JPS6031616A - Method for detecting position of moving body - Google Patents

Method for detecting position of moving body

Info

Publication number
JPS6031616A
JPS6031616A JP58140312A JP14031283A JPS6031616A JP S6031616 A JPS6031616 A JP S6031616A JP 58140312 A JP58140312 A JP 58140312A JP 14031283 A JP14031283 A JP 14031283A JP S6031616 A JPS6031616 A JP S6031616A
Authority
JP
Japan
Prior art keywords
conductor
moving body
period
phase
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58140312A
Other languages
Japanese (ja)
Other versions
JPH0450538B2 (en
Inventor
Tatsu Hatta
八田 達
Tai Kusakabe
日下部 岱
Takahiro Asai
孝弘 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP58140312A priority Critical patent/JPS6031616A/en
Publication of JPS6031616A publication Critical patent/JPS6031616A/en
Publication of JPH0450538B2 publication Critical patent/JPH0450538B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Linear Motors (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To measure the position of a moving body continuously by small-sized antennas at every period P by laying a conductor folded at the period P and a straight conductor along the travelling course of the moving body and mounting three antennas on the moving body at an interval P/3. CONSTITUTION:An inductive radio line 13 consisting of the conductor 11 folded like a wave at the period P and the straight conductor 12 arranged in parallel with the conductor 11 is laid along the travelling course of the moving body and three antennas 14-1-14-3 are mounted on the moving body at the interval P/3. When high frequency current is supplied from a transmitter 15 to the conductors 11, 12, voltage induced to the antennas 14-1-14-3 are respectively amplified 20-1-20-3, detected straight by detectors 22-1-22-3 through BPFs 21-1-21-3 and guided into modulators 23-1-23-3. The modulators 23-1-23-3 modulate carrier from a carrier power supply 25 at its amplitude and outputs from respective modulators 23-1-23-3 are guided to an adder 26 directly and after phase-deflected through phase units 24-2, 24-3 by -120 deg., 120 deg.. The phase difference between the added output and a reference phase signal from a power supply 25 is indicated 27 and the position Z of the moving body is continuously measured at every period P.

Description

【発明の詳細な説明】 [発明の対象] 本発明は誘導無線を利用して移動体の位置を連続的に検
知する方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a system for continuously detecting the position of a moving object using guided radio.

[発明の背景] 例えば、リニアモーターカーの自動運転においては、走
行路に沿って一定間隔に配置されたモーター極(推進コ
イル)の極間距離の範囲内で常時地上においてその車体
位置を検知し、これに応じて界磁電流の周波数、振幅、
位相を合理的に調整することが、この車両の円滑な運転
に不可欠な要請とされている。
[Background of the Invention] For example, in the automatic operation of a linear motor car, the position of the car body is constantly detected on the ground within the distance between motor poles (propulsion coils) placed at regular intervals along the running route. , the frequency, amplitude of the field current,
Rational adjustment of the phase is considered to be an essential requirement for smooth operation of this vehicle.

現在、この要請に応える手段として有力視されているも
のとして誘導無線を用いた方式がある。
Currently, a method using guided radio is considered to be a promising means to meet this demand.

この方式には、移動体塔載アンテナの励振によって誘導
無線線路に誘起された電圧を地上において処理し、これ
から直接に移動体位置を検知する方式(地上検知)と、
誘導無線線路に給電された電圧を移動体塔載アンテナで
受信し、移動体上で信号処理して位置を検知し、これを
符号化して無線により地上基地局へ送信する方式(車上
検知)とがある。
This method includes a method in which the voltage induced in the guided radio line by the excitation of the antenna mounted on the mobile object is processed on the ground, and the position of the mobile object is directly detected from this (ground detection);
A method in which the voltage supplied to the guided radio line is received by the antenna mounted on the mobile object, the signal is processed on the mobile object to detect the position, and this is encoded and transmitted wirelessly to the ground base station (on-vehicle detection). There is.

