JPS6029593A - Construction of single-phase flow heat-transfer pipe - Google Patents

Construction of single-phase flow heat-transfer pipe

Info

Publication number
JPS6029593A
JPS6029593A JP13597683A JP13597683A JPS6029593A JP S6029593 A JPS6029593 A JP S6029593A JP 13597683 A JP13597683 A JP 13597683A JP 13597683 A JP13597683 A JP 13597683A JP S6029593 A JPS6029593 A JP S6029593A
Authority
JP
Japan
Prior art keywords
heat transfer
phase flow
groove
grooves
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13597683A
Other languages
Japanese (ja)
Inventor
Kenji Takahashi
研二 高橋
Takahiro Oguro
崇弘 大黒
Hisashi Nakayama
中山 恒
Hiromichi Yoshida
博通 吉田
Kiyoshi Oizumi
大泉 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP13597683A priority Critical patent/JPS6029593A/en
Publication of JPS6029593A publication Critical patent/JPS6029593A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Abstract

PURPOSE:To enhance a heat transfer accelerating effect, by providing the inside surface of a single-phase flow heat-transmitting pipe with spiral grooves. CONSTITUTION:Ribs 5 are provided on the inside surface of the single-phase flow heat-transmitting pipe 1 at a set angle theta1 against the flow direction F, namely, the axial direction and at a pitch P, whereby primary grooves 2 with a depth e1 are provided. Secondary grooves 3' are cut in a spiral form in the ribs 5 in the manner of intersecting the ribs 5, at a set angle theta2 against the flow direction F and with a depth e2 from the upper surface of the ribs 5. Accordingly, the heat-transfer performance for a single-phase flow can be enhanced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は空気調和機、冷凍機等の熱交換器に用いる伝
熱管の構造に関する発明であり、特に、該伝熱管の内面
に於て軸方向に対して各々決められた設定角を有して交
叉する一次溝、及び、該一次溝に形成させた二次溝を有
する単相流伝熱管構造に係わる発明である。
[Detailed Description of the Invention] [Field of Application of the Invention] This invention relates to the structure of a heat exchanger tube used in a heat exchanger such as an air conditioner or a refrigerator. This invention relates to a single-phase flow heat exchanger tube structure having primary grooves that intersect each other at predetermined angles with respect to the primary grooves, and secondary grooves formed in the primary grooves.

〔発明の背景〕[Background of the invention]

周知の如く空気調和機や冷凍機等の熱交換器には熱交換
管が設けられており、これらの管の内面の構造は一般に
液体や気体の単相流を流過させる構造としてストレート
管もあるが、該伝熱管の内面に特殊な構造を形成させて
上記ストレート上のも 平滑管に比し熱伝導率が向上するような機能が与えるこ
とが知られている。
As is well known, heat exchangers such as air conditioners and refrigerators are equipped with heat exchange tubes, and the inner structure of these tubes is generally designed to allow a single-phase flow of liquid or gas to flow through them, including straight tubes. However, it is known that a special structure is formed on the inner surface of the heat transfer tube to provide a function of improving thermal conductivity compared to the straight and smooth tube.

例えば、該伝熱管内面に立体的に溝を交叉状態に形成さ
せるものは公知であり、高熱負荷のボイラーの焼損防止
対策として限界熱流束を向上させる試みとして所謂クロ
スライフル蒸発管が知られており、文献としては日本機
械学会論文集第39巻32号、第1268頁から127
7頁にかけて記載されており、又、特許文献としては特
開昭54−116765号公報がある。
For example, heat transfer tubes in which three-dimensional grooves are formed in an intersecting manner on the inner surface of the tube are known, and a so-called cross rifle evaporation tube is known as an attempt to improve the critical heat flux as a measure to prevent burnout in boilers with high heat loads. , as a reference, Transactions of the Japan Society of Mechanical Engineers, Vol. 39, No. 32, pp. 1268 to 127.
It is described over 7 pages, and as a patent document, there is JP-A-54-116765.

