JPS6032342B2 - Ceramic materials for reduction and reoxidation type semiconductor capacitors - Google Patents

Ceramic materials for reduction and reoxidation type semiconductor capacitors

Info

Publication number
JPS6032342B2
JPS6032342B2 JP52030022A JP3002277A JPS6032342B2 JP S6032342 B2 JPS6032342 B2 JP S6032342B2 JP 52030022 A JP52030022 A JP 52030022A JP 3002277 A JP3002277 A JP 3002277A JP S6032342 B2 JPS6032342 B2 JP S6032342B2
Authority
JP
Japan
Prior art keywords
reduction
porcelain
mol
capacitance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52030022A
Other languages
Japanese (ja)
Other versions
JPS53114100A (en
Inventor
範光 鬼頭
善之 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP52030022A priority Critical patent/JPS6032342B2/en
Publication of JPS53114100A publication Critical patent/JPS53114100A/en
Publication of JPS6032342B2 publication Critical patent/JPS6032342B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は母Ti03、BaZの3、Bi203、Ti0
2を主成分とし、Ni化合物を微量添加含有してなる還
元再酸化型半導体コンデンサ用磁器材料に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on the mother Ti03, BaZ3, Bi203, Ti0
The present invention relates to a ceramic material for a reduction and reoxidation type semiconductor capacitor, which contains Ni compound No. 2 as a main component and a trace amount of a Ni compound.

一般に半導体磁器コンデンサは出発原料およびその製造
法の違いによって各種の呼び名が付けられている。
Semiconductor ceramic capacitors are generally given various names depending on the starting materials and manufacturing methods.

すなわち、出発原料としては磯Ti03系およびその固
熔体系が主として用いられ、一部にはSrTi03を主
成分とする半導体磁器コンデンサも実用化されている。
これらの出発原料を基にその製造方法は各磁器の特徴を
充分に利用したもので、磁器の粒界を利用した粒界型お
よび磁器表面を利用した堰層型ならびに還元型(再酸化
型ともいう)に大別され、その使用目的、用途に応じて
その製造方法は多岐に渡っている。還元再酸化型半導体
磁器コンデンサは通常誘電体磁器を還元雰囲気中にて熱
処理して得られた半導体磁器に電極用銀ペーストを塗布
し、熱処理を行なうことにより得られるが、この熱処理
によって半導体磁器と銀電極の間に薄い誘電体層が形成
される。
That is, the Iso TiO3 system and its solid melt system are mainly used as starting materials, and some semiconductor ceramic capacitors containing SrTiO3 as a main component have also been put into practical use.
The manufacturing method based on these starting materials takes full advantage of the characteristics of each type of porcelain, and includes a grain boundary type that utilizes the grain boundaries of the porcelain, a weir layer type that utilizes the porcelain surface, and a reduced type (also known as a reoxidation type). There are a wide variety of manufacturing methods depending on the purpose and application. Reduction-reoxidation type semiconductor porcelain capacitors are usually obtained by heat-treating dielectric porcelain in a reducing atmosphere, applying silver paste for electrodes to semiconductor porcelain, and then heat-treating it. A thin dielectric layer is formed between the silver electrodes.