地上検知方式は地上において直接に制御信号が得られる
利点がある反面、誘導無線線路内の漏話量が大きな場合
に測定誤差を生ずる欠点がある。また、車上検知方式で
は誘導無線線路内の漏話が全く問題とならない反面、位
置情報を符号化し、これを無線伝送する必要があり、系
統が複雑化する欠点があり、双方の方式は優劣つけ難い
Although the ground detection method has the advantage of directly obtaining control signals on the ground, it has the disadvantage of causing measurement errors when the amount of crosstalk in the guided radio line is large. In addition, while the on-vehicle detection method does not have any problem with crosstalk in the guided radio line, it has the disadvantage of complicating the system as it requires encoding position information and transmitting it wirelessly, so both methods have their advantages and disadvantages. hard.

車上検知方式として現在提案されている位置検知方式に
ついて第1図および第2図を参照して説明する。
A position detection method currently proposed as an on-vehicle detection method will be described with reference to FIGS. 1 and 2.

第1図において、1,2は導体、3は導体】、2Zこよ
り形成される誘導無線線路、4−1 、4−2は移動体
塔載アンテナである。
In FIG. 1, 1 and 2 are conductors, 3 is a conductor], an inductive radio line formed from 2Z, and 4-1 and 4-2 are antennas mounted on a mobile object.

導体1,2は平面上に周期Pでもって波形形状に折り曲
げられ、相互にP/3ずらして配置されている。また、
アンテナ4−1 、4−2としては枠形ループコイルが
用いられ、相互にP/4ずらして移動体上に固定されて
いる。
The conductors 1 and 2 are bent into a waveform shape with a period P on a plane, and are arranged offset from each other by P/3. Also,
Frame-shaped loop coils are used as the antennas 4-1 and 4-2, and are fixed on the moving body with a mutual offset of P/4.

地上送信a15から線路3に50〜200 Ktlzの
高周波電流を供給すると、周囲には誘導磁界が形成され
アンテナ4−1 、4−2に電圧が誘起される。
When a high frequency current of 50 to 200 Ktlz is supplied from the ground transmitter a15 to the line 3, an induced magnetic field is formed around the line 3, and a voltage is induced in the antennas 4-1 and 4-2.

線路3とアンテナ4−1 、4−2との離隔距離および
アンテナ4−1 、4−2の寸法を適当に選択すること
により各アンテナ4−1 、4−2に誘起される電圧の
振幅を2(線路3の端末からアンチナトlまでの距離)
について正弦波状とすることができる。
By appropriately selecting the distance between the line 3 and the antennas 4-1 and 4-2 and the dimensions of the antennas 4-1 and 4-2, the amplitude of the voltage induced in each antenna 4-1 and 4-2 can be controlled. 2 (distance from the terminal of track 3 to Antinato l)
can be sinusoidal.

アンチナト1および4−2に誘起される電圧をそれぞれ
Vl(z)およびV 2(z)とすれば、V I (z
) = k cos2712/PV 2(z)= k 
CO327[(2+P/4)/P=l<cos ((2
*z/P)+ π/2)・・・・(1) ■(=常数。
If the voltages induced in the antinatos 1 and 4-2 are Vl(z) and V2(z), respectively, then V I(z
) = k cos2712/PV 2(z) = k
CO327[(2+P/4)/P=l<cos ((2
*z/P)+π/2)...(1) ■(=constant.

と現わすことができる。It can be expressed as

ここで、正相電圧V p(z)および逆相電圧Vn(z
)を次式により定義する。
Here, the positive sequence voltage V p (z) and the negative sequence voltage V n (z
) is defined by the following formula.

・・・・(2) (1)式および(2)式から直ちに次式が得られる。...(2) The following equation is immediately obtained from equations (1) and (2).

・・・・(3) V p(z)とV n(z)の位相差をΦ(2)とすれ
は、Φ(2) = l V p(z) −l V n(
z)=4πz/P ・・・・(4) (z:偏角を意味する記号) となる。
...(3) If the phase difference between V p (z) and V n (z) is Φ (2), then Φ (2) = l V p (z) - l V n (
z)=4πz/P (4) (z: symbol meaning declination angle).

すなわち、φ(2)は第2図に示すように2がP/2増
加する旬に直線的に2πの増加を示すことになり、Φ(
2)の測定を通じ、移動体位置をP/2の周期で連続的
に測定することができる。
In other words, as shown in Figure 2, φ(2) shows a linear increase of 2π when 2 increases by P/2, and φ(2)
Through the measurement of 2), the position of the moving object can be continuously measured at a period of P/2.

