JPS6032693B2 - Continuous annealing furnace - Google Patents

Continuous annealing furnace

Info

Publication number
JPS6032693B2
JPS6032693B2 JP94779A JP94779A JPS6032693B2 JP S6032693 B2 JPS6032693 B2 JP S6032693B2 JP 94779 A JP94779 A JP 94779A JP 94779 A JP94779 A JP 94779A JP S6032693 B2 JPS6032693 B2 JP S6032693B2
Authority
JP
Japan
Prior art keywords
hardness
zone
furnace
plate
overaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP94779A
Other languages
Japanese (ja)
Other versions
JPS5594448A (en
Inventor
聰幸 北島
幸次郎 伊達
政明 柴田
雅教 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP94779A priority Critical patent/JPS6032693B2/en
Publication of JPS5594448A publication Critical patent/JPS5594448A/en
Publication of JPS6032693B2 publication Critical patent/JPS6032693B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は薄鋼板に焼錨処理を施すと共にこれの硬度をも
制御し得る蓮続焼鈍炉に関する。 ブリキ原板等の薄鋼板を製造する場合、薄鋼板を最終的
に冷間圧延することにより、製品の機械的特性の改善や
表面の光沢仕上げを行なっており、製鋼工程や熱間圧延
工程を経て形成される薄鋼板の原板を蓮続焼鎚炉で熱処
理した後に冷間圧延を行なっている。 従来の焼錨炉は加熱、均熱、徐冷、及び急冷帯から成り
、加熱温度や均熱時間等の暁鈍条件が製品の薄鋼板に与
える影響は極めて小さい。例えば、第1図は加熱温度を
690午0と640qoとし、これらを同時間均熱した
場合の上記従釆の焼錨炉における競錨条件と蛾鈍後の鋼
板の硬度の関係を示すグラフであり、このグラフに示す
ように競錨条件が製品に与える影響は極めて小さいので
、従来は製鋼時に鋼の成分を調整することによって製品
硬度の制御を行なっている。このため、製鋼時点での成
分のバラツキやストリップ(帯状の薄鋼板)の長手方向
の偏析、又は圧延等の途中工程での処理条件のバラッキ
がそのまま製品の硬度のバラッキとなっている。第2図
Aは従来の連続燐鈍炉で処理したブリキ用原板のコイル
間の硬度のバラッキを示し、第2図B‘まコイル状に巻
き取られたストリップの最終端部を基準
The present invention relates to a continuous annealing furnace that can perform sintering treatment on a thin steel plate and also control the hardness of the same. When manufacturing thin steel sheets such as tin plates, the final step is cold rolling to improve the mechanical properties of the product and give it a glossy surface finish. The original sheet of thin steel sheet that is formed is heat treated in a Rentsugi hammer furnace and then cold rolled. Conventional sintering furnaces consist of heating, soaking, slow cooling, and quenching zones, and the effect of dull conditions such as heating temperature and soaking time on the thin steel sheet product is extremely small. For example, Figure 1 is a graph showing the relationship between the competitive anchoring conditions in the above-mentioned subordinate anchor furnace and the hardness of the steel plate after moth dulling, when the heating temperatures were set to 690 qo and 640 qo, and these were soaked for the same time. As shown in this graph, the influence of competing anchor conditions on the product is extremely small, so conventionally the hardness of the product has been controlled by adjusting the steel components during steel manufacturing. For this reason, variations in the composition at the time of steel manufacturing, segregation in the longitudinal direction of the strip (belt-shaped thin steel plate), or variations in processing conditions during intermediate steps such as rolling directly result in variations in the hardness of the product. Figure 2A shows the variation in hardness between the coils of tin plate blanks treated in a conventional continuous phosphor furnace, and Figure 2B' is based on the final end of the strip wound into a coil.