ちなみに該特許文献に示されているものを第1。By the way, the first one is shown in the patent document.

2、3図で示すと、伝熱管1の内面に軸方向に対して設
定角01を有するスパイラル状の一次溝2と設定角θ雪
を成す二次溝3が交叉して刻設形成され、これらの−欠
溝2、及び、二次溝3の相互のピッチは極めて細かく数
学的には0.15〜1,5叫の範囲にされてその結果−
欠溝2、二次溝3の間には微小な突起4,4・・・が多
数形成されている。
As shown in FIGS. 2 and 3, a spiral primary groove 2 having a set angle 01 with respect to the axial direction and a secondary groove 3 having a set angle θ are intersected and formed on the inner surface of the heat exchanger tube 1. The mutual pitch of these grooves 2 and secondary grooves 3 is mathematically very fine and is in the range of 0.15 to 1.5 pitches, and as a result -
A large number of minute protrusions 4, 4, . . . are formed between the notched groove 2 and the secondary groove 3.

このようにすることにより沸騰及び凝縮伝熱性能を向上
させることが出来るようにされている。
By doing so, boiling and condensing heat transfer performance can be improved.

さりながら、単に該沸騰及び凝縮伝熱にかかわる構造の
伝熱管を単相流伝熱管として用いると次のような問題が
おる。
However, if a heat transfer tube having a structure related to boiling and condensation heat transfer is simply used as a single-phase flow heat transfer tube, the following problems occur.

即ち、相変化を伴わない単相流の伝熱管として上述の如
き伝熱管を用いると、流過する流体が上記突起4.4・
・・に衝突してその結果内面の壁面近くで渦を形成して
渦と流れの主流の境界が壁面に近くなると該突起4の後
部で流線が澱んで新開死水域を形成して伝熱管としての
伝熱性能を著しく低下させる欠点がある。
That is, when the above-mentioned heat transfer tube is used as a heat transfer tube for single-phase flow without phase change, the flowing fluid flows through the projections 4.4 and 4.4.
... and as a result, a vortex is formed near the inner wall surface, and when the boundary between the vortex and the mainstream of the flow approaches the wall surface, the streamlines stagnate at the rear of the protrusion 4, forming a newly opened dead zone, and the heat exchanger tube It has the disadvantage of significantly reducing heat transfer performance.

又、仮シに核種伝熱管を単相流の伝熱管として用いると
図示する様に一次溝2と二次溝3のピッチが極めて小さ
いためにその成形工程において工数が極めて多く、コス
ト高になる不利点かあシ、更に精度管理が極めて慎重で
ある難点がある。
Furthermore, if a nuclide heat transfer tube is used as a single-phase flow heat transfer tube in a temporary structure, the pitch between the primary grooves 2 and the secondary grooves 3 is extremely small as shown in the figure, so the forming process requires an extremely large number of man-hours, resulting in high costs. Disadvantages: Another disadvantage is that accuracy control is extremely careful.

ところで、発明者等においては理論分析と実験による観
察の結果、該種従来の伝熱管の構造について上記沸騰及
び凝縮伝熱性能の向上と単相流に対する阻害条件を分析
し、一つの突起後部の澱み領域に於て次の突起の再付着
点では逆に熱伝達率が局所的に著しく向上することが分
シ、シタがって、−欠溝2と二次溝3の間のピッチは沸
騰及び凝縮の伝熱形態と単相流のそれとでは最適値の範
囲が異なるということを見出した。
By the way, as a result of theoretical analysis and experimental observation, the inventors analyzed the above-mentioned improvements in boiling and condensation heat transfer performance and inhibition conditions for single-phase flow in the structure of the conventional heat transfer tube, and found that In the stagnation region, the heat transfer coefficient locally increases significantly at the reattachment point of the next protrusion; It was also found that the range of optimum values differs depending on the heat transfer mode of condensation and that of single-phase flow.