従って、これをリニアモーターカーの位置検知に適用す
る場合には、Pをモーター極間距離の2倍にとり、且つ
線路をモーター極と同期した位置に敷設することにより
所期の目的を達成することができる。
Therefore, when applying this to the position detection of a linear motor car, the desired purpose can be achieved by setting P to twice the distance between the motor poles and laying the track at a position synchronized with the motor poles. I can do it.

しかしながら、上記のような方式には次のような欠点が
ある。
However, the above method has the following drawbacks.

すなわち、各導体1,20周期Pはリニアモーターカー
極間距離の2倍に等しくしなければならないが、リニア
モーターカーの実用機ではモーター極間距離は約6mに
なるものと予想されており、従って導体周期Pは約12
mとしなければならなくなる。
In other words, the 1,20 period P of each conductor must be equal to twice the distance between the poles of a linear motor car, but in a practical linear motor car, the distance between the motor poles is expected to be approximately 6 m. Therefore, the conductor period P is about 12
It will have to be m.

このため、線路3の製造が困難となり、高価となる恐れ
がある。
For this reason, manufacturing of the line 3 may become difficult and expensive.

また、この方式を実現するためには、(1)式に示よう
に各導体間の誘起電圧が2について純粋な正弦波状とな
ることが必要であり、このためアンテナ5の長さLはP
/7〜P15(P=12Ilの場合は1.7〜2.4m
)と極めて大きくなる。アンテナを車体に散り付ける場
合、車体を流れる渦電流の影響を避けるため車体に切欠
部を設けなければならないが、これが大きな寸法となる
ことは車体の機械的強度上からも好ましくない。
In addition, in order to realize this method, it is necessary that the induced voltage between each conductor has a pure sine wave shape with respect to 2, as shown in equation (1), and therefore the length L of the antenna 5 is P
/7~P15 (1.7~2.4m if P=12Il
) becomes extremely large. When installing antennas on the car body, it is necessary to provide a notch in the car body to avoid the effects of eddy currents flowing through the car body, but it is not desirable from the viewpoint of the mechanical strength of the car body that this becomes large.

[発明の目的] 本発明は移動体の位置検知周期を線路の導体周朋Pと等
しくすることができ、これをリニアモーターカーの自動
運転に適用した場合には導体周期Pをモーター極間距離
と等しくてき、また車上アンテナを小型化でき、さらに
は線路の製造を容易化できる移動体位置検知方式の提供
を目的とするものである。
[Object of the invention] The present invention can make the position detection period of a moving body equal to the conductor circumference P of the track, and when this is applied to the automatic operation of a linear motor car, the conductor period P can be made equal to the distance between motor poles. The object of the present invention is to provide a moving body position detection system that can achieve the same characteristics as the above, miniaturize the on-board antenna, and facilitate the manufacture of railway tracks.

[発明の概要] 本発明の要点は、移動体の走行路に沿って、周期Pで波
形に折り曲げられた導体と、この導体と平行した直線状
導体とよりなる誘導無線線路が敷設されており、−刃移
動体にはP/3の間隔で3個のアンテナが塔載されてお
り、誘導無線線路に高周波電流を通電したとき上記各ア
ンテナに誘起されるそれぞれの電圧を直線検波してその
包絡線をめ、新たな搬送波電源から導かれる同一振幅、
同一位相の搬送波を上記各包絡線により変調して得られ
た3つの電圧の正相または逆相成分をめ、上記搬送波電
源から導かれる基準位相信号と上記正相または逆相成分
との位相を比較することにより移動体の位置を周期Pで
連続的に検知することにある。
[Summary of the Invention] The main point of the present invention is that a guided radio line consisting of a conductor bent into a waveform with a period P and a straight conductor parallel to the conductor is laid along the travel path of a moving object. , - Three antennas are mounted on the blade movable body at intervals of P/3, and when a high frequency current is passed through the inductive radio line, the respective voltages induced in each of the above antennas are linearly detected and detected. The same amplitude derived from the new carrier wave power source, including the envelope,
Taking the positive phase or negative phase components of the three voltages obtained by modulating the carrier wave of the same phase with each of the above envelopes, calculate the phase of the reference phase signal derived from the carrier wave power source and the positive phase or negative phase component. The purpose is to continuously detect the position of a moving body at a period P by comparing the positions.

