JPS6031898A - Control apparatus of digestion tank - Google Patents

Control apparatus of digestion tank

Info

Publication number
JPS6031898A
JPS6031898A JP58140971A JP14097183A JPS6031898A JP S6031898 A JPS6031898 A JP S6031898A JP 58140971 A JP58140971 A JP 58140971A JP 14097183 A JP14097183 A JP 14097183A JP S6031898 A JPS6031898 A JP S6031898A
Authority
JP
Japan
Prior art keywords
sludge
amount
methane gas
digestion
digestion tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58140971A
Other languages
Japanese (ja)
Inventor
Hideaki Deguchi
出口 英昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58140971A priority Critical patent/JPS6031898A/en
Publication of JPS6031898A publication Critical patent/JPS6031898A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PURPOSE:To obtain a stable methane gas generating amount, by providing an estimating operation apparatus of methane gas generated in a digestion tank and an operation apparatus for outputting a control signal on the basis of the comparative operation of the estimated value and the methane gas generating amount in the digestion tank. CONSTITUTION:The amount and concn. of sludge charged into a digestion tank 1 in the preceding time are measured by a charged sludge flow meter 8 and a charged sludge densitometer 7 and the measured values are inputted to an estimating operation apparatus 11 where the amount of a sludge solid substance is calculated to input the estimated methane gas generating amount of charged sludge to a comparing operation apparatus 13. Digestion gases from the digestion tank 1 and a digestion tank 2 due to the preceding sludge charging result are sent to a gas tank 4 but the concn. of the methane gas and the flow amount thereof in the digestion gas are measured by a digestion gas meter 9 and the measured values are inputted to a generation amount operation apparatus 12. In this case, a methane gas amount during a determined time from the preceding sludge charging to this time sludge charging is inputted to a calculation and comparison operating apparatus 13.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は下水処理場における汚泥消化槽の制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a control device for a sludge digestion tank in a sewage treatment plant.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

下水処理場の水処理施設からの生汚泥及び余剰汚泥は濃
縮槽で濃縮され汚泥消化槽に投入される投入された汚泥
は、消化槽において嫌気性菌の働きにより汚泥中の有機
物が分解されメタンガス及び炭酸ガスとしてガス化され
貯留タンクに導かれ燃料として使用される。また消化さ
れた汚泥は消化槽より引抜かれ脱水設備などに送られる
。本嫌気性菌の分解反応において重要である嫌気性菌中
のメタン生成菌は、温度、イオン化濃度等によって非常
に影響の受けやすいものである。温度制御に関しては、
消化槽に保温材を施行するなどし、断熱状態をよくして
おけば通常に加温するかぎり、特別の制御は必要としな
い。また投入汚泥そのもののイオン化濃度が変動する場
合は前傾ってイオン化濃度調整をしておく必要がある。
Raw sludge and surplus sludge from the water treatment facility of a sewage treatment plant are concentrated in a thickening tank and then fed into a sludge digestion tank.In the digestion tank, the organic matter in the sludge is decomposed by the action of anaerobic bacteria, resulting in methane gas. It is then gasified as carbon dioxide gas, led to a storage tank, and used as fuel. Digested sludge is extracted from the digestion tank and sent to dewatering equipment. Methane-producing bacteria among the anaerobic bacteria, which are important in the decomposition reaction of the anaerobic bacteria, are extremely susceptible to temperature, ionization concentration, etc. Regarding temperature control,
As long as the digestion tank is well insulated, such as by installing heat insulators, no special controls are required as long as it is heated normally. In addition, if the ionization concentration of the input sludge itself fluctuates, it is necessary to adjust the ionization concentration by tilting forward.

