerged arc welding method for austenitic stainless steel with excellent resistance to sulfuric acid corrosion and pitting corrosion
JP2011162849A (en) Zinc primer-coated corrosion resistant steel material
JP2002012940A (en) Corrosion resistive steel for tank loading oil and its production method
KR100264362B1 (en) Sea water corrosion resistant steel suitable for hot and wet environments and method of manufacturing the same
JP4224347B2 (en) Submerged arc welding method for steel for crude oil tank
JPS61136662A (en) Austenitic stainless steel having superior resistance to stress corrosion cracking
JP2575250B2 (en) Line pipe with excellent corrosion resistance and weldability