JPS6030189B2 - System stabilization method - Google Patents

System stabilization method

Info

Publication number
JPS6030189B2
JPS6030189B2 JP54009448A JP944879A JPS6030189B2 JP S6030189 B2 JPS6030189 B2 JP S6030189B2 JP 54009448 A JP54009448 A JP 54009448A JP 944879 A JP944879 A JP 944879A JP S6030189 B2 JPS6030189 B2 JP S6030189B2
Authority
JP
Japan
Prior art keywords
systems
transformer
disconnector
power
voltage side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54009448A
Other languages
Japanese (ja)
Other versions
JPS55103045A (en
Inventor
輝明 高松
勝 山田
純男 横川
雅郎 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP54009448A priority Critical patent/JPS6030189B2/en
Publication of JPS55103045A publication Critical patent/JPS55103045A/en
Publication of JPS6030189B2 publication Critical patent/JPS6030189B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】 本発明は、高圧側で同期している複数台の変圧器により
低圧側で互いに分離して運用される2つの系統を含む電
力系統の安定化のための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for stabilizing a power system comprising two systems operated separately from each other on the low voltage side by means of a plurality of transformers synchronized on the high voltage side.

従来検討され、あるいは一部で実施されている系統安定
化装置は、該当電力系統において、その主要連系線しや
断、系統内主要幹線の分離、系統内大容量発電所の脱落
があると大形タービンの低周波保護のために系統全停電
に波及するのを防止するため、あらかじめ演算処理した
不足発電量に見合った負荷を自動的にしや断することに
より潮流バランスを取って残された分離系統のそれぞれ
を安定に継続運転させることを目的とした装置である。
The system stabilization devices that have been considered in the past or have been implemented in some areas can be used in cases where the main interconnection lines in the relevant power system are disrupted, main trunk lines within the system are separated, or large-capacity power plants within the system are dropped. In order to prevent the spread of power outage to the entire system due to the low frequency protection of large turbines, the power flow is balanced by automatically cutting off the load commensurate with the insufficient amount of power generated, which has been calculated in advance. This device is designed to ensure stable and continuous operation of each separation system.

このための監視制御方式としては全系統一括監視制御方
式と、予想される分離系統ごとに対処する個別監視制御
方式とがある。いずれにしても、従釆方式は系統内のみ
の潮流バランスを主眼とするものであって、したがって
分離系統内で発電容量が余った場合はガバナ動作により
出力を低減させるか電源をしや断するかなどの処理が不
可欠でいり、逆に発電容量が負荷電力量に対して不足す
る場合は負荷しや断に頼る結果にならざるを得ない。公
益事業の立場からみるとこれらの従来方式は必ずしも最
良の策とはいい難い。本発明の目的は、冒頭に述べた如
き構成の電力系統に対して、能動的な方策をとることに
より電力需要家への悪影響が殆んどなくて電力供給信頼
度向上をも期待できる系統安定化方法を提供することに
ある。
Monitoring and control methods for this purpose include an all-system integrated monitoring and control method and an individual monitoring and control method that deals with each expected separated system. In any case, the secondary system focuses on power flow balance only within the system, so if there is excess generation capacity within the separate system, the output is reduced by governor operation or the power is shut off. On the other hand, if the power generation capacity is insufficient for the load power amount, it is necessary to resort to load switching. From the perspective of public utilities, these conventional methods are not necessarily the best solution. The purpose of the present invention is to stabilize the power system, which has almost no negative impact on power consumers and can also be expected to improve the reliability of power supply, by taking active measures for the power system configured as described at the beginning. The objective is to provide a method for

この目的は、高圧側で同期している複数台の変圧器によ
り低圧側で互いに分離されている2つの系統を有する電
力系統において、2つの系統のうちのいずれか一方が故
障した際に、両系統の変圧器のしや断器の開閉状態を監
視する手段が故障側変圧器のしや断器の開放後に発する
並入許可条件と、両系統の潮流を監視する手段が故障発
生直前の両系統の変圧器事前潮流の合成値が健全側系統
の変圧器容量を超えないときに発する並入許可条件とを
受けて、両系統の電圧ベクトル差が規定値内にあって且
つ故障側系統の周波数の微係数が負であることを直接も
しくは間接に確認したときに「 2つの系統に設けられ
た常時開放の系統しや断器に投入指令を与えることによ
り両系統を低圧側で再閉入することによって達成される
The purpose of this is that in a power system that has two systems separated from each other on the low-voltage side by multiple transformers synchronized on the high-voltage side, when one of the two systems fails, both The means for monitoring the opening/closing status of transformers and disconnectors in the system is based on the parallel access permission condition that is issued after the faulty transformer and disconnector is opened, and the means for monitoring the power flow in both systems is the same as the condition for parallel entry that is issued after the faulty transformer and disconnector are opened. In response to the parallel entry permission condition that occurs when the combined value of the transformer preliminary power flow of the system does not exceed the transformer capacity of the healthy system, the voltage vector difference between both systems is within the specified value and the faulty system's When it is directly or indirectly confirmed that the differential coefficient of frequency is negative, "by giving a closing command to the normally open system circuits and disconnectors installed in the two systems, both systems are reclosed on the low pressure side. This is achieved by

