JPS6030911A - Pulverized coal combustion device - Google Patents

Pulverized coal combustion device

Info

Publication number
JPS6030911A
JPS6030911A JP58137627A JP13762783A JPS6030911A JP S6030911 A JPS6030911 A JP S6030911A JP 58137627 A JP58137627 A JP 58137627A JP 13762783 A JP13762783 A JP 13762783A JP S6030911 A JPS6030911 A JP S6030911A
Authority
JP
Japan
Prior art keywords
coal
pulverized coal
pulverized
flow rate
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58137627A
Other languages
Japanese (ja)
Inventor
Toshio Uemura
俊雄 植村
Tadahisa Masai
政井 忠久
Shigeki Morita
茂樹 森田
Hitoshi Migaki
三垣 仁志
Shigeto Nakashita
中下 茂人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP58137627A priority Critical patent/JPS6030911A/en
Publication of JPS6030911A publication Critical patent/JPS6030911A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/10Pulverizing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/02Solid fuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To enable production of a minimum unburnt content in ash by means of a minimum mill power, by constituting a pulverized coal combustion device such that coal crushed by a crushing part is separated as pulverized coal by a classifier, and the separated coal is conveyed to a burner. CONSTITUTION:When fire-retardant pulverized coal is burnt, a unburnt content produced in the vicinity of an exhaust gas passage is increased, resulting in an increase in the metal temperature of a superheater 4. Detection of such metal temperature by means of a temperature detector 6 permits discrimination of burning coal being fire-retardant. In which case, through opening of a damper 23, a flow rate of a slit air F is increased. As the flow rate of the slit air F increases, a bypass amount shown by an arrow mark G increases, and thereby, a time, for which pulverized coal stays in a mill 9, is increased, the grain size of the pulverized coal is decreased according to the staying time, and a unburnt content in ash is decreased. On the contrary, flammable coal is burnt early and therefore, the metal temperature of the superheater 4 is decreased over that in the case of fire-retardant coal. The metal temperature is detected by a temperature detector 6, and this enables to discriminate that coal under combustion is flammable, and in this case, with the damper 23 closed, the flow rate of the slit air F is decreased and a flow rate of a throat air B is increased.

Description

【発明の詳細な説明】 本発明は微粉炭燃焼装置に係り、特にミルで粉砕された
微粉炭ン火炉内で燃焼させる微粉炭燃焼装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pulverized coal combustion device, and more particularly to a pulverized coal combustion device in which pulverized coal pulverized in a mill is burned in a furnace.

微粉炭燃焼における灰中未燃分の排出問題は、石炭中の
灰分量と石炭の燃焼効率によって定まる燃焼問題であり
、その解決には、個々の燃焼器での実験的対応と並行し
て石炭の燃焼理論に基づいた検討が行われている。
The problem of emitting unburned matter in ash in pulverized coal combustion is a combustion problem determined by the amount of ash in the coal and the combustion efficiency of the coal. Studies are being conducted based on combustion theory.

灰中未燃分に影響を及ぼす因子を整理したものとして次
式が知られている。
The following equation is known as an arrangement of factors that affect the unburned content in the ash.

ここで、Yは燃焼度合を示す指数で、Yが大きいほど燃
焼は進行し未燃分は下がる。なお、他は下記の通りであ
る。
Here, Y is an index indicating the degree of combustion, and the larger Y is, the more the combustion progresses and the unburned content decreases. The others are as follows.

α:石炭の膨張率。α: Coal expansion rate.

Ks:石炭の燃焼速度係数 P:01分圧 d:チャーの粒径 Xw:微粉炭の重量平均粒子径 F几:燃料比 □ρa二石炭の見掛密度 θ:炉内滞留時間 上記(1)式の中で、α、f(FR)、ρ8は石炭によ
って決まる定数であり、θは火炉形状で決まる。またに
、は石炭の性状と雰囲気温度によって決まり、温度が高
いほど燃焼速度は速く、さらにPは燃焼雰囲気中の01
分圧で、02分圧が高いほど燃焼速度は速い。しかし、
温度や02分圧が高いと一般にNOxが高(なるため、
そこには自ずと限界がある。
Ks: Burning rate coefficient of coal P: 01 Partial pressure d: Particle size of char In the equation, α, f(FR), and ρ8 are constants determined by the coal, and θ is determined by the furnace shape. In addition, is determined by the properties of the coal and the ambient temperature; the higher the temperature, the faster the combustion rate;
In terms of partial pressure, the higher the 02 partial pressure, the faster the combustion rate. but,
Generally, when the temperature and partial pressure are high, NOx is high (because
There are of course limits to that.

