JPS6029653A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPS6029653A
JPS6029653A JP13770983A JP13770983A JPS6029653A JP S6029653 A JPS6029653 A JP S6029653A JP 13770983 A JP13770983 A JP 13770983A JP 13770983 A JP13770983 A JP 13770983A JP S6029653 A JPS6029653 A JP S6029653A
Authority
JP
Japan
Prior art keywords
gas
ultrafine particle
film
sputtering
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13770983A
Other languages
Japanese (ja)
Inventor
Yasushi Kawabuchi
靖 河渕
Kenichi Kizawa
賢一 鬼沢
Masateru Suwa
正輝 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13770983A priority Critical patent/JPS6029653A/en
Publication of JPS6029653A publication Critical patent/JPS6029653A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To improve safety, reliability and gas selectivity by manufacturing a film with a sputtering method and subjecting the films to a heat treatment. CONSTITUTION:Stannic oxide is made into ultrafine particles by making the gaseous pressure in the stage of sputtering higher than the gaseous pressure in the conventional sputtering technique (<=5X10<-2>Torr). The heat treatment has the effect of increasing packing density and at the same time of improving the gas selectivity of the gas sensor element by forming the structure contg. cracks 3 of <=10mum length on the surface. The ultrafine particle film after sputtering consists of a base plate 4, a low-density ultrafine particle layer 5 and a high- density ultrafine particle layer 6. The width of the cracks is controlled to <=1mum by forming such film structure, by which the gas selectivity is improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスセンーリーに光り!民にガス選択性に優れ
た金属酸化物超微粒子ガスセンサ素子に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention shines in gas century! This invention relates to a metal oxide ultrafine particle gas sensor element with excellent gas selectivity.

〔発明の背景〕[Background of the invention]

都市ガス[C)’441用力ヌセンサ素子としては、現
在S n O2焼結体型の半導体式素子が市場の大半を
占めている。しかしそれらは雑カス、主としてアルコー
ルに対して誤動作をすることが問題となっている。触媒
に工夫を擬らした素子が開発されているものの製品ロッ
ト間のバラツキが大きく、また経時変化して特性が劣化
してし捷うというのが現状である。このためメタンガス
に対して商いガス選択性を有し、信頼性に優れ経時劣化
のないセンサ素子が要求されている。
As city gas [C)'441 power sensor elements, S n O2 sintered type semiconductor elements currently occupy the majority of the market. However, there is a problem in that they malfunction when exposed to waste, mainly alcohol. Although elements that imitate catalysts have been developed, the current situation is that there are large variations between product lots, and that their characteristics deteriorate over time and are destroyed. Therefore, there is a need for a sensor element that has gas selectivity with respect to methane gas, is highly reliable, and does not deteriorate over time.

センサ素子を構成する金属酸化物粒子の粒径を極めて微
細にするとガス選択1’4gが向上する可能性がある。
Gas selection 1'4g may be improved if the particle size of the metal oxide particles constituting the sensor element is made extremely fine.

超微粒子ガスセンサの製法としては、減圧酸素雰囲気中
で金楓又はその酸化物を蒸発させる方法(ガス中蒸発法
)が知られている(特開昭5!5−27925ほか)。
As a method for manufacturing an ultrafine particle gas sensor, a method is known in which gold maple or its oxide is evaporated in a reduced pressure oxygen atmosphere (in-gas evaporation method) (Japanese Unexamined Patent Publication No. 55-27925, etc.).

しかしこのガス中蒸発法による超微粒子センサ素子には
膜の強度が弱く、基板−\の付着力が弱いという欠点が
あり実用的でない。
However, the ultrafine particle sensor element produced by this in-gas evaporation method has the drawbacks of weak film strength and weak adhesion to the substrate, making it impractical.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、fnJ述した超微粒子化の効果を引き
出し、かつカス中蒸発法にみられる欠点のないセンサ素
子を提供することにある。
An object of the present invention is to provide a sensor element that brings out the effects of ultrafine particle formation as described above and does not have the drawbacks seen in the evaporation method in dregs.

