JPS6029622A - Detecting method of temperature - Google Patents

Detecting method of temperature

Info

Publication number
JPS6029622A
JPS6029622A JP58138246A JP13824683A JPS6029622A JP S6029622 A JPS6029622 A JP S6029622A JP 58138246 A JP58138246 A JP 58138246A JP 13824683 A JP13824683 A JP 13824683A JP S6029622 A JPS6029622 A JP S6029622A
Authority
JP
Japan
Prior art keywords
energy
temperature
optical fiber
optical
reference radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58138246A
Other languages
Japanese (ja)
Inventor
Yoshikazu Matsuda
松田 美一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP58138246A priority Critical patent/JPS6029622A/en
Publication of JPS6029622A publication Critical patent/JPS6029622A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/602Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using selective, monochromatic or bandpass filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0887Integrating cavities mimicking black bodies, wherein the heat propagation between the black body and the measuring element does not occur within a solid; Use of bodies placed inside the fluid stream for measurement of the temperature of gases; Use of the reemission from a surface, e.g. reflective surface; Emissivity enhancement by multiple reflections

Abstract

PURPOSE:To detect a temperature even if an emissivity of an object is unknown by installing a reference radiator to an incident end of an optical fiber. CONSTITUTION:A reference radiator 3 is made to approach a temperature measuring object 10, a radiated heat energy is received by the reference radiator 3, and the reference radiator 3 which has received it radiates a heat energy of a temperature corresponding to the received energy. This energy is transmitted from an incident end 2 of an optical fiber 1 to an emitting end 4 and emitted from the emitting end 4. Subsequently, this energy is devided into an energy which is made incident on a filter 6 of a center wavelength lambda1 and an energy which is made incident on a filter 7 of a center wavelength lambda2 by a half mirror 5, and signals which have transmitted through the respective filters 6, 7 are inputted separately to optical-electric transducers 8, 9, and converted to electric signals V1, V2. Both of these signals are operated by a two color operating device, a ratio of both signals is derived, and from this ratio, a temperature of the measuring object is derived.

Description

【発明の詳細な説明】 本発明は光ファイバを用いた温度測定方法に関し、測定
精度が高く、遠隔測定が可能であり、非電磁誘導性であ
る温度測定方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature measurement method using an optical fiber, and provides a temperature measurement method that has high measurement accuracy, allows remote measurement, and is non-electromagnetic inductive.

固体、液体、気体の温度測定方法には各種あり、工業分
野では電気的方法と光学的方法とが採用されている。
There are various methods for measuring the temperature of solids, liquids, and gases, and electrical methods and optical methods are used in the industrial field.

電気的方法の主なものとしては熱電対温度計と抵抗温度
計がある。光学的方法の主なものとしては放射温度計と
光高温計がある。
The main electrical methods include thermocouple thermometers and resistance thermometers. The main optical methods include radiation thermometers and optical pyrometers.

熱電対温度計或は抵抗温度計は温度計としては高度に実
用化されており、とりたてゝ問題点は無いが、しいてあ
げれば熱電対温度計では次のような欠点がある。
Thermocouple thermometers or resistance thermometers have been put into practical use as thermometers, and there are no particular problems, but thermocouple thermometers do have the following drawbacks.

(イ)検出素子としての長さはせいぜい数mであり、温
度を正確に測定するためには冷接点が必要である。その
ため遠方へ熱起電力を送って温度表示するためには通常
補償導線を用いなければならない。
(a) The length of the detection element is several meters at most, and a cold junction is required to accurately measure temperature. Therefore, in order to send thermoelectromotive force to a distant place and display the temperature, it is usually necessary to use a compensating conductor.

(ロ)検出素子と補償導線は金属のため電磁誘導を受け
る。
(b) Since the detection element and compensation conductor are metal, they are subject to electromagnetic induction.

(ハ)測定箇所の雰囲気により使用できない種類の熱電
対があり、工業的に安定して測定できる範囲はせいぜい
1600℃が限度である。
(c) Some types of thermocouples cannot be used depending on the atmosphere of the measurement location, and the range that can be stably measured industrially is limited to 1600°C at most.

光学的な測定方法は熱放射される光エネルギーを検出し
て温度をめるため、固体の表面温度を測定するのには適
しているが、ガス或は流体の雰囲気温度を測定するのに
は適していない。
Optical measurement methods detect the emitted light energy and measure the temperature, so they are suitable for measuring the surface temperature of solids, but are not suitable for measuring the ambient temperature of gases or fluids. Not suitable.

又この方法では根本的には物体の放射率が知られていな
いと温度を知ることができない。
Also, with this method, the temperature cannot be determined unless the emissivity of the object is known.