従って、Yの変数としてはd、xwで示される微粉粒度
だけということになり、微粉粒度の大小によって灰中未
燃分が増減することになる。
Therefore, the only variables for Y are the fine particle sizes shown by d and xw, and the unburned content in the ash increases or decreases depending on the size of the fine particles.

第1図は、フルイ通過パーセントの灰中未燃分に対する
影響ヲ示したもので、このグラフよりパス%が大きく粒
径が細かくなるほど灰中未燃分が低下することがわかる
。従って、難燃性の石炭の場合には、ミル動力を太き(
して粒径を細かくすることが灰中未燃分を独立に低減し
うる有効な手段となる。
FIG. 1 shows the influence of the sieve passage percentage on the unburned content in the ash. From this graph, it can be seen that the larger the pass percentage and the finer the particle size, the lower the unburned content in the ash. Therefore, in the case of flame-retardant coal, the mill power should be increased (
Reducing the particle size by reducing the particle size is an effective means to independently reduce the amount of unburned matter in the ash.

ところで、入手できる石炭の性状は千差万別であり、そ
れによって燃焼特性や粉砕性は大きく異なる。一般的に
は、高燃焼比すなわち難燃性の石炭はど粉砕し易い性質
を有しており、反対に低燃料比すなわち易燃性の石炭は
ど粉砕しにくい性質を有しているが、従来の微粉炭燃焼
装置では、石炭の性状に関係なく一定の操作条件でミル
を運転するため、粉砕し易い高燃料比炭では、ミル動力
は小さくなるが微粉粒度を充分に細かくできず、その結
果、燃焼後の灰中未燃分が著しく増加することになる。
Incidentally, the properties of available coal vary widely, and the combustion characteristics and crushability vary greatly depending on the properties. In general, coal with a high combustion ratio, or flame retardancy, has the property of being easily pulverized, and conversely, coal with a low fuel ratio, or flammability, has the property of being difficult to pulverize. In conventional pulverized coal combustion equipment, the mill is operated under constant operating conditions regardless of the properties of the coal, so when using coal with a high fuel ratio that is easy to crush, the mill power is reduced, but the pulverized particle size cannot be made sufficiently fine. As a result, the amount of unburned matter in the ash after combustion increases significantly.

反対に、粉砕性の悪い低燃料化炭で−は、微粉粒度を必
要以上に細かくすることはミル動力の無駄となり、この
場合は、灰中未燃分が許容値に収まる範囲で微粉粒度全
組くする方、カー経済的である。
On the other hand, in the case of low-fuel coal that has poor pulverization properties, making the fineness of the powder finer than necessary is a waste of mill power. It is economical to assemble the car.

このように、従来の微粉炭燃焼装置では、石炭の性状に
関係なく一定の操作条件でミル全運転していたので、ミ
ル動力に無駄を生じたり、ある(1は灰中未燃分を減少
できない等の欠点があった。
In this way, in conventional pulverized coal combustion equipment, the mill is operated at full capacity under constant operating conditions regardless of the properties of the coal, which results in wasted mill power. There were drawbacks such as not being able to do so.

本発明の目的は、上述した従来技術の欠点tM消し、最
小のミル動力で、最小の灰中未燃分を得る微粉炭燃焼装
置を提供するにある。この目的を達成するために、本発
明は、供給された石炭を微粉炭に粉砕するミルに粉砕部
と分級器を設け、微粉炭を燃焼する火炉にバーナを設け
、前記粉砕部で粉砕された石炭を前記分級器で粗粉炭と
微粉炭とに分離し、この分離された微粉炭を前記バーナ
に搬送する微粉炭燃焼装置において、前記ミルに、粉砕
された石炭を前記分級器へ搬送す6搬送気体噴出手段と
、粉砕された石炭會前記分級器を介さず前記粉砕部へ再
供給するバイパス気体噴出手段とを設け、このバイパス
気体噴出手段の気体喰出量を前記火炉の排ガス温度によ
って制御するようにしたことを特徴とするものである。
An object of the present invention is to provide a pulverized coal combustion apparatus which eliminates the above-mentioned drawbacks of the prior art and obtains a minimum amount of unburned content in the ash with a minimum mill power. To achieve this objective, the present invention provides a mill for pulverizing the supplied coal into pulverized coal, which is equipped with a pulverizing section and a classifier, a furnace for burning the pulverized coal, a burner, and the pulverized coal in the pulverized section. In a pulverized coal combustion apparatus that separates coal into coarse powder coal and pulverized coal by the classifier and transports the separated pulverized coal to the burner, the pulverized coal is transported to the mill and the pulverized coal to the classifier 6 A conveying gas jetting means and a bypass gas jetting means for re-supplying the crushed coal to the crushing section without going through the classifier are provided, and the amount of gas discharged by the bypass gas jetting means is controlled by the exhaust gas temperature of the furnace. It is characterized by the fact that it is made to do so.