この薄い誘電体層はコンデンサの容量および絶縁抵抗に
寄与すると共に誘電体磁器の誘電率にも大きく依存して
いる。還元再酸化型半導体磁器コンデンサは単位面積当
りの容量を大きくすると誘電体層が薄くなり、必然的に
絶縁抵抗は低下し、逆に絶縁抵抗を高くしようとすると
譲露体層が厚くなり、単位面積当りの容量が低下すると
いう性質を有している。またこの誘電体層の容量の温度
特性は還元再酸化型半導体磁器コンデンサの容量の温度
特性としてあらわれ、還元前の誘電体磁器の温度特性曲
線と極めて類似している。すなわち、この薄い譲露体層
は還元によって得られた半導体磁器の表面が電極形成時
の熱処理により再び酸化されて形成されたものと推定さ
れ、誘電体磁器の温度特性あるいは誘電率により台きく
左右されるものである。また半導体磁器表面を薄く均質
に譲電体層化するためには、誘電体磁器表面が均質で、
なおかつ数山以下の粒子よりなることが必要である。こ
のように温度に対する容量の変化が少なく、高い絶縁抵
抗を有し、あわせて大容量の還元再酸化型半導体磁器コ
ンデンサを得るためには、誘電率が大きく、温度に対す
る誘電率の変化が少なく、なおかつ磁器表面が数一以下
の均質が小粒子よりなる誘電体磁器であること、銀電極
を還元磁器表面に形成させる際の熱処理温度で磁器表面
層を容易に誘電体層化させ得ることなどの要件を充たす
磁器材料が得られなければならない。
This thin dielectric layer contributes to the capacitance and insulation resistance of the capacitor, and is also highly dependent on the dielectric constant of the dielectric ceramic. In reduction and reoxidation type semiconductor ceramic capacitors, when the capacitance per unit area is increased, the dielectric layer becomes thinner and the insulation resistance inevitably decreases.On the other hand, when trying to increase the insulation resistance, the conductor layer becomes thicker and the unit area becomes thinner. It has the property that the capacity per area decreases. Further, the temperature characteristic of the capacitance of this dielectric layer appears as the temperature characteristic of the capacitance of the reduction-reoxidation type semiconductor ceramic capacitor, and is extremely similar to the temperature characteristic curve of the dielectric ceramic before reduction. In other words, it is presumed that this thin conductor layer was formed when the surface of the semiconductor porcelain obtained by reduction was oxidized again during the heat treatment during electrode formation. It is something that will be done. In addition, in order to form a thin and homogeneous conductor layer on the semiconductor porcelain surface, the dielectric porcelain surface must be homogeneous,
Furthermore, it is necessary that the particles consist of several peaks or less. In order to obtain a reduction-reoxidation type semiconductor ceramic capacitor with small capacitance change with temperature, high insulation resistance, and large capacity, it is necessary to have a large dielectric constant and a small change in dielectric constant with temperature. In addition, the porcelain surface is a dielectric porcelain consisting of homogeneous small particles of a few 1 or less, and the porcelain surface layer can be easily formed into a dielectric layer at the heat treatment temperature used when forming a silver electrode on the surface of the reduced porcelain. A porcelain material that meets the requirements must be obtained.

従来から還元再酸化型半導体コンデンサ用磁器材料は特
許公報や文献などに多く示され、また実用化されている
が、容量の温度特性を土20〜30%以内にしたとき誘
電体磁器の誘電率は3000〜5000と低い。
Conventionally, many reduction and reoxidation type ceramic materials for semiconductor capacitors have been disclosed in patent publications and literature, and have been put into practical use. is as low as 3000-5000.

また還元再酸化型半導体磁器の容量の温度特性と誘電体
磁器の容量の温度特性におけるキューl′‐点が30〜
4000異なるものであり、従来の大容量で高い絶縁抵
抗をもつ還元再酸化型半導体コンデンサでは、温度に対
する容量の変化率の極めて大きいものであった。本発明
は近年の電子機器の小型化、品質安定化にともなう部品
の小型化と高品質化の要求に対してなされたもので、従
来の欠点を除き、温度に対する容量変化率を±30%以
内と小さく、なおかつ高い絶縁抵抗を有する還元再酸化
型半導体コンデンサを得るために誘電体磁器は表面均質
層で、かつ均質な数仏以下の粒径を持ち、誘電率が60
00〜8000と高い磁器材料を提供するものである。
In addition, the cue l'-point in the temperature characteristics of the capacitance of the reduction-reoxidation type semiconductor ceramic and the temperature characteristic of the capacitance of the dielectric ceramic is 30 ~
Conventional reduction-reoxidation semiconductor capacitors with large capacitance and high insulation resistance had an extremely large rate of change in capacitance with respect to temperature. The present invention was made in response to the demand for smaller parts and higher quality due to the recent miniaturization and quality stabilization of electronic devices.It eliminates the conventional drawbacks and maintains a capacitance change rate with temperature within ±30%. In order to obtain a reduction and reoxidation type semiconductor capacitor that is small and has high insulation resistance, the dielectric porcelain has a surface homogeneous layer, a homogeneous grain size of less than a few feet, and a dielectric constant of 60.
It provides porcelain materials with high grades ranging from 0.00 to 8000.