以下、図面を参照しながら本発明の実施例について詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図、本発明による系統安定化方法を有利に適用する
ことのできる系統構成例を示す。
FIG. 1 shows an example of a system configuration to which the system stabilization method according to the present invention can be advantageously applied.

これによれば、主幹線系統に結合されている高圧側(X
kv系)の2つの母線X,,X2間に常時閉路の系統連
絡しや断器NCが設けられ、母線X,には2つの変圧器
T,? T2が俵縞され、母線X2には変圧器T3が接
続されている。したがって3台の変圧器T.〜T3は高
圧側で同期している。変圧器T,〜T3の低圧側(Yk
v系)には2つの母線Y,,Y2があり、一方の母線Y
,は系統Aにそして他方の母線Y2は系統Bにそれぞれ
接続されている。2台の変圧器T,,T2の低圧側は系
統Aに属する母線Y,に接続され、1台が予備の扱いで
運用されている。
According to this, the high voltage side (X
A normally closed system connection or disconnection NC is provided between the two bus lines X, , X2 of the KV system), and two transformers T, ? T2 is striped, and a transformer T3 is connected to the busbar X2. Therefore, three transformers T. ~T3 is synchronized on the high voltage side. Low voltage side of transformer T, ~T3 (Yk
v system) has two bus lines Y,,Y2, one bus line Y
, are connected to system A, and the other bus Y2 is connected to system B, respectively. The low voltage sides of the two transformers T, T2 are connected to bus Y, which belongs to system A, and one is operated as a backup.

残りの1台の変圧器丸の低圧側は系統Bに属する母線Y
2に接続されている。低圧側の2つの母線Y,,Y2間
に設けられている系統連絡しや断器NOはしや断容量の
都合または接地電流の都合などで常時開放されていて、
したがって両系統A,Bは変圧器2次側では互いに分離
されている。なお、1〜14はしや断器である。第1図
に示されているような系統構成において、例えば変圧器
T3の故障まごはこれに準ずる高圧側(Xkv系)の故
障が発生すると、しや断器のトリツプが行なわれ、系統
Bは単独系となる。
The low voltage side of the remaining transformer circle is connected to bus Y, which belongs to system B.
Connected to 2. The system connection and disconnector NO installed between the two buses Y and Y2 on the low voltage side are always open due to disconnection capacity or ground current.
Therefore, both systems A and B are separated from each other on the secondary side of the transformer. In addition, 1 to 14 are the breakers. In the system configuration shown in Figure 1, if a similar failure occurs on the high-voltage side (Xkv system) in the case of a failure in transformer T3, for example, the circuit breaker will be tripped, and system B becomes a single system.