〔発明の概要〕[Summary of the invention]

ガス中蒸発法では蒸発した原子か基板に付漸、堆積する
ことによってセンサ素子を作製するが、その付着力及び
超微粒子のバッキング密度が小さなことが欠点となって
いた。そこでスバツタリング法によって膜を作製し、更
にその膜に熱部J’ffiを加えてガス感度を高めた組
織を得ようとするものである。
In the in-gas evaporation method, a sensor element is fabricated by gradually depositing evaporated atoms on a substrate, but the drawbacks are that the adhesion force and the backing density of ultrafine particles are low. Therefore, an attempt is made to fabricate a film by the sputtering method and further add a hot part J'ffi to the film to obtain a structure with enhanced gas sensitivity.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例として金践酸化物を酸化第2ス
ズとしたときの素子特性を図面を用いて説明する。
Hereinafter, as an example of the present invention, device characteristics when stannic oxide is used as the gold oxide will be explained with reference to the drawings.

本発明ではスパッタリング時のガス圧力を従来のスパッ
タリング技術のカス圧力+5X10−2torr 以下
)よりも高くすることにより、酸化第2スズを超微粒子
化する。第1図にガス出力と超微粒子の熱処理m■の充
填密度1との関係および、にれに550CX12時間の
熱処理を加えることによって充填密度2を高めた関係を
示す。第2図に熱処理による表面組域の変化および第3
図に同じく熱処理によるガス選択性の改善を示す。第1
図、第2図に示すように本発明による熱処理によって光
横密[を高め、同時に表面に長さ10μm以下のクラン
ク3が入った組織にすることによってガスセンサ素子の
ガス選択性を高める効果がある。
In the present invention, stannic oxide is made into ultrafine particles by increasing the gas pressure during sputtering to be higher than the gas pressure of conventional sputtering technology (less than +5×10 −2 torr). FIG. 1 shows the relationship between the gas output and the packing density 1 of ultrafine particle heat treatment m2, and the relationship where the packing density 2 was increased by heat treating the leeks at 550C for 12 hours. Figure 2 shows changes in the surface texture area due to heat treatment and
The figure also shows the improvement in gas selectivity due to heat treatment. 1st
As shown in Figures 2 and 2, the heat treatment according to the present invention has the effect of increasing the optical density and at the same time increasing the gas selectivity of the gas sensor element by creating a structure with cranks 3 of 10 μm or less in length on the surface. .

また、第4図にスパッタリング後の超微粒子膜の断面図
で、4は基板、5は低密度超微粒子層、6は高密度超微
粒子層を示し、第5図に表面クランクの幅とガス選択性
との関係を示す、第4図に示すような本発明による膜組
織とすることによりクラックの幅を1μm以下に制σ1
jすることができる。第5図に示すようにクランク幅が
1μm以下ならば小さい程カス選択性を高めることがで
き、ガスセンサ素子の特性向上の効果がある。
In addition, Fig. 4 is a cross-sectional view of the ultrafine particle film after sputtering, where 4 shows the substrate, 5 shows the low-density ultrafine particle layer, and 6 shows the high-density ultrafine particle layer. Fig. 5 shows the width of the surface crank and the gas selection. The crack width can be controlled to 1 μm or less by using the film structure according to the present invention as shown in Figure 4, which shows the relationship between
j can be done. As shown in FIG. 5, if the crank width is 1 μm or less, the smaller the crank width is, the higher the scum selectivity can be, which is effective in improving the characteristics of the gas sensor element.

〔発明の効果〕〔Effect of the invention〕

不発明によれば、ガスセンサ素子のガス選択性を従来の
5倍以上に高め、1年以上の長期間に亘る安定性と信頼
性を得ることができるので、品性能カスセンサのセンサ
素子を作製できる効果かある。−!た、メタンに対する
カス選択性に優11、同時に経時変化がほとんどなくメ
タンガスセンサ素子として使用できる。
According to the invention, it is possible to increase the gas selectivity of the gas sensor element by more than five times compared to the conventional one, and to obtain stability and reliability for a long period of one year or more, making it possible to produce a sensor element for a quality waste sensor. It's effective. -! In addition, it has excellent sludge selectivity for methane11, and at the same time shows almost no change over time and can be used as a methane gas sensor element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱処理の前後におけるスパッタリングガス圧力
と超微粒子ガスセンサの充填密度を示す線図、第2図は
熱処理の@汝における超微粒子ガスセンサの表面組織図
、第3図は熱処理の前後における超微粒子ガスセンサの
ガス選択性金示す線図、第4(凶はスパッタ膜の断面図
、第5図は表面クラックの幅とカス選択性の関係図であ
る。 1・・・熱処理前の光填密1及、2・・・熱処理後の充
填密第1図 スハ0ノヲがス五力(Torr ) 第 Z 図 第4図
Figure 1 is a diagram showing the sputtering gas pressure and packing density of the ultrafine particle gas sensor before and after heat treatment, Figure 2 is a surface structure diagram of the ultrafine particle gas sensor after heat treatment, and Figure 3 is a diagram showing the ultrafine particles before and after heat treatment. Diagram showing the gas selectivity of the gas sensor, Figure 4 is a cross-sectional view of the sputtered film, and Figure 5 is a diagram showing the relationship between the width of the surface crack and the gas selectivity. 1... Light filling density before heat treatment 1 and 2...Filling density after heat treatment Fig. 1