すなわち、本発明は(1−m−n)(x母Ti03十y
BaZの3)十mBi203十nTi02(ただし、x
=0.99〜0.80、yニ0.01〜0.20、mニ
0.01〜3.0モル%、n=0.1〜8.0モル%)
にNi化合物をNi0に換算して0.032〜2.37
6モル%添加含有した磁器材料にかかるものである。従
来、還元再酸化型半導体磁器コンデンサ用磁器材料への
添加剤としてMn化合物が主として用いられており、例
えば第1表の試料番号2〜7の組成にNi○をMn0に
置き換え適量添加したものについては容量の温度特性を
±30%以内に納めるためには譲露体磁器の誘電率が約
500の壁度しか得られず、コンデンサの絶縁抵抗を1
00MO′の以上にするには面積容量0.3りF/地が
限界となる。
That is, the present invention provides (1-m-n)(x mother Ti03
3) Ten mBi203 ten nTi02 (however, x
= 0.99 to 0.80, y 0.01 to 0.20, m 0.01 to 3.0 mol%, n = 0.1 to 8.0 mol%)
The Ni compound is converted to Ni0 and is 0.032 to 2.37.
This applies to a porcelain material containing 6 mol%. Conventionally, Mn compounds have been mainly used as additives to ceramic materials for reduction-reoxidation type semiconductor ceramic capacitors. For example, in the compositions of sample numbers 2 to 7 in Table 1, Ni○ was replaced with Mn0 and an appropriate amount was added. In order to keep the temperature characteristics of the capacitor within ±30%, the permittivity of the ceramic material must be only about 500, and the insulation resistance of the capacitor must be reduced to 1.
In order to make it more than 00 MO', the limit is an areal capacity of 0.3 F/ground.

これに対して、本発明にかかる磁器材料におけるNi化
合物の添加は小型で大容量の還元再酸化型半導体磁器コ
ンデンサの特性改善に顕著な効果を示すものであり、0
.015重量%のNj化合物の添加では数MO′嫌の絶
縁抵抗で単位面積容量0.42wF/ののものが、0.
12重量%のNi化合物添加により単位面積容量は0.
41仏F/のと殆んど変らないが、絶縁抵抗は約15M
Q/のと飛躍的に改善された磁器材料が得られたのであ
る。以下、本発明を実施例について詳細に説明する。
On the other hand, the addition of Ni compounds to the ceramic material according to the present invention has a remarkable effect on improving the characteristics of small-sized, large-capacity reduction-reoxidation type semiconductor ceramic capacitors, and
.. With the addition of 0.15% by weight of Nj compound, the insulation resistance of several MO's and the unit area capacity of 0.42 wF/ were reduced to 0.01% by weight.
By adding 12% by weight of Ni compound, the unit area capacity became 0.
It is almost the same as 41F/, but the insulation resistance is about 15M.
A porcelain material dramatically improved from that of Q/ was obtained. Hereinafter, the present invention will be described in detail with reference to examples.

試料は次のようにして作成した。The sample was prepared as follows.

すなち、等モル比の母C03とTi02を混合して、こ
れを1150℃で2時間仮焼し、この反応物を粉砕して
&Ti03を作成する。同様にして、等モル比の欧C0
3とZr02を混合して、これを1200q0で2時間
仮暁し、この反応物を粉砕してBaZr03を得る。弦
Ti03、欧Zの3、Ti02、Bi02およびNi化
合物を各々所要の組成となるよう秤量し、これらをポッ
トミルにて約1筋寺間湿式混合する。混合後脱水乾燥し
、ポリビニールアルコールなどの有機バインダーを約2
.5重量%添加して整粒し、1000k9/彬の圧力で
直径16肋で、厚み0.6柳に成形する。次いで成形さ
れた円板を1300q0で2時間本焼成する。このよう
にして得られた議露体磁器を100000の温度で水素
10%、窒素90%の還元雰囲気中で2時間熱処理して
半導体磁器を得る。この半導体磁器に電極用銀ペースト
を塗布し、650〜800qoで30分間酸化雰囲気中
で熱処理を行ない還元再酸化型半導体コンデンサを製作
した。上記方法により製作したコンデンサの諸特性を第
1表に示す。
That is, &Ti03 is produced by mixing mother C03 and Ti02 in an equimolar ratio, calcining the mixture at 1150° C. for 2 hours, and pulverizing the reactant. Similarly, the equimolar ratio of European C0
3 and Zr02 are mixed, the mixture is suspended at 1200q0 for 2 hours, and the reaction product is pulverized to obtain BaZr03. String Ti03, Europe Z3, Ti02, Bi02, and Ni compounds are each weighed to give the desired composition, and wet mixed in a pot mill for about 1 minute. After mixing, dehydrate and dry, add about 20% of organic binder such as polyvinyl alcohol.
.. Add 5% by weight, size the particles, and mold them into a willow shape with a diameter of 16 ribs and a thickness of 0.6 cm under a pressure of 1000 k9/square. Next, the formed disc is fired for 2 hours at 1300q0. The thus obtained ceramic body is heat treated at a temperature of 100,000 ℃ for 2 hours in a reducing atmosphere containing 10% hydrogen and 90% nitrogen to obtain semiconductor porcelain. A silver paste for electrodes was applied to this semiconductor ceramic and heat treated in an oxidizing atmosphere at 650 to 800 qo for 30 minutes to produce a reduction and reoxidation type semiconductor capacitor. Table 1 shows the characteristics of the capacitor manufactured by the above method.