最も重要な事は消化槽における消化状態によるイオン化
濃度が変動する事である。即ち消化槽に対する負荷が高
くなると第一消化段階の分解で生ずる脂肪酸濃度が高く
なり、消化槽内のイオン化濃度が酸性となり、メタン生
成菌の活性が低下、メタンガス発生量が低下することに
なる。従って消化槽に対してメタン生成菌が効率よく反
応できるように消化槽に対する負荷量を制御することは
非常に重要なこととなる。
The most important thing is that the ionization concentration varies depending on the state of digestion in the digester. That is, as the load on the digestion tank increases, the concentration of fatty acids produced by decomposition in the first digestion stage increases, the ionization concentration in the digestion tank becomes acidic, the activity of methane-producing bacteria decreases, and the amount of methane gas generated decreases. Therefore, it is very important to control the amount of load on the digester so that the methanogens can react efficiently with the digester.

従来の投入汚泥量の制御方法は特に制御されているわけ
ではなく、消化槽の容量を設計する際に用いられた数値
により消化日数を定め、計画流量□ガス流量計が設置さ
れてはいない。従って消化状況が正常であるは判断され
ていなかった。
The conventional method of controlling the amount of sludge input is not particularly controlled, and the number of days for digestion is determined by the numerical value used when designing the capacity of the digester, and a gas flow meter is not installed. Therefore, it was not determined that the digestive status was normal.

現在下水処理場における省エネルギー問題として、消化
ガスを利用したガスエンジンによる発電機又は動力駆動
にと、その効果が期待されている。
Currently, as an issue of energy conservation in sewage treatment plants, the use of generators or power drives using gas engines that utilize digestion gas is expected to be effective.

その効果を充分に発揮するためには消化ガス量即ちメタ
ンガスを安定して得ることでありメタンガス量が増すこ
とは消化汚泥としても有機物の含有率が下がり、容量と
しても減少し、脱水機設備の容量及び注入薬品量もへる
ことなり期待されていた。
In order to fully demonstrate its effect, it is necessary to stably obtain the amount of digestion gas, that is, methane gas. An increase in the amount of methane gas means that the content of organic matter in the digested sludge will decrease, and the capacity will also decrease. It was expected that the volume and amount of chemicals injected would also be reduced.

〔発明の目的〕[Purpose of the invention]

本発明は以上の欠点を除去するもので、消化槽より発生
するメタンガス量を測定することにより消化槽の状況を
判断し投入汚泥量を制御し、安定な量の消化ガスを得ら
れ、汚泥の減量化を促進することを目的とする。
The present invention aims to eliminate the above-mentioned drawbacks, and by measuring the amount of methane gas generated from the digester, the situation of the digester can be judged and the amount of sludge input can be controlled, and a stable amount of digested gas can be obtained. The purpose is to promote weight loss.

〔発明の概要〕[Summary of the invention]