〔発明の目的〕[Purpose of the invention]

この発明の目的は上述従来技術に基づく伝熱管の内壁構
造の問題点を解決すべき技術的課題とし、単相流の伝熱
形態において伝熱性能を最適にするその内面の構造を支
配的な形状にする数値的範囲を決定するようにしてエネ
ルギー産業における熱交換利用分野に益する優れた単相
流伝熱管構造を提供せんとするものである。
The purpose of this invention is to solve the problems of the inner wall structure of heat transfer tubes based on the above-mentioned prior art, and to solve the problems of the inner wall structure of heat transfer tubes based on the above-mentioned conventional technology. By determining the numerical range of the shape, the present invention aims to provide an excellent single-phase flow heat exchanger tube structure that is useful for heat exchange applications in the energy industry.

〔発明の概要〕[Summary of the invention]

上述目的に沿い先述特許請求の範囲を要旨とするこの発
明の概要は、前述問題点を解決するために単相流伝熱管
の内面に軸方向に対して一次溝をスパイラル状に設定角
0°〜30″でリプを介し形成させ、更に該−欠溝のピ
ッチを2〜5mであるようにし、而して該−欠溝をなす
リプにスパイラル状に二次溝をO°〜−30°の設定角
で交叉形成させ、これらの溝深さを所定に形成させて最
大の伝熱促進効果をあげ得るようにした技術的手段を講
じたものである。
In accordance with the above-mentioned object, the present invention is summarized as follows: In order to solve the above-mentioned problems, primary grooves are formed spirally in the axial direction on the inner surface of a single-phase flow heat exchanger tube at an angle of 0° to 0°. 30" through the lip, and furthermore, the pitch of the notch groove is 2 to 5 m, and the lip forming the notch groove is formed with a secondary groove in a spiral shape at an angle of 0° to -30°. A technical measure has been taken in which the grooves are cross-formed at a set angle and the depth of these grooves is formed to a predetermined value to maximize the effect of promoting heat transfer.

実施例 次に、この発明の実施例を第4図以下の図面に基づいて
説明すれば以下の通シである。同、第1〜3図と同一態
様部分は同一符号を用いて説明するものとする。
Embodiment Next, an embodiment of the present invention will be explained below based on the drawings from FIG. 4 onwards. The same parts as in FIGS. 1 to 3 will be described using the same reference numerals.

第4図に示す基本的な実施例において、単相流伝熱管l
の内面の流れ方向Fに対して、即ち、軸方向に対して設
定角θlでリプ5、・・・をピッチpとして形成するこ
とにより一次溝2.2・・・をその深さelで刻設形成
している。
In the basic embodiment shown in FIG.
The primary grooves 2.2... are carved with a depth el by forming the lips 5,... with a pitch p at a set angle θl with respect to the flow direction F, that is, with respect to the axial direction. It is being set up.

而して、同じく流れ方向Fに対して、即ち、軸方向に対
して設定角θ3で上EIJブ5,5・・・上にこれを交
叉する如くしてその上面からその深さC!で二次溝3/
 、3/・・・を、同じくスパイラル状に刻設形成しで
ある。
Similarly, the upper EIJ blades 5, 5... are crossed at a set angle θ3 with respect to the flow direction F, that is, with respect to the axial direction, and the depth C! Secondary groove 3/
, 3/... are similarly engraved and formed in a spiral shape.

同、ここで上記設定角θ重、θ雪については軸方向に対
し右側で等方向にあれば+、左側にあれば−とじて現わ
すものとする。
Similarly, regarding the set angles θ weight and θ snow, if they are on the right side and in the same direction with respect to the axial direction, they are expressed as +, and when they are on the left side, they are expressed as -.

したがって、第4図に示す基本的実施例においては設定
角θ1は+でアク設定角011は−である。
Therefore, in the basic embodiment shown in FIG. 4, the set angle θ1 is + and the active set angle 011 is -.