第 1 表 なお試料測定に際し、容量および誘電正暖は周波数lk
Hz、電圧0.1Vrmsで、絶縁抵抗は15VDCの
電圧を19秒印加後測定した。
Table 1 Note that when measuring the sample, the capacitance and dielectric positive temperature are determined by the frequency lk
The insulation resistance was measured after applying a voltage of 15 VDC for 19 seconds at Hz and a voltage of 0.1 Vrms.

また容量の温度特性は2500の容量を基準として−3
0千0および十85qoにおける容量変化率である。第
1表において試料番号2〜7、9〜1315〜1922
〜28は本発明に係るものであり、試料番号1、8、1
4、20、21、29は比較のために本発明の範囲外の
ものである。
Also, the temperature characteristics of the capacity are -3 based on the capacity of 2500.
This is the rate of change in capacity at 0,000 and 185 qo. Sample numbers 2-7, 9-1315-1922 in Table 1
~28 are related to the present invention, and sample numbers 1, 8, 1
4, 20, 21, and 29 are outside the scope of the present invention for comparison.

本発明にかかる磁器材料は第1表および図で明らかなよ
うに還元再酸化型半導体コンデンサとして非常に優れた
特性を有している。
As is clear from Table 1 and the figures, the ceramic material according to the present invention has very excellent characteristics as a reduction-reoxidation type semiconductor capacitor.

例えば、第1表中の試料番号5は0.41rF/地の面
積容量に対して絶縁抵抗は約150MQ′めであり、容
量の温度特性も±20%以内と従来の半導体コンデンサ
として飛躍的な特性改善がなされている。すなわち、非
常に大きな単位面積当りの容量を維持しながら高い絶縁
抵抗および温度に対する容量変化率の4・さいという優
れた特性が特徴となっている。これは誘電体磁器の誘電
率が極めて大きいことに起因している。このため従来の
還元再酸化型半導体コンデンサと薄誘電体の厚みを同一
または厚いものに設定しても、その誘電率が高いため単
位面積当りの容量を大きく取り得るものである。また図
面に示す如く誘電体磁器Aと還元再酸化型半導体コンデ
ンサBの容量の温度特性は非常に類似したものであり、
キューリー点も100C以内の相違となっている。これ
は従来からいわれている還元再酸化型半導体コンデンサ
の薄議露体層が還元前の誘電体磁器に非常に類似したこ
とを示しており、還元された半導体磁器の表面が再び酸
化されて元の議題体に戻ったことを示しているものであ
る。本発明における組成限定範囲の理由は以下の理由に
よる。{1} BaTi03のみであっても容量、絶縁
抵抗の良好な特性が得られるが、キューリー点が高温に
あるため容量の温度特性の平坦なものが得にくい。
For example, sample number 5 in Table 1 has an areal capacitance of 0.41 rF/ground, and an insulation resistance of approximately 150 MQ', and the temperature characteristics of the capacitance are also within ±20%, which is a dramatic characteristic for a conventional semiconductor capacitor. Improvements have been made. That is, it is characterized by excellent characteristics such as high insulation resistance while maintaining a very large capacitance per unit area, and a capacitance change rate with respect to temperature of 4. This is due to the extremely high dielectric constant of dielectric ceramic. Therefore, even if the thickness of the thin dielectric is set to be the same or thicker than that of a conventional reduction-reoxidation semiconductor capacitor, the capacitance per unit area can be increased because of its high dielectric constant. Furthermore, as shown in the drawing, the temperature characteristics of the capacitance of the dielectric ceramic A and the reduction-reoxidation semiconductor capacitor B are very similar.
The Curie points also differ within 100C. This shows that the thin exposed layer of the conventional reduction-reoxidation type semiconductor capacitor is very similar to the dielectric porcelain before reduction, and the surface of the reduced semiconductor porcelain is oxidized again. This shows that the government has returned to its agenda. The reason for the limited composition range in the present invention is as follows. {1} Good capacitance and insulation resistance characteristics can be obtained even with BaTi03 alone, but since the Curie point is at a high temperature, it is difficult to obtain a flat capacitance temperature characteristic.