本発明は汚泥中の有機物を嫌気性菌の働きによって分解
し液化及びガス化する消化槽と、この消化槽に投入され
る汚泥の固形物量を測定する投入汚泥流量針と、この投
入汚泥流量針から出力される流量及び前記汚泥の濃度に
よって消化槽に発生するメタンガス量を予測演算する予
測演算装置と、消化槽から発生したメタンガスの流量を
計測する消化ガス流量計と、このメタンガスの濃度を計
測するメタンガス濃度針と、このメタンガス濃度計から
の濃度信号及び消化ガス流量針からの流量信号によって
発生したメタンガス量を演算する発生量演算装置と、こ
の発生量演算装置の実出力信号及び予測演算装置の出力
である予測出力信号とを入力して比較演算し制御信号を
出力する比較演算装置とからなる消化槽制御装置であり
、汚泥中の有機物を嫌気性菌の働きによって分解し液化
及びガス化する消化槽において、消化槽に投入される汚
泥の固形物量を測定し消化槽より発生してくるメタンガ
ス量を予測する演算装置と、その発生量と、実際に消化
槽より発生したメタンガス量を比較しメタンガス発生量
の差に応じて今回投入する汚泥量を制御するようにした
消化槽制御装置である。
The present invention provides a digestion tank that decomposes, liquefies and gasifies organic matter in sludge through the action of anaerobic bacteria, an input sludge flow rate needle that measures the amount of solid matter in sludge input into the digestion tank, and this input sludge flow rate needle. a prediction calculation device that predicts and calculates the amount of methane gas generated in the digestion tank based on the flow rate output from the sludge and the concentration of the sludge; a digestion gas flowmeter that measures the flow rate of methane gas generated from the digestion tank; and a digestion gas flow meter that measures the concentration of this methane gas. a methane gas concentration needle, a generation amount calculation device that calculates the amount of methane gas generated based on the concentration signal from the methane gas concentration meter and the flow rate signal from the digestion gas flow rate needle, and an actual output signal and prediction calculation device of the generation amount calculation device. This digester control device consists of a comparison calculation device that inputs the predicted output signal, which is the output of the A calculation device that measures the amount of solid matter in the sludge put into the digester and predicts the amount of methane gas generated from the digester, and compares the amount generated with the amount of methane gas actually generated from the digester. This is a digester control device that controls the amount of sludge to be input at this time according to the difference in the amount of methane gas generated.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例について説明する。第1図は汚泥中
の有機物を嫌気性菌の働きによって分解し液化及びガス
化する消化槽1と、消化槽lに投入される汚泥の固形物
量を測定する投入汚泥流量計7と、投入汚泥流量計7か
ら出力される流量及び汚泥の濃度によって消化槽1に発
生するメタンガス量を予測演算する予測演算装置11と
、消化槽lから発生したメタンガスの流量を計測する消
化ガス流量針9と、このメタンガスの濃度を計測するメ
タンガス濃度計10と、メタンガス濃度針10からの濃
度信号co及び消化ガス流量計9からの流量信号Qaに
よって発生したメタンガス量を演算する発生量演算装置
12と、発生量演算装置12の実出力信号12a及び予
測演算装置11の出力である予測出力信号ttaとを入
力して比較演算し制御信号13aを出力する比較演算装
置13とからなる消化槽制御装置を示している。
Next, examples of the present invention will be described. Figure 1 shows a digestion tank 1 that decomposes, liquefies and gasifies organic matter in sludge by the action of anaerobic bacteria, an input sludge flow meter 7 that measures the amount of solid matter in sludge input into the digestion tank 1, and an input sludge flowmeter 7. A prediction calculation device 11 that predicts and calculates the amount of methane gas generated in the digestion tank 1 based on the flow rate output from the flow meter 7 and the concentration of sludge; a digestion gas flow rate needle 9 that measures the flow rate of methane gas generated from the digestion tank 1; A methane gas concentration meter 10 that measures the concentration of this methane gas, a generation amount calculation device 12 that calculates the amount of methane gas generated based on the concentration signal co from the methane gas concentration needle 10 and the flow rate signal Qa from the digestion gas flowmeter 9, and the amount of generation The figure shows a digester control device comprising a comparison calculation device 13 that inputs an actual output signal 12a of the calculation device 12 and a predicted output signal tta which is an output of the prediction calculation device 11, performs a comparison operation, and outputs a control signal 13a. .

即ち、本発明は下水処理場に於ける汚泥消化槽において
消化槽1に投入される汚泥の固形物を測定し、前傾って
実験によりめた固形物当りのメタンガス量により、汚泥
が投入された事により発生するメタンガス量を予測し実
際に消化槽1,2より発生してくるメタンガス量と比較
し、その結果により今回投入される汚泥量を制御するこ
とを特徴とする汚泥消化装置である。
That is, the present invention measures the solid matter of the sludge that is introduced into the digestion tank 1 in a sludge digestion tank in a sewage treatment plant, and determines whether the sludge is injected according to the amount of methane gas per solid matter determined by an experiment. This sludge digestion equipment is characterized in that it predicts the amount of methane gas generated by the process, compares it with the amount of methane gas actually generated from the digestion tanks 1 and 2, and controls the amount of sludge to be introduced at this time based on the result. .