而して、第5図に示す実施例のように設定角011及び
、θ3が流れ方向Fに対して同じ一側にある態様に於て
は一次溝2に沿って流れる単相流の流線に対し二次溝3
′から流入する流線は擾乱をおこすことなくスムースに
混合され流過していくことが分る。
Therefore, in the embodiment shown in FIG. 5, where the set angle 011 and θ3 are on the same side with respect to the flow direction F, the streamline of the single-phase flow flowing along the primary groove 2 For secondary groove 3
It can be seen that the streamlines flowing in from ' are mixed smoothly and flow through without causing any disturbance.

これに対し第6図に示す実施例においては、設定角θl
が流れ方向Fに対して+側にあるのに対し、設定角θ3
は一側にあシ、シたがって一次溝2の流線に対し二次溝
3/からの流線はリプ5上に形成される突起6によシ微
妙な渦線7が形成されることが認められた。
On the other hand, in the embodiment shown in FIG. 6, the set angle θl
is on the + side with respect to the flow direction F, while the set angle θ3
There is a reed on one side, so that the streamline from the secondary groove 3/ is a delicate vortex line 7 formed by the protrusion 6 formed on the lip 5 with respect to the streamline from the primary groove 2. was recognized.

そして、この渦線7が実は後で詳述するように単相流と
伝熱管1との間の伝熱を促進し、高性能な単相流伝熱管
1を現出させることに大きく祭力ゝることになるのであ
る。
As will be explained in detail later, these vortex lines 7 actually promote heat transfer between the single-phase flow and the heat exchanger tube 1, and play a major role in producing a high-performance single-phase flow heat exchanger tube 1. This is what happens.

上述記載内容は主として観察に適するモデルを作り実験
して得たことの内容であるが、次にこれらから得た数値
的測定結果と理論的背景を述べる。
The above description is mainly based on the results obtained by creating a model suitable for observation and conducting experiments.Next, the numerical measurement results obtained from these and the theoretical background will be described.

上述実施例に即して種々の単相流伝熱管1に付いてその
圧力損失と熱伝達率を測定した結果を第7図のグラフに
示すが、該第7図のグラフにおいては一部溝2の設定角
θlを固定し、二次ピッチ3の設定角θ2の影響を調べ
たデータであり、横軸にはレイノルズ数Be (=u 
−d/v 、 u :管内平均流速(m/s) 、d 
:管内径(z)、シ:流体の動粘性係数(W?/8))
で、縦軸は無次元化された熱伝達率Nu/Pr (=α
d/λ10.4 pr 、α:熱伝達率(W/ll?・K)、λ:流体の
熱伝達率(W/ltt”・K)、Pr:流体のプラント
ル数)、及び管路の抵抗係数fを示しである。
The results of measuring the pressure loss and heat transfer coefficient of various single-phase flow heat transfer tubes 1 in accordance with the above-mentioned embodiments are shown in the graph of FIG. 7. In the graph of FIG. This is data obtained by fixing the setting angle θl of the secondary pitch 3 and investigating the influence of the setting angle θ2 of the secondary pitch 3.
-d/v, u: average flow velocity in the pipe (m/s), d
: Pipe inner diameter (z), C: Fluid kinematic viscosity coefficient (W?/8))
The vertical axis is the dimensionless heat transfer coefficient Nu/Pr (=α
d/λ10.4 pr, α: heat transfer coefficient (W/ll?・K), λ: heat transfer coefficient of fluid (W/ltt”・K), Pr: Prandtl number of fluid), and resistance of pipe line The coefficient f is shown.

同、第7図においては慎重になることを避けるために図
示してはないが管の内面に溝加工を何等施さない平滑管
について実験を行った結果、熱伝達率に付いては従来一
般に知られているD 1 t tusBoetter 
(7)式、Nu=0.023Re”pr”’(グラフA
)と良く一致し、管路の抵抗係数に付いてはprand
tl の式1/V’T=2.0 tog (Rev’7
″)−O,S(グラフB)と良く一致した結果が得られ
てはいる。
Although it is not shown in Figure 7 to avoid being cautious, we conducted an experiment on a smooth tube without any grooves on the inner surface of the tube, and found that the heat transfer coefficient was not shown in the figure to avoid being cautious. D 1 t tus Boetter
Equation (7), Nu=0.023Re"pr"' (graph A
), and the resistance coefficient of the pipeline is in good agreement with prand.
tl formula 1/V'T=2.0 tog (Rev'7
″)-O,S (graph B).