以下、第2図乃至第4図に基づいて本発明の詳細な説明
する。
Hereinafter, the present invention will be explained in detail based on FIGS. 2 to 4.

第2図は本発明に係る微粉炭燃焼装置の概略構成図であ
り、この図において、1は火炉、2は火炉1のII+l
I壁に設けられたバーナ、3は燃焼空気を供給するため
のウィンドボックス、4は排ガス通路に設けられたスー
パヒータ、5は同じく排ガス通路に設けられたリヒータ
、6は前記スーパヒータ4のメタル温度を検出する温度
検出装置である。
FIG. 2 is a schematic diagram of the pulverized coal combustion apparatus according to the present invention. In this figure, 1 is a furnace, and 2 is II+l of the furnace 1.
3 is a wind box for supplying combustion air; 4 is a super heater provided in the exhaust gas passage; 5 is a reheater also provided in the exhaust gas passage; 6 is the metal temperature of the super heater 4; This is a temperature detection device that detects temperature.

また、7は原炭を供給するホッパ、8はホッパ7に通じ
る給炭管、9は給炭管8から供給された石炭を微粉炭に
粉砕するミル、10はミル9で粉砕された微粉炭を前記
バーナ2に導(導管である。
Further, 7 is a hopper that supplies raw coal, 8 is a coal feed pipe leading to the hopper 7, 9 is a mill that grinds the coal supplied from the coal feed pipe 8 into pulverized coal, and 10 is pulverized coal that has been pulverized by the mill 9. to the burner 2 (a conduit).

第3図は前記ミjl/9の内部構造を示す断面図であり
、ミル9は前記給炭管8、粉砕部11、動力伝達部12
、分級器13、微・粉炭出口管14、異物吐出口15お
よび空気供給管16から構成されている。前記ホッパ7
に供給された石炭は、矢印Aで示す如く給炭管8を経て
粉砕部11の内側へ供給される。この粉砕部11は、前
記動力伝達部12と連結した定置回転する下部リング1
7と、この下部リング17の上で公転・自転する複数個
のボール18と、このボー)v18の上にバネ等で加圧
された固定の上部リング19とで構成されている。前記
給炭管8の下端より供給された供給石炭は、粉砕部11
で下部リング17とポール18によって粉砕され、前記
空気供給ゞa16からの一次空気によって上方へ気流搬
送される。
FIG. 3 is a sectional view showing the internal structure of the mill 9, in which the mill 9 includes the coal feed pipe 8, the crushing section 11, and the power transmission section 12.
, a classifier 13, a fine/pulverized coal outlet pipe 14, a foreign matter discharge port 15, and an air supply pipe 16. Said hopper 7
The supplied coal is supplied to the inside of the crushing section 11 through the coal feed pipe 8 as shown by arrow A. This crushing section 11 includes a lower ring 1 which is fixedly rotated and connected to the power transmission section 12.
7, a plurality of balls 18 that revolve and rotate on the lower ring 17, and a fixed upper ring 19 that is pressurized by a spring or the like above the ball 18. The feed coal supplied from the lower end of the coal feed pipe 8 is transported to the crushing section 11
It is pulverized by the lower ring 17 and the pole 18, and airflow-carried upward by the primary air from the air supply a16.