本発明の原理を第3図に基いて説明する。The principle of the present invention will be explained based on FIG.

第3図において、11.12はそれぞれ導体であって、
導体11は周期Pでもって波形形状に折り曲げられ、導
体12は導体11と並行して直線状に配置されることに
よって誘導無線線路13が形成されている。14−1.
14−2.14−3はそれぞれ移動体塔載アンテナであ
って、各アンテナはP/3の間隔を置いて移動体に固定
されている。
In FIG. 3, 11 and 12 are conductors, respectively,
The conductor 11 is bent into a waveform shape with a period P, and the conductor 12 is arranged linearly in parallel with the conductor 11, thereby forming the guided radio line 13. 14-1.
14-2 and 14-3 are antennas mounted on the mobile body, and each antenna is fixed to the mobile body at an interval of P/3.

地上送信機15から線路13に50〜200 K11z
の高周波電流を供給すると、周囲には誘導磁界が形成さ
れアンテナ14−1.14−2.14−3に電圧が誘起
される。
50 to 200 K11z from ground transmitter 15 to track 13
When a high frequency current of 14-1.14-2.14-3 is supplied, an induced magnetic field is formed around the antenna 14-1.14-2.14-3, and a voltage is induced in the antenna 14-1.14-2.14-3.

線路13の端末からアンテナ14−1までの距離を2ど
すると、これら各アンテナに誘起される電圧Vl(2)
、 V 2(z)、 V 3(z)はそれぞれ次式のよ
うに現わされる。
If the distance from the terminal of the line 13 to the antenna 14-1 is 2, the voltage induced in each of these antennas Vl(2)
, V 2 (z), and V 3 (z) are expressed as shown below.

Vl(z)= kl (l+に2 cos2πz/P 
)V2(z)= k 1 (]+に2 C0827[(
2+P/3)/P )V 3(z)= k 1 (1+
k 2 cos2yc (z+2P/3)/P)・・・
・(5) R1、K2 :常数。
Vl (z) = kl (2 cos2πz/P to l+
)V2(z)=k 1 (]+2 C0827[(
2+P/3)/P)V 3(z)=k1(1+
k 2 cos2yc (z+2P/3)/P)...
・(5) R1, K2: constants.

0<K2<lであるから(5)式の右辺は常に正である
Since 0<K2<l, the right side of equation (5) is always positive.

したがって、V I(z)、 V 2(z)、 V 3
(z)を直線検波してその包絡線I V 1(z) I
 、、 I V2(z) I 、l V3(2)1をめ
ると次式のようになる。
Therefore, V I(z), V 2(z), V 3
(z) is linearly detected and its envelope I V 1(z) I
,, I V2(z) I , l V3(2) Subtracting 1 gives the following equation.

l V 1(z) I = V 1(z)+ V 2(
z) l = V 2(z)l V 3(z) l =
 V 3(z)・・・・(6) ここで、角周波数ω0の新たな搬送波を(6)式の各々
の電圧で変調しそれぞれをVu ’ (z)、Vv ’
(z)、Vw ’ (z)とすると次式のようになる。
l V 1 (z) I = V 1 (z) + V 2 (
z) l = V 2 (z) l V 3 (z) l =
V 3 (z)...(6) Here, the new carrier wave of angular frequency ω0 is modulated by each voltage in equation (6), and the voltages are respectively Vu' (z) and Vv'
(z) and Vw' (z), the following equation is obtained.

= R+(++k 2 cos2π2/P)JωO1 ・ e Jω01 Vv ’ (z) = l V2(z) l e= k
 l[l+k 2 cos2w (z+r’/3)/P
コJ ωOt @ e = k I[l+k 2 cos2π(z−P/3)/
P ]j ωOt ・ e ・ ・ ・ ・(7) ここで次式により正相電圧Vp ’ (z)および逆相
電圧Vn ’ (z)を定義する。
= R+(++k 2 cos2π2/P) JωO1 ・ e Jω01 Vv' (z) = l V2(z) l e= k
l[l+k 2 cos2w (z+r'/3)/P
koJ ωOt @ e = k I[l+k 2 cos2π(z-P/3)/
P]jωOt·e······(7) Here, the positive sequence voltage Vp' (z) and the negative sequence voltage Vn' (z) are defined by the following equations.