同、該第7図における69口、し、の記号の内容は次表
の通りである。
The contents of the symbols 69 and 69 in FIG. 7 are as shown in the following table.

ところで、該第7図のデータの結果を見てみると二次溝
3′の設定角θ2の角度が減少するにしたがって熱伝達
率の抵抗係数も大きくなっていることが分る。
By the way, looking at the results of the data shown in FIG. 7, it can be seen that as the setting angle θ2 of the secondary groove 3' decreases, the resistance coefficient of the heat transfer coefficient also increases.

但し、該第7図の結果からだけでは伝熱性能の成否を決
定することは直接的には出来ない。
However, the success or failure of the heat transfer performance cannot be directly determined from the results shown in FIG. 7 alone.

そこで、従来一般に熱伝達率、及び、抵抗係数について
その内容が知られている文献(例えば、R,LWebb
 and E、R,G、Eckert ”Applic
ationof lough 5urfaces to
 :[(eat Exchanger])esign 
International Journal of 
Heatand Mass ’l’ransfer、 
■al 、 15、P1647〜P1658 )で示さ
れているような で与えられる熱伝達率、及び、抵抗係数について上記−
欠溝2、及び、二次溝3′を形成させた単相流伝熱管1
と何等このような加工を施していない平滑管とのこれら
の比を取ったものの割合で評価するのが最も一般的であ
る。
Therefore, in the literature whose contents are generally known regarding heat transfer coefficient and resistance coefficient (for example, R, LWebb
and E, R, G, Eckert “Applic
ation of low 5 surfaces to
: [(eat Exchanger]) esign
International Journal of
Heatand Mass 'l'transfer,
■Al, 15, P1647-P1658) Regarding the heat transfer coefficient and resistance coefficient given by -
Single-phase flow heat exchanger tube 1 with grooves 2 and secondary grooves 3' formed
The most common method for evaluation is to calculate the ratio between the smooth tube and the smooth tube that has not undergone any such processing.

そして、これらの値は平滑管については1であり伝熱性
能が向上するにしたがってその値が大きくなっていくの
であるので上記第7図に示されたデータを水速2.5 
m / Sに対応するRe=4X10’の場合について
整理した結果を第8図に示しである。
These values are 1 for smooth pipes, and as the heat transfer performance improves, the values increase. Therefore, the data shown in Figure 7 above is calculated by adjusting the water velocity to 2.5.
FIG. 8 shows the results summarized for the case of Re=4×10' corresponding to m/S.

尚、該第8図においてCは二次元リプ管(a=30°、
p=2w、e=0.3mm)を示すものである。(但し
、Re=4X10’ l[:llへ、Aは第7図と同じ
) 第8図にみられるとおりにこの結果からは二次溝3′の
設定角θ3が減少するに従って即ち、伝熱性能は極めて
向上していることが良く分る。
In addition, in FIG. 8, C is a two-dimensional lip tube (a=30°,
p=2w, e=0.3mm). (However, to Re=4 It is clearly seen that the performance has improved significantly.

そこで、前述第5.6図に示した基本的実施例のモデル
実験の観察結果と該第8図に示す結果とを対比して検討
してみると、設定角01が30’、設定角θ鵞が15°
でおる結果は0くθ雪くθ1の条件に当てはまることに
なり前記第5図に示すモデル実験のように二次溝3′を
流過する流線は一部溝2を流過する流線に渦を生ずるこ
となくスムースに混合して流過していく。
Therefore, when comparing and examining the observation results of the model experiment of the basic embodiment shown in Fig. 5.6 and the results shown in Fig. 8, it is found that the setting angle 01 is 30', and the setting angle θ The goose is 15°
The result is that the condition of 0, θ and θ1 is met, and as in the model experiment shown in FIG. It mixes smoothly and flows through without creating a vortex.