Claims (1)

【特許請求の範囲】[Claims] 11粒径が1μn1以下の金属酸化物超微粒子か集合し
た膜を、電極を設けた絶縁基板上へ密着して構成し電気
抵抗変化を測定することによるガス感応部分を有するこ
とを特徴とするガスセンサ。
11 A gas sensor comprising a film of aggregation of ultrafine metal oxide particles having a grain size of 1 μn1 or less, closely attached to an insulating substrate provided with an electrode, and having a gas-sensitive part by measuring changes in electrical resistance. .
JP13770983A 1983-07-29 1983-07-29 Gas sensor Pending JPS6029653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13770983A JPS6029653A (en) 1983-07-29 1983-07-29 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13770983A JPS6029653A (en) 1983-07-29 1983-07-29 Gas sensor

Publications (1)

Publication Number Publication Date
JPS6029653A true JPS6029653A (en) 1985-02-15

Family

ID=15204985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13770983A Pending JPS6029653A (en) 1983-07-29 1983-07-29 Gas sensor

Country Status (1)

Country Link
JP (1) JPS6029653A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283641A (en) * 1985-10-08 1987-04-17 Sharp Corp Sensor element
JPH02193051A (en) * 1989-01-20 1990-07-30 Stanley Electric Co Ltd Gas sensor using organic semiconductor
JPH04115126A (en) * 1989-12-26 1992-04-16 Barnstead Thermolyne Corp Cryogenic liquid level detection equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283641A (en) * 1985-10-08 1987-04-17 Sharp Corp Sensor element
JPH0460549B2 (en) * 1985-10-08 1992-09-28 Sharp Kk
JPH02193051A (en) * 1989-01-20 1990-07-30 Stanley Electric Co Ltd Gas sensor using organic semiconductor
JPH04115126A (en) * 1989-12-26 1992-04-16 Barnstead Thermolyne Corp Cryogenic liquid level detection equipment

Similar Documents

Publication Publication Date Title
JPS6029653A (en) Gas sensor
US4356150A (en) Humidity sensor with electrical rejection of contaminants
JPS58111747A (en) Gas sensor and manufacture thereof
JPS63163265A (en) Moisture sensitive element and its production
JPH0746447B2 (en) Manufacturing method of magneto-optical recording medium
JPS62165129A (en) Photosensor
JPS5928066B2 (en) Photoelectric conversion element
JPS62145703A (en) Manufacture of metal thin film coil
JPS587889A (en) Resistance element for josephson integrated circuit
JP3136845B2 (en) Infrared antireflection film and method of forming the same
JPH077779B2 (en) Infrared detector
JPS6058542A (en) Gas sensor
JPS6072265A (en) Electrode structure of image sensor
JP2562040B2 (en) Symmetrical ZnO varistor and method of manufacturing the same
JPS5887077A (en) Thermal head
JPS57208618A (en) Production of thin film magnetic head
JPS6151260B2 (en)
JPH03251755A (en) Gas sensor
JPS6212676B2 (en)
JPS601969A (en) Contact type image sensor
JPS605097U (en) Back electrode structure of thin film electronic device
JPH01200602A (en) Asymmetric type zno varistor and manufacture thereof
JPS62226411A (en) Magneto-resistance effective head and its manufacture
JPS59202666A (en) Aluminum alloy wiring
JPS5815267A (en) Solid state image pickup device