この空気供給管16は、第4図に示すように、仕切板加
によって内部が二分されており、この仕切板加と下部リ
ング17の間には垂直流を生じるスロート2]が、また
仕切板側の傾斜部には斜視流を生じるス’) ノ) 2
2がそれぞれ形成しである。空気供給管16内には、火
炉1かもの排ガスと冷却空気とを混合した02分圧の低
い一次空気が供給され、この−次空気は矢印Bで示すよ
うにスロート21を通って上方へ噴出し、前記粉砕部1
1で粉砕された石炭を矢印Cで示す如く前記分級器13
内へ送り込む。
As shown in FIG. 4, the inside of this air supply pipe 16 is divided into two by a partition plate, and between this partition plate and the lower ring 17 there is a throat 2 which generates a vertical flow, and Oblique flow occurs on the side slope part.S') ノ) 2
2 are formed respectively. In the air supply pipe 16, primary air with a low partial pressure, which is a mixture of exhaust gas from the furnace 1 and cooling air, is supplied, and this primary air is blown upward through the throat 21 as shown by arrow B. and the crushing section 1
The coal pulverized in step 1 is passed through the classifier 13 as shown by arrow C.
Send it inside.

分級器13内に送り込まれた粉砕炭は微粉炭と粗粉炭に
分離され、微粉炭は矢印J〕で示すように導管10内7
通ってバーナ2へ搬送され、また粗粉炭は矢印Eで示す
如く比重分離により分級器13の下部から再び粉砕部1
1の内側へ再供給されて微粉炭に粉砕される。
The pulverized coal fed into the classifier 13 is separated into pulverized coal and coarse pulverized coal.
The coarse coal is conveyed to the burner 2 from the lower part of the classifier 13 through specific gravity separation as shown by arrow E.
It is re-supplied to the inside of 1 and crushed into pulverized coal.

一方、前記空気供給管16内に供給される一次空気は、
矢印)゛で示す如く、スリット22ヲ通ってボール18
に向かい斜めにも噴出される。このスリット22から噴
出される空気流によって、粉砕部11で粉砕された石炭
は分級器13−!:で搬送されずに、矢印Gで示すバイ
パス経路を通って粉砕部11の内側へ再供給される。ス
リットηから噴出される梨気Fの流量が増えると粉砕炭
のバイパス量も増加するので5分級器13の分級効率は
向上し、反対にスリット空気Fの流量が減ってスロート
空気Bの流量が増えると分級器13の分級効率が悪(な
り、粗粉炭の一部は微粉炭とともにバーナ2へ搬送され
る。このスリット空気・Fの流量調整は、第2図に示す
ダンパおによって行なわれ、このダンパ沼は前記温度検
出装置6に連結されている。
On the other hand, the primary air supplied into the air supply pipe 16 is
As shown by the arrow), the ball 18 passes through the slit 22.
It is also ejected diagonally towards the direction. The air flow ejected from this slit 22 causes the coal crushed in the crushing section 11 to be crushed into the classifier 13-! : without being conveyed, it is re-supplied inside the crushing section 11 through a bypass path shown by arrow G. When the flow rate of pear air F ejected from the slit η increases, the bypass amount of the crushed coal also increases, so the classification efficiency of the 5-classifier 13 improves, and conversely, the flow rate of the slit air F decreases and the flow rate of the throat air B increases. If the amount increases, the classification efficiency of the classifier 13 will deteriorate (and a part of the coarse pulverized coal will be conveyed to the burner 2 together with the pulverized coal.The flow rate adjustment of this slit air/F is performed by a damper shown in Fig. 2. This damper swamp is connected to the temperature detection device 6.

以上の如き微粉炭燃焼装置において、いまかIE燃性の
微粉炭が燃焼している場合は、排ガス通路近傍での未燃
分が増加するのでスーパヒータ4のメタル温度が上昇す
る。このメタル温度を温度検出装置6によって検出する
ことにより、燃焼している石炭が難燃性であることを判
別できるので、この場合は、ダンパおを開げてスリット
空気1゛の流量を増加する。スリット空気1゛の流量が
増加すると、第3図の矢印Gで示すバイパス量が増加す
るので、粉砕炭のミル9内滞留時間が長くなり、粗粉炭
の粒度はそれだけ細かくなり灰中未燃分は減少する。
In the pulverized coal combustion apparatus as described above, when pulverized coal of IE combustibility is being combusted, the metal temperature of the superheater 4 increases because the amount of unburned coal near the exhaust gas passage increases. By detecting this metal temperature with the temperature detection device 6, it can be determined that the burning coal is flame retardant, so in this case, the damper is opened to increase the flow rate of the slit air by 1. . When the flow rate of slit air 1゛ increases, the amount of bypass shown by arrow G in Fig. 3 increases, so the residence time of the pulverized coal in the mill 9 becomes longer, the particle size of the coarse pulverized coal becomes finer, and the unburned content in the ash increases. decreases.