ある物体から熱放射されるエネルギーは、その物体の温
度に依存し、完全黒体といわれる理想物体では分光放射
輝度は次式で表わされる。
The energy radiated from a certain object depends on the temperature of that object, and the spectral radiance of an ideal object called a perfect black body is expressed by the following equation.

Lo(λ1T)=2C1/入5(e■■/λT−1)−
1(1)入=波長、T−物体の温度、C1、C2は定数
実際の物体では分光放射輝度は材質と表面状態により異
なり、 L(入1T)=ε(λ)Lo(λ1T)(2)と表わさ
れる。ここでε(λ)を放射率と呼ぶ。
Lo(λ1T)=2C1/input 5(e■■/λT-1)-
1 (1) Input = wavelength, T - temperature of object, C1, C2 are constants In an actual object, the spectral radiance varies depending on the material and surface condition, L (input 1T) = ε (λ) Lo (λ1T) (2 ). Here, ε(λ) is called emissivity.

物体の温度は何らかの方法でこの分光放射輝度に関する
情報を得れば温度を知ることができる。
The temperature of an object can be determined by obtaining information about this spectral radiance in some way.

これが放射温度計の原理である。This is the principle of a radiation thermometer.

第2図に示す光ファイバ放射温度計では出力の電気信号
Vは経験的に次式で与えられる。
In the optical fiber radiation thermometer shown in FIG. 2, the output electrical signal V is empirically given by the following equation.

V(T)=C■■■■Z(λ1)ε(λ)Lo(λT)
Sf(NA)2e−α(λ)z.D(λ)dλ(3)こ
ゝで τ(λ)=レンズ等の分光透過率 Sf=ファイバのコア面積 NA=ファイバのNA α(λ)=ファイバの分光減衰率 Z=ファイバの長さ D(λ)=O/Eの光電気変換感度 C=測測定による未知の定数 実際にはこれらのパラメータは正確には解らないため、
系全体として黒体炉(ε(λ)≒1)を用いて温度Tと
電圧V (T)の関係を校正し、目盛付けして温度計と
している。
V(T)=C■■■■Z(λ1)ε(λ)Lo(λT)
Sf(NA)2e-α(λ)z. D(λ)dλ(3) Here, τ(λ) = Spectral transmittance of lens etc. Sf = Core area of fiber NA = NA of fiber α(λ) = Spectral attenuation rate of fiber Z = Length of fiber D (λ) = O/E photoelectric conversion sensitivity C = unknown constant measured by measurement In reality, these parameters are not known accurately, so
For the entire system, a blackbody furnace (ε(λ)≈1) is used to calibrate the relationship between temperature T and voltage V (T), and a thermometer is provided with a scale.

以上のような原理に基づく放射温度計を実際に用いる場
合、実際の物体の放射率ε(λ)は黒体炉と異なりε(
λ)=1ではなく、ε(λ)<1であり多少誤差がある
When actually using a radiation thermometer based on the above principle, the emissivity ε(λ) of the actual object is different from that of a blackbody furnace, and ε(
λ)=1, but ε(λ)<1, and there is some error.

本発明は電気的方法と光学的方法の上記の各種難点を解
消し、しかも物体の放射率が解らなくても温度検出が出
来るようにしたものである。
The present invention solves the above-mentioned difficulties of the electrical method and the optical method, and also makes it possible to detect the temperature without knowing the emissivity of the object.

以下本発明を第3図以下の図面に基き説明する。第3図
において1は光ファイバ、2は光ファイバの入射端、3
は光ファイバの入射端に被せた基準放射体、4は光ファ
イバの出射端、5は光ファイバの出射端側に配置したハ
ーフミラ−、6,7はフィルタ、8.9は光/電気変換
器である。
The present invention will be explained below based on the drawings from FIG. 3 onwards. In Fig. 3, 1 is an optical fiber, 2 is an input end of the optical fiber, and 3 is an optical fiber.
is a reference radiator placed on the input end of the optical fiber, 4 is the output end of the optical fiber, 5 is a half mirror placed on the output end side of the optical fiber, 6 and 7 are filters, and 8.9 is an optical/electrical converter. It is.

基準放射体3は耐熱金属、セラミックス等で筒状に形成
したりその他適宜の形状に形成する。
The reference radiator 3 is made of heat-resistant metal, ceramics, or the like and is formed into a cylindrical shape or in any other suitable shape.