・・・・(8) (7)式および(8)式から直ちに次式が得られる。...(8) The following equation is immediately obtained from equations (7) and (8).

v’p ’ (z) =(3/2) kl ・K2(j
2πz/P)+jωot ・ e Vn ’ (z) =(3/2) lc I −k2−
 (J2πz/P)+jωO1 φ e ・ ・ ・ ・(9) Vp ’ (z)またはVn ’ (z)と搬送波電源
から導かれる基準位相信号を比較することにより次式の
φ′(2)をめるこ・とができる。
v'p' (z) = (3/2) kl ・K2(j
2πz/P)+jωot ・e Vn' (z) = (3/2) lc I -k2-
(J2πz/P) + jωO1 φ e ・ ・ ・ ・ (9) By comparing Vp ′ (z) or Vn ′ (z) with the reference phase signal derived from the carrier wave power source, the following equation φ′(2) can be obtained. I can travel and do things.

=2πz / P ・・・・(lO) すなわち、φ′(2)の測定を通し、移動体位置2をP
の周期で連続的に知ることができる。
=2πz/P...(lO) In other words, through the measurement of φ'(2), the moving body position 2 can be changed to P
It can be known continuously in the period of .

なお、(5)式の各式の右辺には実際には若干の空間高
調波成分が含まれるが、3個のアンテナを用いることに
より第3.9.15次等3の整数倍次の高調波成分は(
8)式の信号処理の際に消滅することになり、第1図の
2個のアンテナを用いる方式に比して位置検知精度が向
上する利点がある。
Note that the right-hand side of each equation (5) actually contains some spatial harmonic components, but by using three antennas, harmonics of integer multiples of 3, such as the 3rd, 9th, and 15th orders, are The wave component is (
This will disappear during the signal processing in equation 8), which has the advantage of improving position detection accuracy compared to the method using two antennas shown in FIG.

本発明は各種移動体の位置検知に対して適用可能である
が、特にリニアモーターカーの自、動運転に好適に採用
され得る。
The present invention is applicable to detecting the position of various types of moving objects, and can be particularly suitably applied to automatic and dynamic operation of linear motor cars.

この場合、誘導無線線路はリニアーモーターカーの軌道
に並行して導体を所定形状に敷設することにより形成可
能であるが、リニアモーターカーの推進コイルを利用す
ることもできる。
In this case, the guided radio line can be formed by laying a conductor in a predetermined shape parallel to the track of the linear motor car, but the propulsion coil of the linear motor car can also be used.

第4図はリニアモーターカーの推進コイルの概要を示し
たものであり、矩形状のループコイルU。
Figure 4 shows an outline of the propulsion coil of a linear motor car, and is a rectangular loop coil U.

V、Wがモーター極を形成している。ループコイルU、
V、Wに0〜30112程度の正相または逆相の電流を
通して進行波磁界を形成せしめると、これが車上の電磁
石に作用して推力を生ずる。この推進コイルを形成する
各ループコイルU、V、Wは、P/3ずすずらしてPの
周期構造を有しているので、このいずれかを第3図の導
体11に対応させて使用することが可能である。
V and W form motor poles. loop coil U,
When a positive or negative phase current of about 0 to 30112 is passed through V and W to form a traveling wave magnetic field, this acts on the electromagnet on the vehicle to generate thrust. Each of the loop coils U, V, and W forming this propulsion coil has a periodic structure of P with a shift of P/3, so one of these is used in correspondence with the conductor 11 in Fig. 3. Is possible.

リニアモーターカーの運転において、車体位置の検知を
必要とするのは、前にも述へた通り界磁電流の調整のた
めであり、ループコイルを本発明における誘導無線線路
の一部として使用できれば利点は大きい。
In the operation of a linear motor car, the detection of the vehicle body position is required to adjust the field current as mentioned above, and if the loop coil can be used as part of the inductive wireless line in the present invention, The benefits are great.

第5図はリニアモーターカーの推進コイルを本発明の誘
導無線線路として使用する場合の一例を示したものであ
る。
FIG. 5 shows an example in which a propulsion coil of a linear motor car is used as an inductive radio line according to the present invention.