しかるに、母Ti03をBaZr03で樽検することに
より、キューリ−点を舷Zの31モル%当り6〜8℃低
温側に移動さすことができる。このためBaZr03を
20モル%BaTi03に置換するとキューリー点は0
℃近傍またはそれ以下となるが、容量、絶縁抵抗は第1
表に示したように不都合はない。しかし容量の温度特性
で高温側の変化率が大きくなり好ましくない。このため
容量の温度特性を±20%以内とするには母Zの3を磯
Tj03に10%程度置換するのが最適である。本発明
で欧Zの3のBaTi03に対する置換量を20モル%
を限度とした。またBaZr03が1モル%未満ではキ
ューリ−点が高く容量の温度特性が±20%を越え好ま
しくない。■ Ni化合物をNi0に換算して0.03
2モル%未満では容量に対して絶縁抵抗が低く、本発明
の特徴である大容量、高い絶縁抵抗という効果が認めに
くいためである。Ni0は0.380〜0.475モル
%程度の添加量が最適であることは第1表で明らかであ
る。0.380〜0.475モル%添加の誘電体磁器は
黄色であるが、0.951〜1.268モル%では黄緑
色で、1.班5モル%を越えるとうす緑色となり、2.
376モル%では濃い緑色に変わり異常生長がややみら
れ、3.169モル%添加すると磁器粒子が完全に異常
生長するため不可であり、磁器粒径より2.376モル
%が限度である。
However, by barrel-testing the mother TiO3 with BaZrO3, the Curie point can be moved to the lower side by 6 to 8°C per 31 mol% of the armature Z. Therefore, when BaZr03 is replaced with 20 mol% BaTi03, the Curie point becomes 0.
The temperature will be around ℃ or below, but the capacitance and insulation resistance will be the first.
As shown in the table, there are no inconveniences. However, due to the temperature characteristics of the capacitance, the rate of change on the high temperature side becomes large, which is not preferable. Therefore, in order to keep the temperature characteristic of the capacitance within ±20%, it is optimal to replace 3 of the base Z with Iso Tj03 by about 10%. In the present invention, the substitution amount of 3 in Europe for BaTi03 is 20 mol%.
is the limit. Moreover, if BaZr03 is less than 1 mol%, the Curie point is high and the temperature characteristic of capacity exceeds ±20%, which is not preferable. ■ Ni compound converted to Ni0 is 0.03
This is because if it is less than 2 mol %, the insulation resistance is low relative to the capacity, and the effects of large capacity and high insulation resistance, which are the characteristics of the present invention, are difficult to recognize. It is clear from Table 1 that the optimum amount of Ni0 to be added is about 0.380 to 0.475 mol%. Dielectric porcelain with addition of 0.380 to 0.475 mol% is yellow, but with addition of 0.951 to 1.268 mol%, it is yellow-green; When the amount exceeds 5 mol%, the color becomes light green, and 2.
At 376 mol%, the color turns dark green and some abnormal growth is observed, and when 3.169 mol% is added, the porcelain particles completely grow abnormally, so it is not acceptable, and the limit is 2.376 mol% based on the porcelain particle size.

また3.169モル%添加では数100k○一切の比抵
抗を示し、還元前に半導体化してしまい良くない。なお
、Ni化合物はNi2Q、NiC03、NjS04、N
i(N03)などが考えられ、Ni0に換算して0.0
32〜2.376モル%添加範囲で用いても良く、Ni
0に限定するものでない。■ B1203の添加は0.
01モル%未満では誘電体磁器焼成時に一部半導体化し
、粒子が成長するため所望粒径で均質な誘電体磁器が得
られない。
Further, when 3.169 mol % is added, a resistivity of several hundred kilograms is exhibited, which is not good because it becomes a semiconductor before being reduced. Note that the Ni compounds include Ni2Q, NiC03, NjS04, N
i(N03) etc., converted to Ni0 is 0.0
It may be used in the addition range of 32 to 2.376 mol%, and Ni
It is not limited to 0. ■ Addition of B1203 is 0.
If it is less than 0.01 mol %, part of the dielectric porcelain will become semiconducting during firing, and the particles will grow, making it impossible to obtain a homogeneous dielectric porcelain with the desired grain size.