反対に、易燃性の石炭は早く燃焼するのでスーパヒータ
4のメタル温度は難燃性の石炭の時よりも下がる。この
メタル温度を温度検出装置6によって検出することによ
り、燃焼している石炭が易燃性であることを判別できる
ので、この場合は、ダンパ23ヲ閉めてスリット空気)
1の流量を減らしスロート空気Bの流量を増加する。ス
ロート空気Bの光景が増加すると、スロート空気Hによ
って上方へ吹き上げられた粗粉炭の一部も微粉炭に混入
されてバーナ2へと搬送されるので、粉砕体のミル9内
滞留時間は短かくなり、ミル9の動カ低g、合図れる。
On the other hand, since easily flammable coal burns quickly, the metal temperature of the superheater 4 is lower than when using flame-retardant coal. By detecting this metal temperature with the temperature detection device 6, it can be determined that the burning coal is easily combustible, so in this case, the damper 23 should be closed and the slit air
1 and increase the flow rate of throat air B. When the visibility of the throat air B increases, a portion of the coarse pulverized coal blown upward by the throat air H is also mixed with the pulverized coal and conveyed to the burner 2, so the residence time of the pulverized body in the mill 9 is shortened. As a result, the motion of Mill 9 is low, and the signal is heard.

なお、上述した実施例では、石炭の難燃性、易燃性の判
別方法としてスーパヒ←り4のメタル温度を検出するも
のについて説明したが、不発明は上記実施例に限定され
るものではなく、リヒータ5のメタル温度やエアヒータ
等のガス温度を検出し、この温度によりスリット空気下
の流量を調整するようにすることも可能である。
In addition, in the above-mentioned embodiment, a method for determining the flame retardance and combustibility of coal is described as detecting the metal temperature of Super Heat ←4, but the invention is not limited to the above-mentioned embodiment. It is also possible to detect the metal temperature of the reheater 5 or the gas temperature of the air heater, etc., and adjust the flow rate under the slit air based on this temperature.

また、空気供給管16に供給される一次空気もυトガス
と冷却空気の混合空気に限定されるものでは1啄く、エ
アヒータ等によって加熱された加熱空襲を空気供給管1
6に供給するようにしても良い。
In addition, if the primary air supplied to the air supply pipe 16 is limited to a mixed air of υ gas and cooling air, the heating air raid heated by an air heater etc.
6 may be supplied.