15は送信機、16は変成器、17,18.19は各ル
ープコイルIJ、V、Wの接続導体、12は直線状導体
である。各導体17.18.19を図のように接続する
ことによりループコイル+1を往路、直線状導体12を
帰路とする誘導無線線路を形成でき、第3図で説明した
方法と同様にして位置検知を行うことができる。
15 is a transmitter, 16 is a transformer, 17, 18, 19 are connecting conductors for each loop coil IJ, V, W, and 12 is a linear conductor. By connecting the conductors 17, 18, and 19 as shown in the figure, an inductive wireless line can be formed with the loop coil +1 as the outward path and the straight conductor 12 as the return path, and the position can be detected using the same method as explained in Fig. 3. It can be performed.

[発明の実施例コ 第3図および第6図に基いて本発明の一実施例について
説明する。
[Embodiment of the Invention] An embodiment of the present invention will be described based on FIGS. 3 and 6.

第6図は移動体に塔載された信号処理装置の構成例を示
したものであり、20−1.20−2.20−3は緩衝
増幅器、21−1.21−2.21−3は帯域通過ろ波
器、22−1 。
FIG. 6 shows an example of the configuration of a signal processing device mounted on a mobile object, where 20-1.20-2.20-3 is a buffer amplifier, 21-1.21-2.21-3 is a buffer amplifier, and 21-1.21-2.21-3 is a buffer amplifier. is a bandpass filter, 22-1.

22−2 、22−3は検波器、23−1.23−2.
23−3は変調器、24−2.24−3は移相器、25
は搬送波電源、2Eiは加算器、27は位相計である。
22-2, 22-3 are detectors, 23-1.23-2.
23-3 is a modulator, 24-2.24-3 is a phase shifter, 25
2Ei is a carrier wave power supply, 2Ei is an adder, and 27 is a phase meter.

誘導無線線路13の端末に設けられた送信器15により
導体11を往路、導体12を帰路として高周波電流が給
電されると、移動体塔載アンテナ14−1.14−2.
14−3に電圧が誘起される。
When a high frequency current is supplied by the transmitter 15 provided at the terminal of the guided radio line 13 using the conductor 11 as an outgoing path and the conductor 12 as a return path, mobile object mounted antennas 14-1, 14-2.
A voltage is induced at 14-3.

各アンテナに誘起された電圧は、緩衝増幅器20−1゜
’ 20−2 、20−3により不平衡電圧に変換され
、帯域通過ろ波器21−1.21−2.21−3によっ
て雑音成分が除去され、次いで検波器22−1.22−
2.22−3によって直線検波されてから変調器23−
1.23−2.23−3に導かれ、ここで、搬送波電源
25から導かれる角周波数ω0の搬送波を振幅変調する
The voltage induced in each antenna is converted into an unbalanced voltage by the buffer amplifiers 20-1' 20-2, 20-3, and the noise component is removed by the bandpass filter 21-1.21-2.21-3. is removed, then the detector 22-1.22-
2. After linear detection by 22-3, the modulator 23-
1.23-2.23-3, and here, the carrier wave of angular frequency ω0 guided from the carrier wave power source 25 is amplitude-modulated.

各変調器23−1 、23−2 、23−3での作用は
(7)式の右辺の演算に相当する。
The operation in each modulator 23-1, 23-2, and 23-3 corresponds to the calculation on the right side of equation (7).

変調器23・1 、23−2 、23−3の出力は加算
器26に導かれるが、変調器23−1の出力は直接加算
器26に導かれるのに対し、変調器23−2.23−3
の出力はそれぞれ移相器24−2.24−3において−
1206および120@の位相変位を受でから加算器2
6に導かれる。加算器26の作用は(8)式の第1式の
演算に相当し、その出力は(9)式のVp ’ (2)
となる。
The outputs of the modulators 23.1, 23-2, and 23-3 are guided to the adder 26, but the output of the modulator 23-1 is directly guided to the adder 26, whereas the output of the modulator 23-2.23 is guided directly to the adder 26. -3
The outputs of -
After receiving the phase shift of 1206 and 120@, adder 2
6. The action of the adder 26 corresponds to the calculation of the first equation of equation (8), and its output is Vp' (2) of equation (9).
becomes.