二つのフィルタ6.7のうち一つのフィルタ6は中心波
長がλ1、他のフィルタ7は中心波長が入2のものを使
用する。波長入1λ2の間隔は適宜選定する。
Among the two filters 6.7, one filter 6 has a center wavelength of λ1, and the other filter 7 has a center wavelength of λ2. The interval between the wavelength inputs 1λ2 is appropriately selected.

そして本発明では基準放射体3を温度測定対象10に接
近させて、温度測定対象10から放射される熱エネルギ
ーを基準放射体3により受け、熱エネルギーを受けた基
準放射体3は受けたエネルギーに対応する温度の熱エネ
ルギーを放射するようにする。そしてこのエネルギーを
光ファイバ1の入射端2から出射端4に伝送して出射端
4から出射させる。
In the present invention, the reference radiator 3 is brought close to the temperature measurement object 10, and the reference radiator 3 receives the thermal energy radiated from the temperature measurement object 10, and the reference radiator 3 that has received the thermal energy absorbs the received energy. Make it radiate thermal energy at the corresponding temperature. Then, this energy is transmitted from the input end 2 of the optical fiber 1 to the output end 4 and is emitted from the output end 4.

次にこのエネルギーをハーフミラー5により中心波長λ
1のフィルタ6に入射するエネルギーと、中心波長入2
のフィルタ7に入射するエネルギーとに分け、夫々のフ
ィルタ6.7を透過した信号を別々に光−電気変換器8
.9に入力して電気信号V1、V2に変換する。この両
信号を二色演算装置で演算処理して両信号の比をめ、こ
の比から測定対象の温度をめるようにしたものである。
Next, this energy is transferred to the center wavelength λ by a half mirror 5.
The energy incident on the filter 6 of 1 and the center wavelength input 2
The energy incident on the filters 7 and the signals transmitted through the respective filters 6.
.. 9 and convert it into electrical signals V1 and V2. These two signals are processed by a two-color arithmetic unit to determine the ratio of both signals, and the temperature of the object to be measured is determined from this ratio.

この場合光−電気変換器8,9の出力信号■1、V2は
次式で表される。
In this case, the output signals 1 and V2 of the optical-to-electrical converters 8 and 9 are expressed by the following equations.

■1=C1τ(λ)ε(λ1)Lo(λ1T)Sf(N
A)2e−α(λ1)z.D(λ1)・dλ1(4)V
2=(1■(λ2)ε(λ2)Lo(λ2T)Sf(N
A)2e−α(λ2)z.D(λ2).dλ2(5)こ
の比をとると次式のようになる。
■1=C1τ(λ)ε(λ1)Lo(λ1T)Sf(N
A) 2e-α(λ1)z. D(λ1)・dλ1(4)V
2=(1■(λ2)ε(λ2)Lo(λ2T)Sf(N
A) 2e-α(λ2)z. D(λ2). dλ2 (5) Taking this ratio gives the following equation.

C1、C2は定数、ε(λ1)、ε(λ2)は既知の放
射体なので定数、D(λ1)、D(λ2)もO/Eに固
有の定数、dλ1、dλ2もフィルタの定数、τ(λ1
)、τ(λ2)はハーフミラ−、フィルタ等の透過率で
ある。これらは本来一定になるものであるが、長期の間
にはほこり、光軸のずれなどで変動する可能性がある。
C1 and C2 are constants, ε(λ1) and ε(λ2) are constants because they are known radiators, D(λ1) and D(λ2) are also constants specific to O/E, dλ1 and dλ2 are also filter constants, τ (λ1
), τ(λ2) is the transmittance of a half mirror, filter, etc. Although these are originally constant, they may fluctuate over a long period of time due to dust, misalignment of the optical axis, etc.

しかし変動するにしても透過率が一定の割合で変化する
ので比τ(λ1)/τ(λ2)は一定となる。同じよう
に光ファイバのロスα(λ1)、α(入2)が同じ量だ
け変動しても比e−α(λ2)z/e−α(λ1)zは
変動しない。すなわちパラメータCは測定系に固有の定
数となる。
However, even if it fluctuates, the transmittance changes at a constant rate, so the ratio τ(λ1)/τ(λ2) remains constant. Similarly, even if the optical fiber losses α(λ1) and α(input 2) vary by the same amount, the ratio e−α(λ2)z/e−α(λ1)z does not vary. That is, the parameter C becomes a constant specific to the measurement system.

フィルタの透過布dλ1、dλ2は通常0.05μ或は
0.1μという狭いもので、得られる電気信号V1、V
2は小さく低い温度の測定が難かしい。
The transmission cloths dλ1 and dλ2 of the filter are usually narrow, 0.05μ or 0.1μ, and the resulting electrical signals V1, V
2 is small and difficult to measure low temperatures.