Bi2031.0モル%程度が最液量であり、3.0モ
ル%を越えると譲霞体磁器焼成時にBi203の蒸発量
が多くなり、磁器組成の不均質分布が起り、ソリが発生
しやすくなる。また還元後の磁器がもろく、極端な場合
還元炉からの取り出し時点で破損している場合がある。
Bj02は誘電体磁器の容量の温度特性の平坦化に寄与
するばかりでなく、キューリー点の移動効果をも有する
もので、Bi203の添加量が2.5モル%まで増加す
ると、その量に応じてキューリ−点が低温側に移動し、
2.5〜3.0モル%ではキューリー点の移動は停止し
て、3.0モル%を越えるとその点より高温側に移動が
はじまる効果を有する。{4’ またTi02の添、加
はBaTi03に対するチタンリッチという考え方にと
どまらず、Ti02を添加することにより譲霞体磁器の
焼成温度を低くさせ、容量の温度特性の平坦化に大きな
影響をおよぼす効果がある。
Approximately 1.0 mol% of Bi203 is the maximum liquid amount, and if it exceeds 3.0 mol%, the amount of evaporation of Bi203 will increase during firing of Yukatai porcelain, causing non-uniform distribution of the porcelain composition and causing warpage. . Furthermore, the porcelain after reduction is brittle, and in extreme cases may be damaged when taken out from the reduction furnace.
Bj02 not only contributes to flattening the temperature characteristics of the capacitance of dielectric ceramics, but also has the effect of shifting the Curie point, and when the amount of Bi203 added increases to 2.5 mol%, The Curie point moves to the lower temperature side,
At 2.5 to 3.0 mol %, the Curie point stops moving, and when it exceeds 3.0 mol %, it has the effect of starting to move to a higher temperature side from that point. {4' Also, the addition of Ti02 is not limited to the idea of titanium richness compared to BaTi03, but the addition of Ti02 lowers the firing temperature of Yukata porcelain, and has the effect of having a large effect on flattening the temperature characteristics of the capacitance. There is.

また還元においてもTi02の添加により比抵抗の低下
、還元温度の低下など著しい効果がみられ、2.5モル
%程度が最適添加量である。しかし、Ti02の添加量
が0.1モル%未満であっても還元時の比抵抗および還
元温度の低下に効果はあるが、容量の温度特性の平坦化
が図れない。また8.0モル%を越えると容量の温度特
性は極めて平坦となるが、誘電体磁器の譲蟹率はそれに
比例して低下するとともに、磁器表面に巨大異常生長粒
子が出現して粒子径が不均一となり、絶縁抵抗の低下要
因となり好ましくない。以上述べたように本発明にかか
る脇Ti03、母Zの3、Bi203、Ti02の組成
にNi化合物を添加することを特徴とした磁器材料より
なる還元再酸化型半導体コンデンサは、絶縁抵抗が高く
、温度に対する容量変化率が小さく、しかも大容量であ
るという優れた特性を有するもので、電子部品の小型化
、高安定化を求める時代の要求に充分そうものであり、
工業的価値大なるものがある。
Also, in reduction, the addition of Ti02 has remarkable effects such as lowering the specific resistance and reducing temperature, and the optimum addition amount is about 2.5 mol%. However, even if the amount of Ti02 added is less than 0.1 mol %, it is effective in lowering the specific resistance and reduction temperature during reduction, but the temperature characteristics of the capacity cannot be flattened. Moreover, when it exceeds 8.0 mol%, the temperature characteristics of the capacitance become extremely flat, but the yield rate of the dielectric ceramic decreases proportionally, and giant abnormally grown particles appear on the porcelain surface, causing the particle size to decrease. This is undesirable as it becomes non-uniform and causes a decrease in insulation resistance. As described above, the reduction and reoxidation semiconductor capacitor made of a ceramic material characterized by adding a Ni compound to the composition of side Ti03, mother Z3, Bi203, and Ti02 according to the present invention has high insulation resistance, It has the excellent characteristics of a small capacitance change rate with respect to temperature and a large capacity, and it seems to be sufficient to meet the demands of the times for miniaturization and high stability of electronic components.
It has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

図は第1表の試料番号5の温度に対する容量変化を示す
特性図で、誘電体磁器Aと還元再酸化型半導体コンデン
サBとの比較である。
The figure is a characteristic diagram showing the capacitance change with respect to temperature of sample number 5 in Table 1, and is a comparison between dielectric ceramic A and reduction-reoxidation type semiconductor capacitor B.