第1図は汚泥中の有機物を嫌気性菌の働きによって分解
し液化及びガス化する消化槽lと消化槽1の中の汚泥を
接続管を介して導入し沈澱分離する消化槽2と、消化槽
2及び消化槽1から発生したメタンガスを貯留するガス
タンク4と、消化槽lの中の嫌気性菌及び汚泥を攪拌す
るのと同時に消化槽lの中の温度を均一化するガス攪拌
ブロワ5と、消化槽1に加温用の蒸気を供給する蒸気ボ
イラー6と、消化槽lに投入される汚泥の鼠を計測する
投入汚泥流量計7と、消化槽lに投入される汚泥のa度
ン計測する投入汚泥濃度計8と、消化槽1に汚泥を投入
する汚泥投入ポンプ3とからなる汚泥消化装置において
、投入汚泥流量計7の流量信号QC及び投入汚泥濃度計
8の濃度信号式によって投入された固形物を積算し汚泥
から発生するメタンガス量の予測値を演算する予測演算
装置11と、消化槽1及び消化槽2より発生する消化ガ
スの流量を計測する消化ガス流量計9、及び消化ガス中
のメタンガス濃度を計測するメタンガス濃度計10と、
汚泥投入結果の汚泥投入までの定められた時間に消化ガ
ス流量計9によって測定された消化ガス流量Qe及びメ
タンガス濃度計10によって測定されたメタンガス濃度
CGとから実際::発生したメタンガス量を演算する発
生量演算袋@12と、発生量演算装置12の出力である
実測量及び予測演算装置11の出力である予測量とを比
較演算する比較演算装置13と、比較演算装置13の出
力によって、今回投入する汚泥量を制御するため汚泥投
入ポンプ3の運転時間又は速度を制御する運転制御装置
14を備えた汚泥消化装置を示している。
Figure 1 shows a digestion tank 1 in which organic matter in sludge is decomposed and liquefied and gasified by the action of anaerobic bacteria, a digestion tank 2 in which the sludge in the digestion tank 1 is introduced via a connecting pipe and separated by sedimentation, and A gas tank 4 that stores methane gas generated from the tank 2 and the digestion tank 1, and a gas stirring blower 5 that stirs the anaerobic bacteria and sludge in the digestion tank 1 and at the same time equalizes the temperature inside the digestion tank 1. , a steam boiler 6 that supplies heating steam to the digestion tank 1, an input sludge flowmeter 7 that measures the volume of sludge charged into the digestion tank 1, and a steam boiler 6 that supplies steam for heating to the digestion tank 1; In a sludge digestion device consisting of an input sludge concentration meter 8 for measurement and a sludge input pump 3 for inputting sludge into the digestion tank 1, the input is determined by the flow rate signal QC of the input sludge flow meter 7 and the concentration signal of the input sludge concentration meter 8. a prediction calculation device 11 that calculates a predicted value of the amount of methane gas generated from the sludge by integrating the solids obtained, a digestion gas flow meter 9 that measures the flow rate of digestion gas generated from the digestion tanks 1 and 2; a methane gas concentration meter 10 that measures the methane gas concentration in the gas;
The actual amount of methane gas generated is calculated from the digestion gas flow rate Qe measured by the digestion gas flow meter 9 and the methane gas concentration CG measured by the methane gas concentration meter 10 at a predetermined time until the sludge input as a result of sludge injection. The generation amount calculation bag @ 12 is used as a comparison calculation device 13 which compares and calculates the measured amount which is the output of the generation amount calculation device 12 and the predicted amount which is the output of the prediction calculation device 11, and the output of the comparison calculation device 13. A sludge digester is shown that includes an operation control device 14 that controls the operating time or speed of the sludge input pump 3 to control the amount of sludge input.

第2図は投入汚泥量によるガス発生量を示す図である。FIG. 2 is a diagram showing the amount of gas generated depending on the amount of sludge input.