系統Bが単独系になると系統内のアンバランスが生じる
。すなわち、発電機出力合計値2PGの負荷の合計値値
ZPLの差△P=値2PG−値2PLによって、△P>
○の場合には系統全体として電力供給力不足になり、△
P<○の場合は単独系となった系統Bの電力供給力不足
となる。このようなとき従来では負荷しや断ないしはガ
バナ操作が行なわれるが、本発明ではこれを極力避ける
べく、常時開放の系統連絡しや断器NOの投入を行い、
系統Bが単独系になることを防止する。第2図に示すよ
うに、変圧器T3側での短絡事故を条件に系統Bの相差
角動揺を計算すると夕−ビン発電機はまず加速し、故障
除去後は減速され相差角が元に戻る傾向を示す。したが
って変圧器故障発生後所定時間Tが経過したとき系統連
絡しや断器WOを投入すれば、そのときの両系統A,B
間の電圧ベクトル差は微少でありtスムーズに同期再並
列を実行することができる。事故発生後の系統連絡しや
断器NOの投入による低圧側での両系統A,Bの並入は
「両系統の電圧位相が一致することを期待した所定時間
後に行うやり方のほかに、実際に並入条件確認の上行う
まり方も可能であってそのほうが好ましいことは言うま
でもない。第3図には再並入条件確認のため制御装置の
構成例が原理的に示されている。
If system B becomes an independent system, an imbalance within the system will occur. That is, the difference between the total generator output value 2PG and the total load value ZPL, △P=value 2PG-value 2PL, △P>
In the case of ○, the power supply capacity of the entire system will be insufficient, and △
If P<○, the power supply capacity of system B, which has become an independent system, will be insufficient. In such cases, conventionally the load is disconnected or the governor is operated, but in order to avoid this as much as possible in the present invention, the system is connected at all times and the disconnect switch is turned on.
Prevent system B from becoming an independent system. As shown in Figure 2, when calculating the phase difference angle fluctuation of system B under the condition of a short-circuit accident on the transformer T3 side, the Yubin generator first accelerates, and after the fault is removed, it decelerates and the phase difference angle returns to the original value. Show trends. Therefore, if the system is connected or the disconnector WO is turned on when a predetermined time T has elapsed after the occurrence of a transformer failure, both systems A and B at that time
The voltage vector difference between them is minute, and synchronous reparalleling can be smoothly executed. The parallel connection of both systems A and B on the low-voltage side by connecting the system or turning on the disconnection NO after an accident occurs is not only done after a predetermined time in which the voltage phases of both systems are expected to match, but also Needless to say, it is also possible and preferable to confirm the parallel entry conditions beforehand. Fig. 3 shows an example of the configuration of a control device for checking the re-parallel entry conditions in principle.

これによれば、まず。系統連絡しや断器NOの投入によ
る低圧側での両系統A,Bの再並入のためのシーケンス
条件を確認するために監視要素21が設けられている。
この監視要素21‘ま、本実施例の場合には、例えばし
や断器3〜6が閉略されていることと、事故発生により
しや断器7,8が開放されたという条件で系統連絡しや
断器NOの投入を許す信号を発する。さらにスムーズな
再並入を行うために両系統A,Bの電圧ベクトル差!△
VIが規定値K以下であることを確認するための監視要
素22と、了備の変圧器を持たないほうの系統Bの周波
数fの微係数df/dtが負であることを確認するため
の監視要素23とが設けられ、これらの監視要素22,
23の出力信号ががアンドゲート24に入力され、この
アンドゲート24の出力信号と前述の監視要素21の出
力信号とがアンドゲート25に入力される。
According to this, first. A monitoring element 21 is provided to check the sequence conditions for rejoining both systems A and B on the low-pressure side by switching on the system connection or disconnector NO.
In the case of this embodiment, the monitoring element 21' is a grid system under the conditions that, for example, the shield disconnectors 3 to 6 are closed and the shield disconnectors 7 and 8 are opened due to the occurrence of an accident. It emits a signal that allows communication and disconnection NO. In order to perform smoother re-paralleling, there is a voltage vector difference between both systems A and B! △
A monitoring element 22 for confirming that VI is below the specified value K, and a monitoring element 22 for confirming that the differential coefficient df/dt of the frequency f of the system B that does not have the approved transformer is negative. A monitoring element 23 is provided, and these monitoring elements 22,
The output signal of 23 is input to an AND gate 24, and the output signal of this AND gate 24 and the output signal of the aforementioned monitoring element 21 are input to an AND gate 25.

監視要素21〜23における所定の条件が同時に満足さ
れたとき、アンドゲート25からの系統連絡しや断器N
Oの投入を指令する信号が発せられる。されに、事前潮
流監視要素26とホールド回路27とを設けてホールド
回路27の出力信号がアンドゲート25に入力されよう
にすることが好ましい。
When predetermined conditions in the monitoring elements 21 to 23 are simultaneously satisfied, the system connection or disconnection N from the AND gate 25 is activated.
A signal instructing the injection of O is issued. In addition, it is preferable to provide a preliminary power flow monitoring element 26 and a hold circuit 27 so that the output signal of the hold circuit 27 is input to the AND gate 25.

この監視要素26は各変圧器T,〜T3の潮流P,,P
2,P3を方向をも加味して(第1図参照)検出し、変
圧器T,,T2の容量P.o,P2。(KVA)に対し
て、△P=P,o+P2o−(P,十P2十P3)なる
演算処理し、△PZOであるかどうかをチェックする。
This monitoring element 26 controls the power flow P, , P of each transformer T, ~T3.
2, P3 is detected taking into account the direction (see Fig. 1), and the capacitance P.2 of the transformers T, , T2 is detected. o, P2. (KVA) is subjected to the calculation process ΔP=P, o+P2o−(P, 10P20P3), and it is checked whether ΔPZO is satisfied.