〔0〕とした長
手方向の硬度のバラッキを示すグラフであり、従来の技
術ではこの程度の製品の硬度バラツキがあった。鋼の硬
度はFe結晶中に園溶したCの量と、Fe結晶外に析出
したCの量によって変化し、高温に加熱された鋼はその
温度に対応して固溶したCをFe中に含んでおり、これ
を急冷するとCの析出が不充分のまま常温に至るので、
徐冷した場合よりも多くの固溶Cが常温においてFe結
晶中に留まり鋼の硬度は徐冷した場合よりも高くなる。 この関係を示すと第3図に示す通りであり、図示するよ
うに均熱を完了したストリップはその温度t2に対応し
た固溶カーボン量aをFe中に含んでいる。この固溶C
は徐冷帯以降の冷却過程においてストリップ温度の低下
と共にCの固溶眼が下がるとによってFe結晶外へ析出
してくるが、連続競鎚炉ではAIに示すように冷起速度
が速いためCの析出が不充分のまま常温ら‘こ至り残存
固溶Cの量はalとなる。常温においてFe中に存在す
るこの固漆CはFeの結晶格子を歪ませて材質を硬化さ
せる作用を持っており、常温での固溶Cの量が多い程そ
の効果は大きい。図中のA2は温度82の鋼板を徐冷し
た場合の残存固溶Cの量の変化を示すグラフであり、常
温りこおいてFe中に存在する固漆Cの量はa2となる
。一方連続暁鎚の冷却過程300qC〜500qoの間
で冷却を一旦中断して低温均熱を行なうと、温度は不変
でも時間と共に固溶Cが析出することにより常温での固
溶Cが減少して材質が軟化するという過時効現象が発生
する。 この状態を示すと第3図中A3で示す通りであり、a4
で示す過時効現象により常温時の面熔Cの量はa3とな
る。この固溶Cの量a3は過時効時間を変えることによ
り、所望の量即ち所望の硬度を持つ鋼板を得ることがで
きる。本発明は上述の過時効現象を利用して競鎚炉にお
いて過時効処理を施すことにより、硬度バラツキのない
高品質の鋼板を得るようにすることを目的とし、加熱帯
と均熱帯と急冷帯とを有する連続競鈍炉の前記急冷帯と
第1次急冷帯と第1次急冷帯とに分離し、これらの急冷
帯の間に過時効処理を行なう適時効帯を設け、前記達続
焼鈍炉から送出された被焼鉾板の硬度を連続的に測定す
る硬度計からの信号と目標硬度設定器からの信号とを比
較する比較器と、前記被焼鈍板移動用のロールを駆動す
るモータの速度を前記比較器からの硬度偏差信号により
制御する速度制御器とを具え、前記被焼鈍板が前記過時
効帯を通過する時間を制御するようにしたことを特徴と
する連続暁鈍炉である。 第4図は本発明の一具体例を示す概略図であり、蓮続焼
鈍炉本体1は被焼鈍板2を加熱する加熱帯3と、この加
熱帯3において加熱された高温状態を維持する均熱帯4
と、彼燐鈍板2を急冷する1次急冷帯5及び2次急冷帯
6と、これらの急袷帯5,6の間に組み込まれた過時効
帯7とを有する。 焼鎚が終了し2次急冷帯から送出された被焼錨坂2の硬
度を連続的に測定するため非接触式の硬度計8が具えら
れている。非接触式の硬度計としては公3敗の磁気型硬
度計又は放射線型硬度計を用いる。硬度計8からの信号
は比較器9に送られ、この比較器9は目標硬度設定器1
0からの信号と比較し、硬度偏差信号△日を発信する。
硬度偏差信号△日は演算器11に送られ、ここで第4図
中12で示すように予め設定された硬度偏差△日と過時
効処理時間との関係に基づいて、過時効処理時間補正量
△tが演算される。この補正量△tは、波燐鈍板移動用
のロールを駆動するモータの速度を制御する制御器13
に送られ、速度制御信号△vに変換されて処理速度値1
4により前記モータの電圧を制御して彼暁雛板2が過時
効帯7を通過する時間を制御する。本発明の連続暁錨炉
1によって被焼錨板を熱処理した場合の一例を示すと第
5図に示す通りであり、処理速度を120mpmを基準
とし、処理速度郎ち適時効時間を変えることにより、炉
出口製品の硬度が図示するように変化した。 第6図Cは本発明の連続暁鎚炉1の加熱サイクルを従来
技術と比較して示す図であり、第6図Aに示すように加
熱帯3a、均熱帯4a徐冷帯5a及び急冷帯6aからな
る従来の連続競鎚炉laの加熱サイクルを示すと第6図
Cに破線で示す通りであり、第6図Bに示すように過時
効帯を有する本発明の連続暁鈍炉の加熱サイクルを示す
と実線で示す通りである。図示実施例では被焼鈍板2の
処理速度のみを制御することによって、適時効処理を行
なっているが、これに併わせて炉温をも制御するように
しても良い。本発明によれば、炉出側で被焼鎚板の硬度
を連続的に測定し、この測定値と目標硬度との硬度差を
速度制御系へフィードバックし、通板速度の制御によっ
て炉出側硬度を目標値に制御するようにしたので、製品
薄鋼板の硬度バラッキが減少し、より安定した品質の製
品が得られ、更に前工程での異常材、例えば製鋼段階で
の成分外れ村の熱間圧延工程での管理圧延温度外れ材等
があっても、この暁錨炉によって救済することも可能と
なった。
This is a graph showing the variation in hardness in the longitudinal direction with the value set to [0], and in the conventional technology, the hardness of the product varied to this extent. The hardness of steel changes depending on the amount of C dissolved in Fe crystals and the amount of C precipitated outside Fe crystals. Steel heated to a high temperature changes the amount of C dissolved in Fe crystals depending on the temperature. If it is rapidly cooled, it will reach room temperature without sufficient precipitation of C.
More solid solute C remains in the Fe crystal at room temperature than in the case of slow cooling, and the hardness of the steel becomes higher than in the case of slow cooling. This relationship is shown in FIG. 3, and as shown in the figure, the strip that has been soaked contains a solid solution carbon amount a corresponding to the temperature t2 in the Fe. This solid solution C
In the cooling process after the slow cooling zone, C is precipitated outside the Fe crystal as the solid solubility of C decreases as the strip temperature decreases, but in a continuous competitive hammer furnace, the cooling rate is fast as shown in AI, so C is If the precipitation of C is insufficient, the amount of solid solute C remaining at room temperature becomes al. This solid lacquer C that exists in Fe at room temperature has the effect of distorting the crystal lattice of Fe and hardening the material, and the greater the amount of solid solution C at room temperature, the greater the effect. A2 in the figure is a graph showing the change in the amount of residual solid solution C when a steel plate at a temperature of 82 is slowly cooled, and the amount of solid solution C existing in Fe when cooled at room temperature is a2. On the other hand, if cooling is temporarily interrupted between 300 qC and 500 qo during the cooling process of the continuous Akatsuki hammer and low-temperature soaking is performed, the solid solute C precipitates over time even though the temperature remains unchanged, and the solid solute C at room temperature decreases. An over-aging phenomenon occurs in which the material softens. This state is shown as A3 in Figure 3, and a4