第2図は下水処理場の汚泥の種類、即ちその中に含まれ
る有機物量、それを構成する有機物の成分によって異な
るため各々の下水処理場において実験的にめるものであ
り一度求めれば流入してくる汚水の質の割合が異ならな
い限り変動する割合は小さい〇 第2図により投入された汚泥固形物量から1時間後のメ
タンガス発生量をめる。
Figure 2 is determined experimentally at each sewage treatment plant because it varies depending on the type of sludge in the sewage treatment plant, that is, the amount of organic matter contained in it, and the composition of the organic matter that makes up the sludge. The rate of change is small unless the quality of the sewage is different. According to Figure 2, calculate the amount of methane gas generated after one hour from the amount of sludge solids introduced.

第1図(−投入汚泥量の制御系を示す。前回消化槽1に
投入された時の汚泥の量と濃度が投入汚泥流量計8と投
入汚泥濃度計7で測定され予測演算装置11に入力され
る。予測演算装置11で汚泥固形物量を計御し、投入汚
泥の予測メタンガス発生量が比較演算装置13に入力さ
れる。
Figure 1 (- shows the control system for the amount of sludge input. The amount and concentration of sludge that was previously input into the digestion tank 1 are measured by the input sludge flow meter 8 and the input sludge concentration meter 7, and are input to the prediction calculation device 11. A prediction calculation device 11 measures the amount of solid matter in the sludge, and a predicted amount of methane gas generated from the input sludge is input to a comparison calculation device 13.

前回の汚泥投入結果による消化槽1、消化槽2よりの消
化ガスはガスタンク4に送られるが、消化ガス中のメタ
ンガス濃度とガス流量を消化ガス濃度計10と消化ガス
流量計9で測定し、発生量演算装置12に入力され、゛
前回汚泥投入から今回汚泥投入までの定まった時間中の
メタンガス発生量を計算比較演算装置13に入力する。
The digestion gas from the digestion tanks 1 and 2 according to the results of the previous sludge injection is sent to the gas tank 4, but the methane gas concentration and gas flow rate in the digestion gas are measured with the digestion gas concentration meter 10 and the digestion gas flow meter 9. The amount of methane gas generated during a predetermined period of time from the previous sludge injection to the current sludge injection is input to the calculation/comparison calculation device 13.

比較演算装置13において予測演算装置11から得られ
た前回汚泥投入による予測メタンガス発生量と発生量演
算装置12より得られた実際のメタンガス発生量と比較
する。その結果により今回の投入汚泥流量と濃度(:よ
る固形物量により、投入汚泥ポンプを制御し投入汚泥量
を制御する装置14である。
The comparison calculation device 13 compares the predicted methane gas generation amount due to the previous sludge injection obtained from the prediction calculation device 11 with the actual methane gas generation amount obtained from the generation amount calculation device 12. Based on the result, the device 14 controls the input sludge pump and the amount of sludge input based on the current input sludge flow rate and concentration (: solid content amount).

その制御の様子を第3図に示す。点A、B、Cは汚泥投
入時を示し、メタンガス発生量は次回の汚泥の投入時点
まで積算される。予測値Pは最終点で示される値で、実
測値は実線でその経過な示している。例aの場合は最終
点において予測値Pと実測値がほぼ一致しているため今
回の汚泥投入量は前回と同様の量投入される。例すの場
合は予測値よりも高いため消化槽の状況が良好と判断さ
れるため、今回投入汚泥は前回と同様の量が投入される
。例Cの場合は、実測値が予測値Pより大巾1=低くな
ったため、消化槽の状態が悪いと判断できるため、今回
の投入量は実測値が予測値Pとなるように汚泥量を減少
させる。この結果として今回の予測値Pが実測値と同一
値または上廻った場合は前回の投入汚泥量に戻すよう:
二制御する。
The state of the control is shown in Fig. 3. Points A, B, and C indicate the time when sludge is introduced, and the amount of methane gas generated is accumulated until the next time when sludge is introduced. The predicted value P is the value shown at the final point, and the actual measured value is shown as a solid line. In the case of example a, since the predicted value P and the actual measured value almost match at the final point, the amount of sludge input this time is the same as the previous one. For example, since the value is higher than the predicted value, it is judged that the condition of the digester tank is good, so the same amount of sludge as the last time is input this time. In the case of example C, the actual measured value is lower than the predicted value P by width 1, so it can be determined that the condition of the digester is poor. reduce As a result, if the current predicted value P is the same as or exceeds the actual value, the amount of sludge introduced last time will be returned to:
Two controls.

