JPS6030554A - Continuous casting and cooling device for square ingot - Google Patents

Continuous casting and cooling device for square ingot

Info

Publication number
JPS6030554A
JPS6030554A JP13186183A JP13186183A JPS6030554A JP S6030554 A JPS6030554 A JP S6030554A JP 13186183 A JP13186183 A JP 13186183A JP 13186183 A JP13186183 A JP 13186183A JP S6030554 A JPS6030554 A JP S6030554A
Authority
JP
Japan
Prior art keywords
casting
ingot
mold
cooling water
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13186183A
Other languages
Japanese (ja)
Inventor
Susumu Nawata
名和田 進
Katsuzo Ichikawa
市川 勝三
Masaharu Sugiyama
杉山 雅春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP13186183A priority Critical patent/JPS6030554A/en
Publication of JPS6030554A publication Critical patent/JPS6030554A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/049Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for direct chill casting, e.g. electromagnetic casting

Abstract

PURPOSE:To provide a titled device which improves remarkably the quality and characteristics of a square casting ingot in the stage of casting continuously said ingot by the constitution in which the amt. of the cooling water to be applied to the casting ingot in the lower part of a casting mold is properly changed by operating a divided member connected by means of a flexible member provided to a part where a nozzle is formed. CONSTITUTION:A divided member 5 is disposed in the bottom 4 of a casting mold 1 on the nozzle 2 side provided in the part facing casting ingot 10 so as to discharge cooling water 3 as shown in the figure A. The member 5 is connected watertightly in the mold 1 by a flexible member 6 consisting of a rubber- or plastic base material. An operating member 9 is attached to the member 5 and the free end side of the member 9 is brought into contact with a driving body 8 such as a cam body. An operating cylinder or the like acting on the free end side of the member 9 is usable for the body 8. The nozzle 2 can be throttled by the crest part of the body 8 as shown in the figure B when a rotary periphery cam is used for said body 8. The deformation in the initial period of casting a square casting ingot is effectively prevented and the crystal is improved by such constitution. The crank, etc. in the initial period of casting are also adequately averted.

Description

【発明の詳細な説明】 本発明は角型鋳塊の連続的鋳造冷却装置に関するもので
あって、角型鋳塊を連続的に鋳造するに当って該鋳塊に
対する好ましい冷却操作によってその品質、性状を隔設
に向上することのできる装置を提供しようとするもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous casting cooling device for rectangular ingots, and the present invention relates to a continuous casting cooling device for rectangular ingots. The object is to provide a device whose properties can be improved separately.