Due to the overaging phenomenon shown by , the amount of surface melting C at room temperature becomes a3. By changing the amount a3 of solid solution C, a steel plate having a desired amount, that is, a desired hardness, can be obtained by changing the overaging time. The purpose of the present invention is to utilize the above-mentioned overaging phenomenon to perform overaging treatment in a competitive hammering furnace, thereby obtaining high quality steel sheets with no variation in hardness. The continuous annealing furnace is separated into the quenching zone, the first quenching zone, and the first quenching zone, and a suitable aging zone for performing overaging treatment is provided between these quenching zones, and the continuous annealing A comparator that compares the signal from a hardness meter that continuously measures the hardness of the plate to be annealed sent out from the furnace with the signal from the target hardness setting device, and a motor that drives the roll for moving the plate to be annealed. a speed controller for controlling the speed of the annealing according to a hardness deviation signal from the comparator, and controlling the time during which the plate to be annealed passes through the overaging zone. be. FIG. 4 is a schematic diagram showing a specific example of the present invention. tropical 4
It has a primary quenching zone 5 and a secondary quenching zone 6 for rapidly cooling the phosphor dull plate 2, and an overaging zone 7 incorporated between these quenching zones 5 and 6. A non-contact type hardness meter 8 is provided to continuously measure the hardness of the anchor slope 2 to be burned, which is sent out from the secondary quenching zone after the hammering is completed. As a non-contact type hardness tester, a magnetic type hardness tester or a radiation type hardness tester is used. The signal from the hardness meter 8 is sent to a comparator 9, and this comparator 9 is connected to the target hardness setting device 1.
It compares with the signal from 0 and sends a hardness deviation signal △day.
The hardness deviation signal △day is sent to the calculator 11, where the overaging processing time correction amount is determined based on the relationship between the hardness deviation △day and the overaging processing time set in advance as shown at 12 in FIG. Δt is calculated. This correction amount Δt is determined by the controller 13 that controls the speed of the motor that drives the roll for moving the wave phosphor plate.
is converted into a speed control signal △v and has a processing speed value of 1.
4 controls the voltage of the motor to control the time during which the chick plate 2 passes through the overaging zone 7. An example of a case where an anchor plate to be sintered is heat-treated using the continuous dawn anchor furnace 1 of the present invention is shown in FIG. , the hardness of the product at the furnace outlet changed as shown. FIG. 6C is a diagram showing the heating cycle of the continuous cold hammering furnace 1 of the present invention in comparison with the conventional technology, and as shown in FIG. The heating cycle of the conventional continuous competitive hammering furnace la consisting of 6a is shown by the broken line in FIG. The cycle is shown by a solid line. In the illustrated embodiment, appropriate aging treatment is performed by controlling only the processing speed of the plate 2 to be annealed, but the furnace temperature may also be controlled in