加算器26の出力は搬送波電源25から導かれる基準位
相信号と共に位相計27に導かれ、両者の位相差が指示
され、この値を通して移動体の位置2を周期P勿に連続
して測定することができる。位相計27では(10)式
に相当する演算が行われる。
The output of the adder 26 is guided to the phase meter 27 together with the reference phase signal derived from the carrier wave power supply 25, the phase difference between the two is indicated, and the position 2 of the moving body can be continuously measured with a period P through this value. I can do it. The phase meter 27 performs an operation corresponding to equation (10).

本発明の適用例としてリニアモーターカーをあげて説明
してきたが、これに限定されるものではなく、鉄道車両
、各種新交通システム、クレーン、搬送台車のJ:うに
一定走行路に沿って移動する移動体の位置検知に広く適
用可能である。
Although the explanation has been given using a linear motor car as an example of application of the present invention, it is not limited to this, but railway vehicles, various new transportation systems, cranes, and transportation vehicles that move along a constant running path. It is widely applicable to detecting the position of moving objects.

[発明の効果] 以上説明してきた通り、本発明によれば移動体位置の検
知周期は誘導無線線路の導体形状の周期Pと等しくする
ことができるようになる。すなわち、検知周期がP/2
となる従来方式に比較して、導体周期を172としても
同一の検知周期を得ることができる。このため、線路の
製造が容易となり、線路の価格を低減することができる
。また、導体の周期が短縮すれば、これに比例して移動
体塔載アンテナの寸法の小型化が可能となり、アンテナ
の車体への取り付けが容易となると共に、車体に大きな
切欠部を設ける必要がなくなり車体強度に関する不安も
解消する。
[Effects of the Invention] As explained above, according to the present invention, the detection period of the moving body position can be made equal to the period P of the conductor shape of the guided radio line. In other words, the detection period is P/2
Compared to the conventional method, the same detection period can be obtained even if the conductor period is 172. Therefore, manufacturing of the line becomes easy and the cost of the line can be reduced. Additionally, if the period of the conductor is shortened, the dimensions of the mobile tower-mounted antenna can be reduced in proportion to this, making it easier to attach the antenna to the vehicle body, and eliminating the need to provide a large cutout in the vehicle body. This eliminates concerns about the strength of the vehicle body.

本発明をリニアモーターカーの位置検知に応用する場合
には、その地上推進コイルを位置検知用の誘導無線線路
として多目的に利用することが可能となり、システム構
成の経済化に大きく寄与することができる。
When the present invention is applied to the position detection of a linear motor car, the ground propulsion coil can be used for multiple purposes as a guided radio line for position detection, and it can greatly contribute to the economicalization of the system configuration. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来方式の説明図、第2図は移動体位置2と位
相差との関係の説明図、第3図は本発明の原理および一
実施例の説明図、第4図はリニアモーターカーの地上推
進コイルの概略説明図、第5図はリニアモーターカーの
地上推進コイルを本発明の誘導無線線路として使用する
場合の概略説明図、第6図は本発明に使用される信号処
理装置の一実施例の説明図である。 11:折り曲げ導体、12:直線状導体、13:誘導無
線線路、+4−1.14−2.14−3:移動体塔載ア
ンテナ、20−1.20−2.20−3:緩衝増幅器、
21−1.21−2.2l−3=帯域通過ろ波器、22
−]、 22−2.22−3:検波器、23−1.23
−2.23−3:変調器、24−2.24−3:移相器
、25:搬送波電源、26:加算器、27:移相器。
Fig. 1 is an explanatory diagram of the conventional method, Fig. 2 is an explanatory diagram of the relationship between moving body position 2 and phase difference, Fig. 3 is an explanatory diagram of the principle and one embodiment of the present invention, and Fig. 4 is an explanatory diagram of the linear motor. A schematic explanatory diagram of the ground propulsion coil of a car, FIG. 5 is a schematic explanatory diagram of the case where the ground propulsion coil of a linear motor car is used as the guided radio line of the present invention, and FIG. 6 is a signal processing device used in the present invention. FIG. 2 is an explanatory diagram of one embodiment of the invention. 11: bent conductor, 12: straight conductor, 13: guided radio line, +4-1.14-2.14-3: mobile tower-mounted antenna, 20-1.20-2.20-3: buffer amplifier,
21-1.21-2.2l-3 = bandpass filter, 22
-], 22-2.22-3: Detector, 23-1.23
-2.23-3: Modulator, 24-2.24-3: Phase shifter, 25: Carrier wave power supply, 26: Adder, 27: Phase shifter.