アルミニウム等の連続鋳造においては一般に上下が開放
した角型の水冷鋳型を用いて、該鋳型下部に挿入された
上下方向に可動し得る受台上に鋳型上方から金属溶湯を
連続的に供給し、鋳型内で凝固した鋳塊を受台を下降す
ることによって、鋳型下部から連続的に引き出し、該鋳
型下部に設けられたノズルから冷却水を直接鋳塊に施す
冷却方法が採られている。即ちこのような半連続鋳造法
においては、高温の金属溶湯が水冷鋳型と鋳型下から直
接鋳塊に施される前記冷却水とによって、−挙に常温近
くまで冷却されるため、鋳塊は急冷組織となシ、一般に
は良好な性質を与えるとしても、このことは逆に急冷さ
れることによって生ずる幾つかの問題点がある。即ちこ
のような鋳塊に対し出来るだけ緩慢な冷却が望ましいと
考えられる場合があって、例えば■A1050、Al1
00合金等の結晶方向性を改善し、■角型鋳塊の鋳造初
期の変形、即ち鋳塊端面の受台に対する反り上り (バ
ットカール)の防止、■高力合金のホットおよびコール
ドクラッキングすなわち、鋳込初期の割れ、中心および
表面の割れの防止などがこれである。然してこのような
緩徐な冷却を得るには冷却水量の供給を減少することが
最も簡単な方法であるが、冷却水量の供給減少は鋳塊周
面各部に供給される冷却水の量がアンバランスになシ安
定均衡した冷却とそれによる鋳造が得られない。そこで
このような不利を避は安定した冷却と鋳造を図るべくノ
クルス冷却、多段冷却、ワイパー使用による冷却などの
特殊法が開発されているが、現状の半連続鋳造法に適用
しようとすると、そのだめの設備量スペースがなかった
り、大幅な設備改造を必要とし、或いはノ・ンドリング
を煩雑化せしめ、若しくは高いコストを招くなどの不利
を避は得ないことになる。
In continuous casting of aluminum, etc., generally a rectangular water-cooled mold with open top and bottom is used, and molten metal is continuously supplied from above the mold onto a vertically movable pedestal inserted into the bottom of the mold. A cooling method is adopted in which the ingot solidified in the mold is continuously pulled out from the lower part of the mold by lowering a pedestal, and cooling water is directly applied to the ingot from a nozzle provided at the lower part of the mold. In other words, in such a semi-continuous casting method, the high-temperature molten metal is cooled to near room temperature by the water-cooled mold and the cooling water applied directly to the ingot from below the mold, so the ingot is rapidly cooled. Although this generally gives good properties to the structure, there are some problems caused by rapid cooling. In other words, it is sometimes considered desirable to cool such ingots as slowly as possible; for example, ■A1050, Al1
By improving the crystal orientation of 00 alloys, etc., ■ prevention of deformation in the initial stage of casting of square ingots, that is, warping of the end face of the ingot against the pedestal (butt curl); ■ hot and cold cracking of high strength alloys, i.e. This includes prevention of cracks in the initial stage of casting, and cracks in the center and surface. However, the easiest way to obtain such slow cooling is to reduce the supply of cooling water, but reducing the supply of cooling water causes an imbalance in the amount of cooling water supplied to each part of the circumference of the ingot. Therefore, stable and balanced cooling and thereby casting cannot be obtained. Therefore, special methods such as Noculus cooling, multistage cooling, and cooling using wipers have been developed to avoid such disadvantages and achieve stable cooling and casting, but when trying to apply them to the current semi-continuous casting method, There are unavoidable disadvantages such as not having enough equipment space, requiring major equipment modification, complicating no-end operations, or incurring high costs.