フィルタの透過巾を広くすると V=C2■λ′iλ′i■(λ)ε(λ)Lo(λ1T
)Sf(NA)2e−a(λ)z.Dα1dλ(8)こ
ゝでiは1又は2に対応、λi、λi′はフィルタの透
過域を定める波長となりV1及びV2は大きな値となり
、十分な大きさの信号が得られ電気回路(増幅器等)の
設計も容易になる。
When the transmission width of the filter is widened, V=C2■λ'iλ'i■(λ)ε(λ)Lo(λ1T
)Sf(NA)2e-a(λ)z. Dα1dλ(8) Here, i corresponds to 1 or 2, λi and λi' are the wavelengths that define the filter's transmission range, and V1 and V2 are large values, so that a signal of sufficient size can be obtained and the electric circuit (amplifier, etc.) ) design becomes easier.

通常の二色温度計ではε(入)の波長依存性は物体によ
り異なるため、どの物体からの放射波長をも検知できる
λでなければならない。そこでε(λ1)≒ε(λ2)
と近似できるように波長をλ1=入2に選んでいる。従
って必然的にフィルタの透過中dλ1.dλ2は非常に
近くしなければならない。
In a normal two-color thermometer, the wavelength dependence of ε (in) differs depending on the object, so λ must be able to detect the wavelength of radiation from any object. Therefore, ε(λ1)≒ε(λ2)
The wavelength is chosen to be λ1=in2 so that it can be approximated as follows. Therefore, it is inevitable that dλ1. dλ2 must be very close.

しかし本発明では光ファイバの入射端2に基準放射体3
を取付けてあるためこのような制約がない。
However, in the present invention, the reference radiator 3 is attached to the input end 2 of the optical fiber.
There is no such restriction because it is installed.

本発明は上記のようにしてなるため以下のような各種効
果がある。
Since the present invention is constructed as described above, it has various effects as described below.

(イ)測定対象からのエネルギーを光ファイバ1の入射
端2に取付けた基準放射体3で受け、その放射エネルギ
ーに対応する温度のエネルギーを基準放射体3から放射
させ、このエネルギーを上記光ファイバlの入射端2か
ら出射端3に伝送するようにしてあるため測定対象の性
状に影響されることなく正確な温度測定が出来る。又物
体の熱放射率が解らなくとも温度測定が可能になる。
(a) Energy from the object to be measured is received by the reference radiator 3 attached to the input end 2 of the optical fiber 1, energy at a temperature corresponding to the radiant energy is radiated from the reference radiator 3, and this energy is transferred to the optical fiber. Since the temperature is transmitted from the input end 2 to the output end 3 of the sensor, accurate temperature measurement can be performed without being affected by the properties of the object to be measured. Furthermore, temperature measurement becomes possible even without knowing the thermal emissivity of the object.

(ロ)通常の放射温度計に比して非接触測定の利点は失
はれるが、気体、液体の雰囲気温度を測定することがで
きる。
(b) Although it loses the advantage of non-contact measurement compared to a normal radiation thermometer, it can measure the ambient temperature of gases and liquids.

(ハ)出射端3からの出射光を波長領域の異なる2以上
の光エネルギーに分けてこれらの比をめ、その比に基づ
いて測定対象10の温度を検出するようにしたものであ
るため、光ファイバ等のロス変化に影響されず、信頼性
の高い温度測定が出来る。
(c) Since the light emitted from the emission end 3 is divided into two or more optical energies having different wavelength ranges, the ratio of these is determined, and the temperature of the measurement object 10 is detected based on the ratio. Highly reliable temperature measurement is possible without being affected by loss changes in optical fibers, etc.

(ニ)光ファイバを使用するものであるため電磁誘導が
なく、信号を遠方まで伝送できる。
(d) Since it uses optical fiber, there is no electromagnetic induction, and signals can be transmitted over long distances.

(ホ)基準放射体3、光フアイバ1等の材料を選定すれ
ば2000℃以上の測定が可能となる。
(e) By selecting materials for the reference radiator 3, optical fiber 1, etc., measurements at temperatures of 2000° C. or higher are possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は理想物体のエネルギー放射状態の説明図、第2
図は従来の光ファイバ放射温度計の説明図、第3図は本
発明の説明図である。 1は光ファイバ 2は光ファイバの入射端 3は基準放射体 4は光ファイバの出射端
Figure 1 is an explanatory diagram of the energy radiation state of an ideal object, Figure 2
The figure is an explanatory diagram of a conventional optical fiber radiation thermometer, and FIG. 3 is an explanatory diagram of the present invention. 1 is the optical fiber 2 is the input end of the optical fiber 3 is the reference radiator 4 is the output end of the optical fiber