以上詳述の如く、本発明の微粉炭燃焼装置は、スーパヒ
ータやリヒータのメタル温度やエアヒータ入口等の排ガ
ス温度を検出し、この温度によっテミルのバイパス気体
噴出量を制御するようにまたため、必要最小限のミル動
力で灰中未燃分全最小に抑えることができる。
As described in detail above, the pulverized coal combustion device of the present invention detects the metal temperature of the super heater or reheater, the exhaust gas temperature at the air heater inlet, etc., and controls the Temir bypass gas ejection amount based on this temperature. The amount of unburned matter in the ash can be kept to a minimum with the minimum necessary mill power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフルイ通過パーセントと灰中未燃分との関係を
示す説明図、第2図は本発明に係る微粉炭燃焼装置の概
略構成図、第3図は本発明に係るミルの内部構造を示ず
断面図、第4図は第3図の要部拡大断面図である。 1・・・・・・火炉、2・・・・・・バーナ、4・・・
・・・スーパヒータ、5・・・・・・ リヒータ、6・
・・・・・温度検出装置、9・・・・・・ミル、10・
・・・・・導管、11・・・・・・粉砕部、13・・・
・・分級器、16・・・・・空気供給管、加・・・・・
・仕切板、21・・・・・・ス0−)、22・・・・・
スリット、ル・・曲ダンパ。 第1 図 60 70 80 90 200ノ−リソユノ(0ス C起υ IIJ図 第4府 どI tu
Fig. 1 is an explanatory diagram showing the relationship between the percentage passing through the sieve and the unburned content in the ash, Fig. 2 is a schematic diagram of the pulverized coal combustion apparatus according to the present invention, and Fig. 3 is the internal structure of the mill according to the present invention. FIG. 4 is an enlarged sectional view of the main part of FIG. 3. 1...furnace, 2...burner, 4...
...Super heater, 5... Reheater, 6.
...temperature detection device, 9...mil, 10.
...Conduit, 11...Crushing section, 13...
...Classifier, 16...Air supply pipe, addition...
・Partition plate, 21...S0-), 22...
Slit, le... song damper. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 供給された石炭を微粉炭に粉砕するミルに粉砕部と分級
器を設け、微粉炭を燃焼する火炉にバーナを設け、前記
粉砕部で粉砕された石炭を前記分級器で粗粉炭と微粉炭
とに分離し、この分離された微粉炭を前記バーナに搬送
する微粉炭燃焼装置において、前記ミルに、粉砕された
石炭を前記分級器へ搬送する搬送気体噴出手段と、粉砕
された石炭を前記分級器を介さず前記粉砕部へ再供給す
るバイパス気体噴出手段とを設け、このバイパス気体噴
出手段の気体咳出量を前記火炉の排ガス温度によって制
御するようにしたこと全%徴とする微粉炭燃焼装置。
A mill for pulverizing the supplied coal into pulverized coal is provided with a pulverizing section and a classifier, a burner is provided in a furnace for burning the pulverized coal, and the coal pulverized in the pulverizing section is separated into coarse pulverized coal and pulverized coal by the classifier. In the pulverized coal combustion apparatus, the pulverized coal is separated into pulverized coal and the separated pulverized coal is conveyed to the burner. The pulverized coal combustion is characterized in that a bypass gas jetting means is provided to re-supply the pulverized gas to the pulverizing section without using a vessel, and the amount of gas discharged from the bypass gas jetting means is controlled by the exhaust gas temperature of the furnace. Device.
JP58137627A 1983-07-29 1983-07-29 Pulverized coal combustion device Pending JPS6030911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58137627A JPS6030911A (en) 1983-07-29 1983-07-29 Pulverized coal combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58137627A JPS6030911A (en) 1983-07-29 1983-07-29 Pulverized coal combustion device

Publications (1)

Publication Number Publication Date
JPS6030911A true JPS6030911A (en) 1985-02-16

Family

ID=15203077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58137627A Pending JPS6030911A (en) 1983-07-29 1983-07-29 Pulverized coal combustion device

Country Status (1)

Country Link
JP (1) JPS6030911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018335A1 (en) * 1993-12-29 1995-07-06 Combustion Engineering, Inc. Low emission and low excess air system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018335A1 (en) * 1993-12-29 1995-07-06 Combustion Engineering, Inc. Low emission and low excess air system

Similar Documents

Publication Publication Date Title
US4993332A (en) Hybrid fluidized bed and pulverized coal combustion system and a process utilizing said system
AU2011297994B2 (en) Method and installation for coal grinding in inert operation or in non-inert operation
CN108430643B (en) Grinding and drying facility
KR20110031153A (en) Biomass-mixed-firing pulverized coal fired boiler and operation method of the boiler
JP2929317B2 (en) Low emission and low excess air system
CA2275568C (en) Reburning of coal ash
US4498632A (en) Process for grind-drying wet solid fuel
US3199476A (en) Apparatus and method for compound cyclone combustion of coal and other fuels
CN100422638C (en) Little oil ignition method for circulating fluidized-bed boiler
JP2005291534A (en) Combustion equipment and method of biomass fuel
JPS6021282B2 (en) Powder fuel combustion method
JPS6030911A (en) Pulverized coal combustion device
JPH08135953A (en) Combustion method for coal-burning boiler
JP7423204B2 (en) Grinding equipment, boiler system, and method of operating the grinding equipment
JPS6047488B2 (en) direct combustion device
JPS6365224A (en) Burning device
JPH05256424A (en) Method of burning dusts
JPS63143408A (en) Coal burner of high fuel ratio
RU2309328C1 (en) Method of work of the swirling-type furnace and the swirling-type furnace
JPS6138670Y2 (en)
JPH01104355A (en) Vertical mill
JP2004340570A (en) Combustion method for coal burning boiler
JPS61168721A (en) Operation method of vertical mill
CN116817261A (en) Intermediate storage bin type hot furnace smoke drying steel ball milling powder making system and method
JPH02152582A (en) Mill equipped with rotary classifier