本発明は上記したような実情に鑑み検討を重ねて創案さ
れたものであシ、鋳型下部において鋳塊に施される冷却
水の量を適宜に変化せしめて冷却することのできる比較
的簡易コンパクトで従来からのアルミニウム鋳塊の連続
的(完全連続又は半連続)鋳造設備に容易に採用し操作
することのできる機構を得ることに成功した。即ち本発
明によるものの具体的な実施態様を添付図面に示すもの
について説明すると、第1図に示すように角型鋳塊10
を半連続的に得るようにされた鋳型1は公知のようにそ
の内部に冷却水その他の冷媒を収うに冷却水3を吐出し
て卵塊10に対する冷却を図るように成っているが、本
発明においてはこのような鋳型1の底部4において前記
ノズル2側に分割部体5を用い、該分割部体5をゴム質
又は合成樹脂質などの可曲性部材6により鋳型1内にお
いて水密状態に連結せしめ、しかも該分割部体5に操作
部材9を取付け、該操作部材9の遊端側をカム部体のよ
うな駆動体8に係接させたものであり、駆動体8として
は操作部材9の遊端側に作用する操作シリンダーやラッ
ク部材などを採用することができる。第1図のものは駆
動体8として回転周面カムを用いた場合において同図B
のように回転周面カム駆動体8の山部でノズル2を絞る
ようにしたものであるが、この構成は場合によっては第
2図に示すように回転周面カム駆動体8の谷部において
ノズル2を絞るようにして採用することができ、この場
合においては前記分割部体5の内側にゴム質等によるシ
ール材Iを取付ける。駆動体8として回転カムをこれら
第1.2図のように用いるとしても端面カムや溝カムを
採用しても同様な作用効果が得られることは明かである
The present invention was devised after repeated studies in view of the above-mentioned circumstances, and is a relatively simple and compact device that can cool the ingot by appropriately changing the amount of cooling water applied to the ingot at the bottom of the mold. We succeeded in obtaining a mechanism that can be easily adopted and operated in conventional continuous (fully continuous or semi-continuous) casting equipment for aluminum ingots. That is, a specific embodiment of the present invention will be described with reference to the attached drawings. As shown in FIG. 1, a square ingot 10
As is well known, the mold 1 which is designed to semi-continuously obtain cooling water and other refrigerants is configured to cool the egg mass 10 by discharging cooling water 3 from the inside of the mold 1. In this case, a divided part body 5 is used on the nozzle 2 side in the bottom part 4 of such a mold 1, and the divided part body 5 is made watertight in the mold 1 by a flexible member 6 made of rubber or synthetic resin. In addition, an operating member 9 is attached to the divided body 5, and the free end side of the operating member 9 is engaged with a driving body 8 such as a cam body. It is possible to employ an operating cylinder, a rack member, etc. that acts on the free end side of 9. The one in Figure 1 is B in the same figure when a rotating circumferential cam is used as the drive body 8.
As shown in FIG. The nozzle 2 can be narrowed down, and in this case, a sealing material I made of rubber or the like is attached to the inside of the divided body 5. It is clear that even if a rotary cam is used as the drive body 8 as shown in FIGS. 1.2, the same effects can be obtained even if an end cam or a groove cam is used.

なお前記駆動体8が鋳造中にモータなどで連続回転して
いるような条件下において特に鋳造初期においてのみ冷
却水3の吐出を制御し、その後に一様な冷却水供給を図
ろうとするような場合においてはクラッチ機構などを採
用してモータからの駆動体8作動系を適宜にオンオンす
ることができる。
Note that under conditions where the driving body 8 is continuously rotated by a motor or the like during casting, the discharge of the cooling water 3 is controlled only in the initial stage of casting, and then a uniform cooling water supply is attempted. In some cases, a clutch mechanism or the like may be employed to appropriately turn on and off the actuating system of the drive body 8 from the motor.

なお本発明者等が実地的に検討した結果によると鋳造初
期における鋳塊の変形(バットカール)阻止には角形矩
形断面鋼塊の長手方向側面においてのみ冷却水供給を断
続させれば充分であシ、特に長手方向中間部における6
割における冷却水供給断続で適切に目的を達し得る。又
鋳型1内に一定の冷却水を供給したままで鋳型長手方向
の両側を同時に閉とすると鋳型1内における冷却水の圧
力が増加して閉としたノズル部からも冷却水が漏れるよ
うな場合には左右のカムの位相を対称的としないで18
0°、変えたものとし左右のノズル部が交互に開閉する
ようにする。何れにしても鋳塊の組織に変化のない状態
で円滑に鋳造することができる。
According to the results of practical studies conducted by the present inventors, it is sufficient to interrupt the supply of cooling water only to the longitudinal side surfaces of a steel ingot with a rectangular cross section in order to prevent deformation (butt curl) of the ingot in the initial stage of casting. 6, especially in the longitudinal middle part
The purpose can be appropriately achieved by intermittent cooling water supply. Also, if both sides of the mold in the longitudinal direction are closed at the same time while a constant amount of cooling water is being supplied into the mold 1, the pressure of the cooling water inside the mold 1 will increase and the cooling water will leak from the closed nozzle. 18 without making the phases of the left and right cams symmetrical.
0°, so that the left and right nozzle sections open and close alternately. In any case, the ingot can be smoothly cast without any change in its structure.