conjunction with this. According to the present invention, the hardness of the plate to be fired is continuously measured at the exit side of the furnace, the hardness difference between this measured value and the target hardness is fed back to the speed control system, and the plate passing speed is controlled. Since the hardness is controlled to the target value, the hardness variation of the product thin steel sheet is reduced, and a product with more stable quality can be obtained. Even if there is material that deviates from the controlled rolling temperature during the inter-rolling process, it is now possible to rescue it using the Akatsuki Anchor Furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の焼鎚炉における焼鎚条件と暁鈍後の硬度
との関係を示すグラフ、第2図は従来の焼錨炉により製
造した薄鋼板のコイル間バラッキAと長手方向バラツキ
Bを示すグラフ、第3図は冷却条件と残存固熔力−ボン
量との関係を示すグラフ、第4図は本発明の連続暁鎚炉
の一例を示す概略図、第5図は過時効帯を有する本発明
の蓮続焼錨炉における処理速度則ち過時効時間と炉出口
側の製品硬度との関係を示すグラフ、第6図Aは従来の
連続焼金屯炉を示す概略図、第6図Bは本発明の蓮続焼
鎚炉を示す概略図、第6図Cは従来技術と本発明の蓮続
焼鎚炉との加熱サイクルを示すグラフである。 図面中、1は連続暁鈍炉、2は被焼鎚板、3は加熱帯、
4は均熱帯、5は1次急冷帯、6は2次急冷帯、7は過
時効帯、8は硬度計、9は比較器、10は目標硬度設定
器、11は演算器、12は速度制御器。 第l図 第2図 第3図 第4図 第5図 第6図
Figure 1 is a graph showing the relationship between hammering conditions and hardness after dulling in a conventional hammering furnace, and Figure 2 is a graph showing the inter-coil variation A and longitudinal variation B of thin steel sheets produced in a conventional hammering furnace. Fig. 3 is a graph showing the relationship between cooling conditions and residual melting strength - amount of carbon, Fig. 4 is a schematic diagram showing an example of the continuous morning hammering furnace of the present invention, and Fig. 5 is an over-aging zone. FIG. 6A is a graph showing the relationship between processing speed, i.e., overage time, and product hardness at the furnace outlet side in the Rentsugi sintering furnace of the present invention, which has a conventional continuous sintering furnace. FIG. 6B is a schematic diagram showing the Rentsugu hammer furnace of the present invention, and FIG. 6C is a graph showing the heating cycle of the conventional technology and the Rentsugi hammer furnace of the present invention. In the drawing, 1 is a continuous dulling furnace, 2 is a plate to be hammered, 3 is a heating zone,
4 is a soaking zone, 5 is a primary quenching zone, 6 is a secondary quenching zone, 7 is an overaging zone, 8 is a hardness meter, 9 is a comparator, 10 is a target hardness setting device, 11 is a calculator, 12 is a speed controller. Figure l Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1 加熱帯と均熱帯と急冷帯とを有する連続焼鈍炉の前
記急冷帯を第1次急冷帯と第2次急冷帯とに分離し、こ
れらの急冷帯の間に過時効処理を行なう過時効帯を設け
、前記連続焼鈍炉から送出された被焼鈍板の硬度を連続
的に測定する硬度計からの信号と目標硬度設定器からの
信号とを比較する比較器と、前記被焼鈍板移動用のロー
ルを駆動するモータの速度を前記比較器からの硬度偏差
信号により制御する速度制御器とを具え、前記被焼鈍板
が前記過時効帯を通過する時間を制御するようにしたこ
とを特徴とする連続焼鈍炉。
1 Overaging in which the quenching zone of a continuous annealing furnace having a heating zone, soaking zone, and quenching zone is separated into a first quenching zone and a second quenching zone, and overaging treatment is performed between these quenching zones. a comparator for comparing a signal from a hardness meter that continuously measures the hardness of the plate to be annealed sent out from the continuous annealing furnace with a signal from the target hardness setter; and a comparator for moving the plate to be annealed. and a speed controller that controls the speed of a motor that drives the roll according to the hardness deviation signal from the comparator, and controls the time during which the plate to be annealed passes through the overaging zone. continuous annealing furnace.
JP94779A 1979-01-11 1979-01-11 Continuous annealing furnace Expired JPS6032693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP94779A JPS6032693B2 (en) 1979-01-11 1979-01-11 Continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP94779A JPS6032693B2 (en) 1979-01-11 1979-01-11 Continuous annealing furnace