ホールド回路27は監視要素26の出力信号に常時追従
し、故障発生信号が受けるや否やホールド動作に移行す
る。潮流P.,P2,P3が△PZOなる条件を満足し
ていない場合は、系統B側の変圧器Lの故障時に低圧側
で両系統を並列転すると健全側変圧器T,,T2潮流超
過となるので、上記の条件が満足されないときは系統連
絡しや断器NOの投入指令は阻止される。潮流条件に対
する監視要素の変形例として、例えば系統B側の変圧器
T3の故障時に低圧側で両系統の並入を行なうと健全側
変圧器T.,T2の潮流超過が見込まれる場合は、系統
連絡しや断器NOの投入前または投入後に潮流超過相当
分の負荷をしや断するような方式も可能である。
The hold circuit 27 constantly follows the output signal of the monitoring element 26, and shifts to a hold operation as soon as a failure occurrence signal is received. Trend P. , P2, and P3 do not satisfy the condition that △PZO, and when the transformer L on the system B side fails, if both systems are parallelized on the low voltage side, the power flow of the healthy side transformers T, , T2 will exceed, If the above conditions are not satisfied, the system communication or disconnection NO closing command is blocked. As a modification of monitoring elements for power flow conditions, for example, when transformer T3 on the system B side fails, if both systems are connected in parallel on the low voltage side, the healthy transformer T. , T2, it is possible to cut off the load equivalent to the excess power flow before or after turning on the system connection or disconnector NO.

この場合には、例えば△P:P,。In this case, for example, ΔP:P.

十P2o−(P,十P2十P3>なる演算が常時行なわ
れ、△P<○の場合には系統連絡しや断器NOの投入前
に△P相当分の負荷をあらかじめしや断することにより
△Pと○なる条件を満足させてから、系統連絡しや断器
NOを投入すればよし・。あるいは系統連絡しや断器に
投入指令を与えた後に負荷しや断を行ってもよい。以上
のように、本発明によれば、2つの系統のうち一方の系
統の変圧器の故障まごはこれに準ずる故障が発生した際
に低圧側にある常時開放の系統連絡しや断器の投入によ
り両系統を並入し、それにより故障側の系統が単独系に
なるのを防止し、負荷しや断を極力回避することができ
るで、電力需要家への悪影響も殆んどなく、電力供給信
頼度を高めることができる。
The calculation 10P2o-(P, 10P20P3> is always performed, and if △P<○, the load corresponding to △P must be cut off in advance before contacting the grid or turning on the disconnection NO. After satisfying the conditions of △P and ○, you can connect the system or turn on the disconnector NO. Alternatively, you can connect the system or turn on the disconnector after giving a closing command to it, then load and disconnect. As described above, according to the present invention, when a similar failure occurs in the transformer of one of the two systems, the always-open system connection or disconnector on the low voltage side By introducing the system, both systems are connected in parallel, thereby preventing the system on the faulty side from becoming an isolated system, making it possible to avoid load interruptions as much as possible, and with almost no negative impact on electricity consumers. , the reliability of power supply can be increased.

図面の簾単な説明 第1図は本発明方法を適用することのできる系統構成の
一例を示し、第2図は本発明方法を説明するための補助
図であり、第3図は本発明方法を実施するための制御装
置の原理的構成例を示す。
Brief Explanation of the Drawings Figure 1 shows an example of a system configuration to which the method of the present invention can be applied, Figure 2 is an auxiliary diagram for explaining the method of the present invention, and Figure 3 shows the method of the present invention. An example of the basic configuration of a control device for implementing the following is shown.