本発明によるものの具体的な操業例について説明すると
以下の通夛である。
Specific operational examples according to the present invention will be explained below.

第2図に示すような設備により開閉サイクルを毎秒3回
としてAl050合金を250X40(111の鋳塊1
0として鋳造速度7o順/min、冷却水1501 /
 minを供給して鋳造した場合のバットカールの発生
状況を測定した結果は次の第1表に示す通シである。
Using the equipment shown in Fig. 2, an ingot of 250 x 40 (111 ingots 1
0, casting speed 7o/min, cooling water 1501/min
The results of measuring the occurrence of butt curl when casting was performed by supplying min. were shown in Table 1 below.

第 1 表 即ち第1表の結果から明かなようにバットカールの防止
には鋳型1の冷却水ノズル中長辺側か効果的であシ、又
長辺側400 FJO中で15(1mを開閉すればバッ
トカールは半減し、250龍を開閉すれば殆んど零状態
とするととができる。
As is clear from the results in Table 1, it is effective to use the cooling water nozzle on the middle long side of mold 1 to prevent butt curl. If you do this, the Batcurl will be halved, and if you open and close 250 dragons, you can reduce it to almost zero.

なお上記した操業例の中で試験番号5、即ち鋳型長辺の
92.5飴を開閉したときの鋳塊厚さの1/4に相当し
た部分の光学的顕微鏡組織は第3図に示す通シであって
、従来法によって操業した場合の鋳塊厚さ1/4部分の
光学的顕微鏡組織を示した第4図のものに比し鋳型長辺
の冷却を断続せしめることによシ鋳塊のデンドライトが
非常に粗くなっていて好ましい冷却のなされたことは明
かである。
In addition, in the above operation example, the optical microscopic structure of the part corresponding to 1/4 of the ingot thickness when the 92.5 candy on the long side of the mold was opened and closed was as shown in Figure 3. Compared to the structure shown in Fig. 4, which shows the optical microscopic structure of 1/4 of the thickness of the ingot when operated by the conventional method, the ingot was It is clear that the dendrites were very coarse and had undergone favorable cooling.

以上説明したような本発明によるときは角形鋳塊におけ
る鋳造初期の変形を有効に防止しその結晶を改善すると
共に鋳込初期における割れなどを適切に回避し得るもの
であシ、しかも鋳型底部における僅かな改善とコンパク
トな駆動体ないし操作部材で有効にその目的を達し得る
ので既設の連続的鋳造設備においても大幅な改善変更を
必要としないで簡易に採用し得るなどの作用効果を有し
ておシ、工業的にその効果の大きい発明である。
According to the present invention as explained above, it is possible to effectively prevent deformation of a rectangular ingot at the initial stage of casting, improve its crystallization, and appropriately avoid cracking at the early stage of casting. Since the purpose can be effectively achieved with slight improvements and a compact driving body or operating member, it has the advantage of being able to be easily adopted in existing continuous casting equipment without the need for major improvements or changes. This invention is industrially very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を示すものであって、第1図は
本発明によるものの一つの実施形態を示した部分的断面
図、第2図はその別の実施形態を示した部分的断面図で
あって、それぞれAはノズル部開披状態、Bはその閉塞
状態を示すものであシ、第3図は本発明によって得られ
た鋳塊厚さ1/4部分の光学的類いての第3図と同様な
倍率50倍の顕微鏡写真を示すものである。 然してこれらの図面において、1は冷却鋳型、2はその
ノズル部、3は冷却水、4は鋳型底部、5は分割部体、
6は可曲性部材、Tはシール材、8は駆動体1.9は操
作部体1.′10は鋳塊を示すものである。 rA) 1 図 CB) (/4) 図 (B)
The drawings show embodiments of the present invention, and FIG. 1 is a partial sectional view showing one embodiment of the invention, and FIG. 2 is a partial sectional view showing another embodiment thereof. In each case, A shows the nozzle part open state, and B shows the nozzle part closed state. FIG. This figure shows a micrograph at a magnification of 50 times, similar to that in Figure 3. In these drawings, 1 is a cooling mold, 2 is a nozzle thereof, 3 is a cooling water, 4 is a bottom of the mold, 5 is a divided part body,
6 is a flexible member, T is a sealing material, 8 is a drive body 1.9 is an operation part body 1. '10 indicates an ingot. rA) 1 Figure CB) (/4) Figure (B)