これに対し01が30@で03が一30’の場合は第6
図に示すモデル実験に相当し、二次ピッチ3′を流過す
る流線はその突起6の部分で微妙な両線7を形成して擾
乱を起こすことが観察されている。
On the other hand, if 01 is 30@ and 03 is -30', then the 6th
Corresponding to the model experiment shown in the figure, it has been observed that the streamline passing through the secondary pitch 3' forms a delicate line 7 at the protrusion 6, causing disturbance.

そして、第8図に示す様にその部分においては伝熱性能
は極めて良好に示されている。
As shown in FIG. 8, the heat transfer performance in that part is shown to be extremely good.

したがって、単相流の伝熱促進に関する限り、上記両線
7がある程度生ずるような単相流の流れ方の方が伝熱性
能を向上させることがわかりしかも、これがあまシ大き
いと抵抗係数で与えられるところの管路の圧力損失だけ
が上昇して何等熱伝達の上昇には+必゛うないことが充
分に予測される。
Therefore, as far as promoting heat transfer in single-phase flow is concerned, it can be seen that a single-phase flow in which both lines 7 above occur to some extent improves heat transfer performance. It is fully predicted that only the pressure drop in the pipeline where the heat transfer is applied will increase, and that there will be no increase in heat transfer.

ところで、該第8図に示す二次溝3′の設定角θ2につ
いては一30°までしか示されていないが、単相流伝熱
管1の製法上の点から見ると伝熱管1の内面に形成する
リプ5、溝31の工作上の(11) 制約から転造による線溝2,3′の刻設が困難であり、
したがって、その点からも臨界角度は±30@である。
Incidentally, although the setting angle θ2 of the secondary groove 3' shown in FIG. It is difficult to carve the line grooves 2 and 3' by rolling due to the constraints (11) on the machining of the lip 5 and groove 31.
Therefore, from this point of view as well, the critical angle is ±30@.

一方、θ==00場合は軸方向に沿って引き抜き加工が
できるということになるが、一般には引き抜き加工によ
るθ=0の溝の製作が最もし易いことになる。
On the other hand, when θ==00, drawing can be performed along the axial direction, but generally speaking, it is easiest to produce a groove with θ=0 by drawing.

したがって、実際の伝熱性能、及び、製法の加工上の点
から見ても最適な設定角の範囲はθ2についてはθ°〜
−30@であることが分る。
Therefore, from the point of view of actual heat transfer performance and manufacturing process, the optimal setting angle range for θ2 is θ°~
It turns out that it is -30@.

そして、原則的には一部溝2と二次溝3/については対
称と考えることが出来るので設定角θ!について′4b
O°〜30@とすることができる。
In principle, the partial groove 2 and the secondary groove 3/ can be considered symmetrical, so the setting angle θ! About'4b
It can be set to 0° to 30@.

次に伝熱性能については他のパラメータとして一部溝2
の溝深さel、及び二次溝3′の溝深さelがおるが、
両者の等しい場合と異なる場合を種々の実験に基づいて
調べてみると実質的に変らないことが分った。
Next, regarding heat transfer performance, some groove 2
There is a groove depth el of , and a groove depth el of the secondary groove 3',
When we investigated the cases where the two are equal and the cases where they are different based on various experiments, we found that there is virtually no difference.

但し、el=9の場合、即ち、二次元リブ付き管の場合
は第8図に示す様に83が有限値である(12) ところの三次元リブ付き管の方の伝熱性能の方が性能が
良いことが分る。
However, in the case of el=9, that is, in the case of a two-dimensional ribbed tube, 83 is a finite value as shown in Figure 8 (12) However, the heat transfer performance of the three-dimensional ribbed tube is better. It turns out that the performance is good.