Claims (1)

【特許請求の範囲】 1 (1−m−n)(xBaTiO_3+yBaZrO
_3)+mBi_2O_3+nTiO_2の組成物にN
i化合物をNiOに換算して0.032〜2.376モ
ル%含有させたことを特徴とする還元再酸化型半導体コ
ンデンサ用磁器材料。 ただし、x=0.99〜0.8 y=0.01〜0.2(x+y=1) m=0.0001〜0.03 n=0.001〜0.08
[Claims] 1 (1-m-n)(xBaTiO_3+yBaZrO
_3) +mBi_2O_3+nTiO_2 composition
A ceramic material for a reduction and reoxidation type semiconductor capacitor, characterized in that it contains an i-compound in an amount of 0.032 to 2.376 mol% in terms of NiO. However, x=0.99~0.8 y=0.01~0.2 (x+y=1) m=0.0001~0.03 n=0.001~0.08
JP52030022A 1977-03-17 1977-03-17 Ceramic materials for reduction and reoxidation type semiconductor capacitors Expired JPS6032342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52030022A JPS6032342B2 (en) 1977-03-17 1977-03-17 Ceramic materials for reduction and reoxidation type semiconductor capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52030022A JPS6032342B2 (en) 1977-03-17 1977-03-17 Ceramic materials for reduction and reoxidation type semiconductor capacitors

Publications (2)

Publication Number Publication Date
JPS53114100A JPS53114100A (en) 1978-10-05
JPS6032342B2 true JPS6032342B2 (en) 1985-07-27

Family

ID=12292200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52030022A Expired JPS6032342B2 (en) 1977-03-17 1977-03-17 Ceramic materials for reduction and reoxidation type semiconductor capacitors

Country Status (1)

Country Link
JP (1) JPS6032342B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129972U (en) * 1986-02-13 1987-08-17
JPS6468211A (en) * 1987-09-07 1989-03-14 Magata Fuji Kasei Kk Color-changeable container of synthetic resin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201107267A (en) * 2009-08-21 2011-03-01 Darfon Electronics Corp Ceramic powder composition, ceramic material and laminated ceramic capacitor made of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129972U (en) * 1986-02-13 1987-08-17
JPS6468211A (en) * 1987-09-07 1989-03-14 Magata Fuji Kasei Kk Color-changeable container of synthetic resin

Also Published As

Publication number Publication date
JPS53114100A (en) 1978-10-05

Similar Documents

Publication Publication Date Title
US4978646A (en) Capacitors and high dielectric constant ceramics therefor
KR910002185B1 (en) Low temp fired dielectric ceramic composition with flat tc charasteristic and method of making
JP2594320B2 (en) Dielectric ceramic composition
JP4730796B2 (en) Method for producing dielectric ceramic raw material powder and dielectric ceramic composition
JPS6032342B2 (en) Ceramic materials for reduction and reoxidation type semiconductor capacitors
JPH10297967A (en) Dielectric ceramic composition with high dielectric constant and its production
JP2004022611A (en) Layered ceramic capacitor and method for manufacturing the same
JP2020152630A (en) Method for preparing dielectric having low dielectric loss and dielectric prepared thereby
JPS6230483B2 (en)
JPS6230481B2 (en)
JP3562085B2 (en) Dielectric ceramic composition, capacitor using the same, and method for producing dielectric ceramic composition
JP2734910B2 (en) Method for producing semiconductor porcelain composition
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JPS6230482B2 (en)
JP2762831B2 (en) Method for producing semiconductor porcelain composition
JP2734888B2 (en) Method for producing semiconductor porcelain composition
JP2936876B2 (en) Semiconductor porcelain composition and method for producing the same
JPH06102573B2 (en) Composition for reduction / reoxidation type semiconductor ceramic capacitor
US5262369A (en) Dielectric ceramic compositions
JP3404859B2 (en) Manufacturing method of dielectric
JP2900687B2 (en) Semiconductor porcelain composition and method for producing the same
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JPH02157155A (en) Production of dielectric ceramics composition of high permittivity
JP2773479B2 (en) Grain boundary insulated semiconductor porcelain material and method of manufacturing the same