Claims (1)

【特許請求の範囲】[Claims] (1)、移動体の走行路に沿って、周期Pで波形に折り
曲げられた導体と、この導体と平行した直線状導体とよ
りなる誘導無線線路が敷設されており、−刃移動体には
P、/30間隔で3個のアンテナが塔載されており、誘
導無線線路に高周波電流を通電したとき上記各アンテナ
に誘起されるそれぞれの電圧を直線検波してその包絡線
をめ、新たな搬送波電源から導かれる同一振幅、同一位
相の搬送波を上記各包絡線により変調して得られた3つ
の電圧の正相または逆相成分をめ、上記搬送波電源から
導かれる基準位相信号と上記正相または逆相成分との位
相を比較することにより移動体の位置を周期Pで連続的
に検知することを特徴とする移動体位置検知方式。
(1) Along the travel path of the moving object, a guided radio line consisting of a conductor bent into a waveform with a period P and a straight conductor parallel to this conductor is laid. Three antennas are mounted on the tower at intervals of P, /30, and when a high-frequency current is passed through the guided radio line, the voltages induced in each antenna are linearly detected, their envelopes are found, and a new The positive phase or negative phase components of the three voltages obtained by modulating the carrier wave of the same amplitude and the same phase derived from the carrier wave power source by the above-mentioned respective envelopes are used to determine the reference phase signal derived from the carrier wave power source and the above positive phase component. Alternatively, a moving body position detection method is characterized in that the position of the moving body is continuously detected at a period P by comparing the phase with an antiphase component.
JP58140312A 1983-07-29 1983-07-29 Method for detecting position of moving body Granted JPS6031616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58140312A JPS6031616A (en) 1983-07-29 1983-07-29 Method for detecting position of moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58140312A JPS6031616A (en) 1983-07-29 1983-07-29 Method for detecting position of moving body

Publications (2)

Publication Number Publication Date
JPS6031616A true JPS6031616A (en) 1985-02-18
JPH0450538B2 JPH0450538B2 (en) 1992-08-14

Family

ID=15265865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58140312A Granted JPS6031616A (en) 1983-07-29 1983-07-29 Method for detecting position of moving body

Country Status (1)

Country Link
JP (1) JPS6031616A (en)

Also Published As

Publication number Publication date
JPH0450538B2 (en) 1992-08-14

Similar Documents

Publication Publication Date Title
US10755561B2 (en) Vehicle or moving object detection
US6011508A (en) Accurate position-sensing and communications for guideway operated vehicles
CN107484131B (en) High-speed magnetic levitation speed measurement and positioning composite cross loop mirror image anti-interference system and method thereof
JPS6031616A (en) Method for detecting position of moving body
CN111315628B (en) Sensor device
JP3063027B2 (en) Position detection method
JPS6031619A (en) Method for detecting position of moving body
JPS6031618A (en) Method for detecting position of moving body
US5136225A (en) Device for guiding vehicles on a virtual track
JPS6017371A (en) Detection of position of moving body
JPS6031617A (en) Method for detecting position of moving body
JPH0235268B2 (en)
JPH0235269B2 (en)
CN101583513B (en) Pole position measuring device for a magnetic levitation vehicle on a magnetic levitation track and method for operation thereof
JPS6246829B2 (en)
JPH033011A (en) Guide apparatus for car in lane non-section driveway
JPH0641971B2 (en) Moving body position detection method
SU1645184A1 (en) Device for measuring conductivity of rail line insulation
JPH0235267B2 (en)
JPH0418794B2 (en)
JPS6126604B2 (en)
SU1531023A1 (en) Phase meter
JPS6322268B2 (en)
SU1190245A1 (en) Method of detecting spectrum of electronic paramagnetic resonance of anisotropic substances
JPS6330587B2 (en)