以下に演算器内における計算式を示す。予測演算装置は
投入汚泥の固形物量を計算し更に第2図に基すき予測メ
タンガス発生量を演算するもので(1)式で示される。
The calculation formula in the calculator is shown below. The prediction calculation device calculates the amount of solid matter in the input sludge and further calculates the predicted amount of methane gas generated based on FIG. 2, which is expressed by equation (1).

但しΣcc−Qc=W(固形物量)は消化槽の容量によ
りある程度定まった値となるVム= VT ・ Σcc
 −Qc ・・・・・・・・・(1)発生量演算装置1
2は汚泥投入から次の投入までの時間までのメタンガス
発生量を計算するもので(2)式で示される。
However, Σcc - Qc = W (amount of solids) is a value that is determined to some extent depending on the capacity of the digestion tank.Vmu = VT ・Σcc
-Qc ・・・・・・・・・(1) Generation amount calculation device 1
2 is for calculating the amount of methane gas generated from the time when sludge is added until the next time, and is expressed by equation (2).

VB=ΣCa・QG 演算器は予測メタンガス発生量■A と実測メタンガス
発生量■お の差を算出し、次式の結果に基すき操作量
を制御袋[14に出力する。
VB=ΣCa・QG The computing unit calculates the difference between the predicted methane gas generation amount ■A and the measured methane gas generation amount ■O, and outputs the plow operation amount to the control bag [14] based on the result of the following equation.

(al VB −VA + O制御なしくbl′vIl
−vム=十△V の場合 制御なし+CI VB−VA
=−△■ の場合、V、 =V丁−ΣCc+”QctC
=なるように汚泥投入量を減少させる。
(al VB -VA + O without control bl'vIl
-vm=10△V No control +CI VB-VA
In the case of =-△■, V, =Vd-ΣCc+”QctC
Reduce the amount of sludge input so that =

但し、ΣCc”Qcが当初の計画投入量よりも減少した
置となり最終メタンガス発生量として、投入量に対する
予測値と一致した場合、または増大した場合は、前回の
投入量に戻して投入制御する。
However, if ΣCc''Qc decreases from the originally planned input amount and the final methane gas generation amount matches the predicted value for the input amount, or if it increases, the input is controlled by returning to the previous input amount.