Claims (4)

【特許請求の範囲】[Claims] (1)温度測定対象からの放射エネルギーを光ファイバ
ーの入射端に取付けた基準放射体で受け、その放射エネ
ルギーに対応する温度のエネルギーを基準放射体から放
射させ、このエネルギーを上記光ファイバーの入射端か
ら出射端に伝送し、出射端からの出射光を波長領域の異
なる2以上の光エネルギーに分けてそれらの比をめ、そ
の比に基づいて測定対象の温度を検出するようにしたこ
とを特徴とする温度検出方法。
(1) Radiant energy from the temperature measurement target is received by a reference radiator attached to the input end of the optical fiber, energy with a temperature corresponding to the radiant energy is radiated from the reference radiator, and this energy is transmitted from the input end of the optical fiber. The light is transmitted to the output end, the light emitted from the output end is divided into two or more optical energies with different wavelength ranges, the ratio of these is determined, and the temperature of the object to be measured is detected based on the ratio. temperature detection method.
(2)波長領域の異なる2以上の光エネルギーの波長間
隔を狭くしたことを特徴とする特許請求の範囲第1項記
載の温度検出方法。
(2) The temperature detection method according to claim 1, characterized in that the wavelength interval between two or more optical energies having different wavelength regions is narrowed.
(3)波長領域の異なる2以上の光エネルギーの波長間
隔を広くしたことを特徴とする特許請求の範囲第1項記
載の温度検出方法。
(3) The temperature detection method according to claim 1, characterized in that the wavelength interval between two or more optical energies having different wavelength regions is widened.
(4)出射端からの出射光を全波長領域の光エネルギー
とその領域中の一部の波長領域の光エネルギーとに分け
るようにしたことを特徴とする特許請求の範囲第1項記
載の温度検出方法。
(4) The temperature according to claim 1, characterized in that the light emitted from the emission end is divided into light energy in the entire wavelength range and light energy in a part of the wavelength range within that range. Detection method.
JP58138246A 1983-07-28 1983-07-28 Detecting method of temperature Pending JPS6029622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58138246A JPS6029622A (en) 1983-07-28 1983-07-28 Detecting method of temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58138246A JPS6029622A (en) 1983-07-28 1983-07-28 Detecting method of temperature

Publications (1)

Publication Number Publication Date
JPS6029622A true JPS6029622A (en) 1985-02-15

Family

ID=15217481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58138246A Pending JPS6029622A (en) 1983-07-28 1983-07-28 Detecting method of temperature

Country Status (1)

Country Link
JP (1) JPS6029622A (en)

Similar Documents

Publication Publication Date Title
US5180226A (en) Method and apparatus for precise temperature measurement
US5061084A (en) Pyrometer apparatus and method
US5690429A (en) Method and apparatus for emissivity independent self-calibrating of a multiwavelength pyrometer
US5326172A (en) Multiwavelength pyrometer for gray and non-gray surfaces in the presence of interfering radiation
CN105806491A (en) Three-wavelength two-dimensional temperature field measuring device and method
US3610592A (en) Method and apparatus for estimating errors in pyrometer readings
JPS6029622A (en) Detecting method of temperature
CN108489631A (en) A kind of absorption spectrum intensity compares temp measuring method
Claggett et al. Radiation and infrared pyrometers
US3376748A (en) Method and apparatus for radiation pyrometry
RU2727340C1 (en) Method of measuring actual temperature and spectral emissivity of an object
Vázquez et al. High spatial resolution optical fiber thermometers for applications in harsh environments
KR101465683B1 (en) Contact-Type Radiation Thermometer And Contact-Type Radiation Temperature Measuring Method
Hartmann New developments in high-temperature measurement techniques
EP0339458A2 (en) Method and apparatus for sensing the temperature of a remote object
Fischer et al. Calibration of tungsten strip lamps as transfer standards for temperature
Barron Application design features for non-contact temperature measurement
CN116124294A (en) Low-temperature multispectral radiation temperature measurement method
JPH04276527A (en) Thermometer in furnace
JPH03287025A (en) Method and device for measurement of temperature and emissivity of body and circumferential temperature
JPS6138806B2 (en)
RU2270984C1 (en) Pyrometer
Bonanno et al. Fiber-optic sensors for long-wavelength pyrometry and thermometry in gas turbines
SU386270A1 (en) PYROMETER TOTAL RADIATION1, .—-
Chahine et al. Temperature profile measurement of a graphite tube furnace using optical fibre and platinum thermocouples