Publications (2)

Publication Number Publication Date
JPS5594448A JPS5594448A (en) 1980-07-17
JPS6032693B2 true JPS6032693B2 (en) 1985-07-30

Family

ID=11487863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP94779A Expired JPS6032693B2 (en) 1979-01-11 1979-01-11 Continuous annealing furnace

Country Status (1)

Country Link
JP (1) JPS6032693B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4329625A1 (en) * 1993-09-02 1995-03-09 Kabelmetal Ag Method for determining the hardness of continuous or wire-shaped material and device for carrying out the method

Also Published As

Publication number Publication date
JPS5594448A (en) 1980-07-17

Similar Documents

Publication Publication Date Title
JPS6032693B2 (en) Continuous annealing furnace
JPH052728B2 (en)
JPS6239208B2 (en)
JP2017057447A (en) Production facility and production method for high tensile strength steel plate
WO2024070279A1 (en) Continuous annealing facility, continuous annealing method, method for producing cold-rolled steel sheet, and method for producing plated steel sheet
WO2024009783A1 (en) Hot-rolled steel strip annealing method, and electromagnetic steel sheet production method using said annealing method
JPS637843B2 (en)
JP4105780B2 (en) Decarburization annealing method and apparatus for grain-oriented electrical steel sheet
JPS5941508B2 (en) Manufacturing method of titanium hot rolled sheet
JPH0380848B2 (en)
RU2262541C1 (en) Method of control of annealing metal in bell-type furnace
JPH05302126A (en) Continuous annealing device for grain-oriented silicon steel sheet
JPS61159213A (en) Method for controlling hardness of steel strip
RU2158315C1 (en) Method for controlling metal heating in hood furnace
JPH046224A (en) Method for controlling temperature of continuous annealing furnace
SU1399361A1 (en) Method of heat treatment of roll stacks in bell-type furnace
JPS59129717A (en) Direct hardening device for steel plate
SU1407978A1 (en) Method of regulating heating of metal in bell-type furnace
JPH0328320A (en) Finish annealing method for grain-oriented magnetic steel sheet
JPH0759722B2 (en) Induction heating control method during subsequent induction heating of a slab previously gas-heated
JPH04341524A (en) Production of starting sheet for surface treatment by continuous annealing
JPS62124233A (en) Method and apparatus for continuously annealing dead soft steel for deep drawing
SU396373A1 (en) METHOD OF REGULATING THE RATE OF COOLING
SU1406186A1 (en) Method of controlling the heating of roll auto-sheet steel for especially complex drawing
JPS6133884B2 (en)