又、e、の範囲に付いては二次元リブ付き管でRe=4
X10’の場合の第9図に示す様にそのリプ高さが0.
2〜0.5閣の範囲でピークの値を持つ結果が得られて
いることから内面の壁面寄9の距離が0.2〜0.5m
の範囲内で通過流体に擾乱を与えれば伝熱促進効果が最
も良く与えられると考えることが出来、又、この値は二
次溝3′に付いても拡張して考えることが出来るもので
ある。
Also, for the range e, Re = 4 for a two-dimensional ribbed tube.
As shown in FIG. 9 in the case of X10', the lip height is 0.
Since results with peak values in the range of 2 to 0.5 m have been obtained, the distance of the inner wall surface 9 is 0.2 to 0.5 m.
It can be considered that the effect of promoting heat transfer is best provided by providing disturbance to the passing fluid within the range of , and this value can also be extended to the secondary groove 3'. .

したがって、el、e2に付いてその最適値は0.2〜
0.5 mとすることが一番良いことが分る。
Therefore, the optimal value for el and e2 is 0.2~
It turns out that 0.5 m is the best.

次に一部溝2と二次溝31のピッチpに付いては第10
図に示される様にp = 4 m前後の直が三次元リブ
付き管に付いては最も良いことが分っている。
Next, regarding the pitch p of the partial groove 2 and the secondary groove 31,
As shown in the figure, it has been found that a straightness around p = 4 m is best for three-dimensional ribbed pipes.

尚、第1θ図において、Dは三次元リブ(01=30°
、e1=0.5閣、θ2=0°+”2:=0.3閣)を
表わし、Eは二次元リブ(θ=30’。
In addition, in Fig. 1θ, D is a three-dimensional rib (01=30°
, e1=0.5 kaku, θ2=0°+"2:=0.3 kaku), and E is a two-dimensional rib (θ=30'.

e二0.3問)を表わす。e20.3 questions).

(13) 又、I’te=4X104である。(13) Also, I'te=4×104.

尚、参考のために示されているが二次溝3′を有しない
二次元リブ付き管の場合も良い値を示している。
Although shown for reference, a two-dimensional ribbed pipe without secondary grooves 3' also shows good values.

ところで、理論によれば定量的にはリプ5の突起6を該
突起6の澱み領域内にh・する再付着点の距離はおよそ
リプ高さの10倍程度の値とされていることによりピッ
チにおいて澱み域が形成されないようにする大きさとし
てはリプ高さが前述の如<0.2〜o、smの範囲でち
ることによ9両値の10倍程度の値、即ち、2w〜51
0Iの範囲内が澱み領域の形成されない範囲であり、こ
れが第10図に示されるハツチングが示されている範囲
内である。
By the way, according to theory, quantitatively, the distance of the reattachment point that brings the protrusion 6 of the lip 5 into the stagnation area of the protrusion 6 is approximately 10 times the height of the lip. As for the size to prevent the formation of a stagnation region, the lip height is set in the range of <0.2~o, sm as described above, and a value of about 10 times the value of 9, that is, 2w~51
The range of 0I is the range in which no stagnation region is formed, and this is the range indicated by hatching in FIG.

したがって、−欠溝2の最適ピッチの範囲は2〜5m+
11とされて良いことが分る。
Therefore, the optimum pitch range for the groove 2 is 2 to 5 m+
I understand that it is good to be ranked 11.

〔発明の効果〕〔Effect of the invention〕

以上この発明によれば、基本的に単相流伝熱管の管内を
流過する単相流の伝熱性能を向上させることが出来、熱
効率を向上させる優れた効果が奏(14) される。
As described above, according to the present invention, it is basically possible to improve the heat transfer performance of the single-phase flow passing through the inside of the single-phase flow heat transfer tube, and an excellent effect of improving the thermal efficiency is achieved (14).

又、−次溝の設定角を0.°〜30″と設定することに
よりリプと一次溝とのスパイラル状の溝の加工が著しく
し易く、その精度管理が高くすることが出来る優れた効
果が奏される。
Also, set the setting angle of the -th groove to 0. By setting the angle to 30'', it is extremely easy to process the spiral groove between the lip and the primary groove, and the excellent effect of increasing precision control is achieved.