X,,X2・・…・高圧側母線、Y,,Y2…・・・低
圧側母線、T,〜T3・・・・・・変圧器、A,B・…
・0系統、NC・・・・・・常時閉路の系統連絡しや断
器、NO…・・・常時開賂の系統連絡しや断器、1〜1
4・・・・・・しや断器、21・・・・・・再並入シー
ケンス条件監視要素、22…・・・電圧ベクトル差監視
要素、23・・・・・・周波数動揺微係数監視要素、2
4,25・・…・アンドゲート、26・・・・・・事前
潮流監視要素、27・・・・・・ホールド回路。第2図 第1図 第3図
X,, X2...High voltage side bus bar, Y,, Y2......Low voltage side bus bar, T, ~ T3......Transformer, A, B...
・0 line, NC: Always-closed system connection or disconnection, NO: Always-open system connection or disconnection, 1 to 1
4...Shield breaker, 21...Re-entry sequence condition monitoring element, 22...Voltage vector difference monitoring element, 23...Frequency fluctuation differential coefficient monitoring element, 2
4, 25...AND gate, 26...Preliminary power flow monitoring element, 27...Hold circuit. Figure 2 Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 高圧側で同期している複数台の変圧器により低圧側
で互いに分離されている2つの系統を有する電力系統に
おいて、2つの系統のうちのいずれか一方が故障した際
に、両系統の変圧器のしや断器の開閉状態を監視する手
段が故障側変圧器のしや断器の開放後に発する並入許可
条件と、両系統の潮流を監視する手段が故障発生直前の
両系統の変圧器事前潮流の合成値が健全側系統の変圧器
容量を超えないときに発する並入許可条件とを受けて、
両系統の電圧ベクトル差が規定値内にあつて且つ故障側
系統の周波数の微係数が負であることを直接もしくは間
接に確認したときに、2つの系統に設けられた常時開放
の系統しや断器に投入指令を与えることにより両系統を
低圧側で再閉入するようにしたことを特徴とする系統安
定化方法。
1 In a power system that has two systems separated from each other on the low voltage side by multiple transformers synchronized on the high voltage side, when one of the two systems fails, the transformer of both systems The means to monitor the opening/closing status of the transformer and disconnector is the parallel access permission condition that is issued after the transformer on the faulty side is opened, and the means to monitor the power flow in both systems is the transformer in both systems immediately before the failure occurs. In response to the parallel entry permission condition that is issued when the composite value of the power flow before the transformer does not exceed the transformer capacity of the healthy side system,
When it is confirmed directly or indirectly that the voltage vector difference between the two systems is within the specified value and the differential coefficient of the frequency of the faulty system is negative, the normally open system installed in the two systems is A system stabilization method characterized in that both systems are reclosed on the low pressure side by giving a closing command to the disconnector.
JP54009448A 1979-01-30 1979-01-30 System stabilization method Expired JPS6030189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54009448A JPS6030189B2 (en) 1979-01-30 1979-01-30 System stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54009448A JPS6030189B2 (en) 1979-01-30 1979-01-30 System stabilization method

Publications (2)

Publication Number Publication Date
JPS55103045A JPS55103045A (en) 1980-08-06
JPS6030189B2 true JPS6030189B2 (en) 1985-07-15

Family

ID=11720566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54009448A Expired JPS6030189B2 (en) 1979-01-30 1979-01-30 System stabilization method

Country Status (1)

Country Link
JP (1) JPS6030189B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926826A (en) * 1987-08-31 1990-05-22 Japan Electronic Control Systems Co., Ltd. Electric air-fuel ratio control apparatus for use in internal combustion engine

Also Published As

Publication number Publication date
JPS55103045A (en) 1980-08-06

Similar Documents

Publication Publication Date Title
Begovic et al. Wide-area protection and emergency control
JP3184459B2 (en) Power receiving protection device
CN103001195A (en) Relay protection method capable of quickly removing dead zone fault of transformer
CN103762551A (en) Relay protection method for accelerated removal and TA sealing of dead zone faults of transformer based on open positions of circuit breakers
JPH08126210A (en) Parallel off control device for commercial power supply linkage private generator
Agematsu et al. Islanding protection system with active and reactive power balancing control for Tokyo metropolitan power system and actual operational experiences
JP2728398B2 (en) Spot network power receiving substation protection device
Robak et al. Improvement of power system transient stability in the event of multi-phase faults and circuit breaker failures
JPS6030189B2 (en) System stabilization method
CN213754084U (en) Dual-power supply system adopting power supplies with different grounding modes
CN103618291A (en) Transformer dead-zone fault relay protection method based on rapid removal and sealed TAs
RU2692758C1 (en) Method of power supply control for industrial power district with sources of distributed generation at short-circuit on reserved section of substation buses
Senthilmurugan et al. Simulink Model of Advanced FLISR Intentional Islanding for Smart Distribution Networks
JP3248962B2 (en) How to protect the inverter distribution system
JP3169976B2 (en) Distribution line ground fault protection system
CN115483710B (en) Method and system for protecting distributed power grid-connected substation from unintended island operation
Revi et al. Grid-Parallel and Islanding Operation Challenges of a Large Battery Energy Storage System at Cape Cod
CN113783284B (en) Cross-voltage-class self-adaptive blocking standby power automatic switching implementation method
JP2581553B2 (en) Distribution system protection system
JP2607500B2 (en) Spot network power receiving substation protection device
JPS6343703Y2 (en)
JP2000032670A (en) Spot network receiving facility
JPS5992778A (en) Ground protecting circuit for inverter
Wagle et al. Concise Definition of the Overcurrent Protection System for CIGRE European Medium Voltage Benchmark Network
KR20220150777A (en) Distributed power source alone operation previntion method and device reflecting distribution system topology