〔発明の効果〕〔Effect of the invention〕

本発明は前記のように構成したので消化槽の状況が安定
した状態となるため安定したメタンガス発生量が得られ
メタンガスをエネルギーとして利用する上での価値を高
め、更には引抜かれる汚泥の減量化となり後備の脱水設
備に対する負荷を軽減する効果を生ずる。
Since the present invention is configured as described above, the condition of the digester becomes stable, so a stable amount of methane gas is generated, which increases the value of using methane gas as energy, and further reduces the amount of sludge that is extracted. This has the effect of reducing the load on backup dewatering equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す消化槽のフローV−)
説明図、第2図は消化日数(二よる投入汚泥固形物当り
のメタンガス発生量の関係を示す説明図、第3図は本発
明によるメタンガス発生量の制御の様子を示す説明図で
ある。 1・・・消化槽 2・・・消化槽 3・・・汚泥投入ポンプ 4・・・ガスタンク5・・・
ガス攪拌ブロワ 6・・・蒸気ボイラ7・・・投入汚泥
流量計 8・・・投入汚泥濃度計9・・・消化ガス流量
計 10・・・メタンガス濃度計11・・・予測演算装
置 12・・・発生量演算装置13・・・比較演算装置 14・・・汚泥投入ポンプ制御装置 代理人 弁理士 則 近 憲 佑 (ほか1名)
Figure 1 shows the flow of a digester tank showing an embodiment of the present invention (V-)
An explanatory diagram, FIG. 2 is an explanatory diagram showing the relationship between the amount of methane gas generated per input sludge solid material depending on the number of days for digestion, and FIG. 3 is an explanatory diagram showing the state of control of the amount of methane gas generated according to the present invention.1 ... Digestion tank 2 ... Digestion tank 3 ... Sludge injection pump 4 ... Gas tank 5 ...
Gas stirring blower 6... Steam boiler 7... Input sludge flow meter 8... Input sludge concentration meter 9... Digestion gas flow meter 10... Methane gas concentration meter 11... Prediction calculation device 12...・Generation amount calculation device 13...Comparison calculation device 14...Sludge injection pump control device Representative Patent attorney Noriyuki Chika (and one other person)

Claims (1)

【特許請求の範囲】[Claims] 汚泥中の有機物を嫌気性菌の働きによって分解し液化及
びガス化する消化槽と、この消化槽に投入される汚泥の
固形物量を測定する投入汚泥流量計と、この投入汚泥流
量針から出力される流量及び前記汚泥の濃度によって前
記消化槽に発生するメタンガス量を予測演算する予測演
算装置と、前記消化槽から発生したメタンガスの流量を
計測する消化ガス流量計と、このメタンガスの濃度を計
測するメタンガス濃度計と、このメタンガス濃度針から
の濃度信号及び前記消化ガス流量針からの流量信号によ
って発生したメタンガス量を演算する発生量演算装置と
、この発生量演算装置の実出力信号及び前記予測演算装
置の出力である予測出力信号とを入力して比較演算し制
御信号を出力す、る比較演算装置とからなる消化槽制御
装置。
A digestion tank that decomposes organic matter in sludge and liquefies and gasifies it by the action of anaerobic bacteria, an input sludge flow meter that measures the amount of solids in the sludge input into the digestion tank, and a flow meter that measures the amount of solid matter output from this input sludge flow rate needle. a prediction calculation device that predicts and calculates the amount of methane gas generated in the digestion tank based on the flow rate and the concentration of the sludge; a digestion gas flow meter that measures the flow rate of the methane gas generated from the digestion tank; and a digestion gas flowmeter that measures the concentration of the methane gas. A methane gas concentration meter, a generation amount calculation device that calculates the amount of methane gas generated based on the concentration signal from the methane gas concentration needle and the flow rate signal from the digestion gas flow rate needle, and an actual output signal of the generation amount calculation device and the predicted calculation. A digester control device comprising a comparison calculation device that inputs a predicted output signal, which is the output of the device, performs comparison calculations and outputs a control signal.
JP58140971A 1983-08-03 1983-08-03 Control apparatus of digestion tank Pending JPS6031898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58140971A JPS6031898A (en) 1983-08-03 1983-08-03 Control apparatus of digestion tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58140971A JPS6031898A (en) 1983-08-03 1983-08-03 Control apparatus of digestion tank

Publications (1)

Publication Number Publication Date
JPS6031898A true JPS6031898A (en) 1985-02-18

Family

ID=15281091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58140971A Pending JPS6031898A (en) 1983-08-03 1983-08-03 Control apparatus of digestion tank

Country Status (1)