Claims (1)

【特許請求の範囲】[Claims] 角型鋳塊を連続的に鋳造するように内部に冷却水を収容
し底部における鋳塊側に該冷却水を吐出するノズルの形
成されたものにおいて、前記鋳型底部のノズル形成部分
に分割部体を用い、該分割部体をゴム質又は合成樹脂質
などの可曲性部材によって連結すると共に上記分割部体
に操作部材を取付け、該操作部材の遊端側に駆動体を係
接させたことを特徴とする角型鋳塊の連続的鋳造冷却装
置。
In a mold in which a nozzle is formed for storing cooling water inside and discharging the cooling water to the ingot side at the bottom so as to continuously cast square ingots, a divided part is provided in the nozzle forming part of the bottom of the mold. , the divided body is connected by a flexible member made of rubber or synthetic resin, an operating member is attached to the divided body, and a driving body is engaged with the free end side of the operating member. A continuous casting cooling device for square ingots, characterized by:
JP13186183A 1983-07-21 1983-07-21 Continuous casting and cooling device for square ingot Pending JPS6030554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13186183A JPS6030554A (en) 1983-07-21 1983-07-21 Continuous casting and cooling device for square ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13186183A JPS6030554A (en) 1983-07-21 1983-07-21 Continuous casting and cooling device for square ingot

Publications (1)

Publication Number Publication Date
JPS6030554A true JPS6030554A (en) 1985-02-16

Family

ID=15067833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13186183A Pending JPS6030554A (en) 1983-07-21 1983-07-21 Continuous casting and cooling device for square ingot

Country Status (1)

Country Link
JP (1) JPS6030554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372947A2 (en) * 1988-12-08 1990-06-13 Alcan International Limited Direct chill casting mould with a controllable coolant impingement point

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372947A2 (en) * 1988-12-08 1990-06-13 Alcan International Limited Direct chill casting mould with a controllable coolant impingement point

Similar Documents

Publication Publication Date Title
KR20010031606A (en) Process For Producing Base Foils Of Aluminum Alloys
JPS6030554A (en) Continuous casting and cooling device for square ingot
JP2001516284A (en) Improved continuous mold and continuous casting process
EP0498808A1 (en) Method of controlling the rate of heat extraction in mould casting
JPS632535A (en) Production of steel ingot for forging
JPS6149755A (en) Apparatus for continuous casting of thin sheet
US4235278A (en) Ring for a casting machine wheel
JPS59215257A (en) Casting method in twin roll type continuous casting machine
JPS6146231B2 (en)
JPS6160252A (en) Casting mold for casting partially chilled cast iron shaft
SU668776A2 (en) Open-ended mould
JPH0581346B2 (en)
Anfyorov Some Mechanisms of Stress Developments in Continuously Cast Ingots
SU1107957A1 (en) Chilling machine
JPH01130838A (en) Casting method for cast product forming chilling layer
JPS62292244A (en) Production of ingot
JPS63174777A (en) Die for casting
SU1301554A1 (en) Method of producing sectional hollow centrifugally-cast billet
JPH05293592A (en) Casting method into metallic mold
JPS5739164A (en) Preparation of heat resistant aluminum alloy conductor
JPH0519163Y2 (en)
JPS6380955A (en) Thin iron casting
JPS5910445A (en) Chiller for casting
RU2123908C1 (en) Method of producing castings with oriented crystallization
JPS63126644A (en) Mold for horizontal continuous casting