Country Link
JP (1) JPS6031898A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024499A (en) * 1988-06-21 1990-01-09 Akua Runesansu Gijutsu Kenkyu Kumiai Controlling device for methane producing equipment
JPH024498A (en) * 1988-06-21 1990-01-09 Akua Runesansu Gijutsu Kenkyu Kumiai Controlling device for methane producing equipment
JPH0463756B2 (en) * 1988-06-21 1992-10-12 Tokyo Shibaura Electric Co
JP2005111344A (en) * 2003-10-06 2005-04-28 Fuji Electric Holdings Co Ltd Methane fermentation apparatus
JP2005274282A (en) * 2004-03-24 2005-10-06 Takasugi Seisakusho:Kk Method and apparatus for measuring gas generation amount
JP2008136985A (en) * 2006-12-05 2008-06-19 Fuji Electric Holdings Co Ltd Methane fermentation system
JP2018001091A (en) * 2016-07-01 2018-01-11 株式会社神鋼環境ソリューション Anaerobic treatment method and anaerobic treatment equipment
JP2022159621A (en) * 2021-04-05 2022-10-18 株式会社神鋼環境ソリューション Sludge circulator, digester tank, and sludge circulation method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024499A (en) * 1988-06-21 1990-01-09 Akua Runesansu Gijutsu Kenkyu Kumiai Controlling device for methane producing equipment
JPH024498A (en) * 1988-06-21 1990-01-09 Akua Runesansu Gijutsu Kenkyu Kumiai Controlling device for methane producing equipment
JPH0463757B2 (en) * 1988-06-21 1992-10-12 Tokyo Shibaura Electric Co
JPH0463758B2 (en) * 1988-06-21 1992-10-12 Tokyo Shibaura Electric Co
JPH0463756B2 (en) * 1988-06-21 1992-10-12 Tokyo Shibaura Electric Co
JP2005111344A (en) * 2003-10-06 2005-04-28 Fuji Electric Holdings Co Ltd Methane fermentation apparatus
JP2005274282A (en) * 2004-03-24 2005-10-06 Takasugi Seisakusho:Kk Method and apparatus for measuring gas generation amount
JP2008136985A (en) * 2006-12-05 2008-06-19 Fuji Electric Holdings Co Ltd Methane fermentation system
JP2018001091A (en) * 2016-07-01 2018-01-11 株式会社神鋼環境ソリューション Anaerobic treatment method and anaerobic treatment equipment
JP2022159621A (en) * 2021-04-05 2022-10-18 株式会社神鋼環境ソリューション Sludge circulator, digester tank, and sludge circulation method

Similar Documents

Publication Publication Date Title
Huang et al. Impacts of dissolved oxygen control on different greenhouse gas emission sources in wastewater treatment process
JPS6031898A (en) Control apparatus of digestion tank
CN210764598U (en) Accurate adding system of carbon source
CN108678986B (en) The control method and device of the automatic adjustment of sewage treatment plant's air blower and marshalling operation
JPS62186472A (en) Fuel system controller for fuel cell power generation plant
JP2004171531A (en) Plant-wide optimum process control apparatus
CA1170778A (en) Method of minimizing the cost of operation of a process
JPH0367757B2 (en)
JPH0777598A (en) Gas injector for nuclear power plant
JPS5973099A (en) Temperature controller in equipment for anaerobic digestion
JP4218486B2 (en) Methane fermentation treatment equipment
JPS61287497A (en) Anaerobic digester
JPS60898A (en) Control device for returned sludge to digesting tank
CN115259413B (en) Air quantity control method for accurate aeration system
JPH0479719B2 (en)
JPS59154199A (en) Method for controlling digestion stage using activated sludge
JPS60183098A (en) Control apparatus of anaerobic digestion process
WO2024079773A1 (en) Anaerobic digestion process monitoring system and anaerobic digestion process monitoring method
JPS61114798A (en) Apparatus for controlling production of electric power corresponding to amount of digestion gas
JP2005152875A (en) Methane fermentation treatment method
JP2004185961A (en) Operation method of fuel cell power generation device
WO2023229517A1 (en) A method and an arrangement for a continuous production of sponge iron from iron ore
JP2009119328A (en) Methane fermentation apparatus
JPS59231154A (en) Power generating apparatus utilizing digesting-gas
JPS6245399A (en) Anaerobic digestion apparatus