又、製作がし易いので製品歩留りが良くコストダウンに
つながる優れた効果が奏される。
Moreover, since it is easy to manufacture, the product yield is high and an excellent effect leading to cost reduction is achieved.

そして、該−次溝に交叉してそのリプ上に二次溝を形成
させることによシ上記リブに形成される突起の密度が粗
くなり、したがって、沸騰及び凝縮の伝熱携帯とは異な
り、単相流に適する伝熱管とすることが出来該単相流の
流過に伴う伝熱性能を最も良くすることが出来る効果が
奏される。
By forming a secondary groove on the lip intersecting the secondary groove, the density of the protrusions formed on the rib becomes coarse, and therefore, unlike boiling and condensing heat transfer cells, The heat transfer tube can be made suitable for single-phase flow, and the heat transfer performance associated with the passage of the single-phase flow can be maximized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術に基づく沸騰及び凝縮伝熱管の講説明
部分断面図、第2図は第1図部分拡大斜視図、第3図は
第1図横断面図、第4図以下はこの発明の詳細な説明図
であり、第4図は1実施例の部分斜視図、第5図は他の
実施例の部分拡大斜視図、第6図は別の実施例の部分拡
大斜視図、(15) 第7図は実験のデータ表示グラフ図、第8図は二次溝の
設定角を伝熱性能との関係説明グラフ図、第9図はリプ
高さと伝熱性能との関係グラフ図、第10図はリプ、ピ
ッチと伝熱性能との関係グラフ説明図。 1・・・伝熱管、2・・・−次溝、3′・・・二次溝、
4747幅、5・・・リプ、θ1.θ2・・・設定角。 代理人 弁理士 高橋明夫 (16) 晃 1 図 第3図 冨 4 図 ■5図 3′ 百 〆 図 ¥:J 7 図 レイノ1しス゛@又 尺e 暦 8 図 15’ ρ −3θ′ 二ン大溝f)/AA θ?
Fig. 1 is a partial cross-sectional view explaining a boiling and condensing heat exchanger tube based on the prior art, Fig. 2 is an enlarged perspective view of a portion of Fig. 1, Fig. 3 is a cross-sectional view of Fig. 1, and Fig. 4 and the following are figures according to the present invention. FIG. 4 is a partial perspective view of one embodiment, FIG. 5 is a partially enlarged perspective view of another embodiment, and FIG. 6 is a partially enlarged perspective view of another embodiment. ) Figure 7 is a graph showing the experimental data, Figure 8 is a graph explaining the relationship between the setting angle of the secondary groove and heat transfer performance, Figure 9 is a graph showing the relationship between lip height and heat transfer performance, Figure 10 is a graph explanatory diagram of the relationship between lip, pitch, and heat transfer performance. 1...Heat exchange tube, 2...-Secondary groove, 3'...Secondary groove,
4747 width, 5...rep, θ1. θ2... Setting angle. Agent Patent Attorney Akio Takahashi (16) Akira 1 Figure 3 Tomi 4 Figure ■ 5 Figure 3' 100 Figure ¥: J 7 Figure Reino 1 Shizu@Mata Shakue Calendar 8 Figure 15' ρ −3θ' 2 Oomizo f)/AA θ?

Claims (1)

【特許請求の範囲】 1、伝熱管内面に軸方向に設定角でリブを介してスパイ
ラル状の溝を少くとも1条形成させた単相流伝熱管構造
において、該溝を成す一次溝を設定角を0°〜30°と
して設け、更に該−次溝を形成するリブに交叉して二次
溝を設けたことを特徴とする単相流伝熱管構造。 2、上記−次溝のピッチが2〜5a+の範囲に形成され
ていることを特徴とする特許 範囲第1項記載の単相流伝熱管構造。
[Claims] 1. In a single-phase flow heat exchanger tube structure in which at least one spiral groove is formed through ribs at a set angle in the axial direction on the inner surface of the heat exchanger tube, the primary groove forming the groove is formed at a set angle. 1. A single-phase flow heat exchanger tube structure characterized in that a secondary groove is provided at an angle of 0° to 30°, and a secondary groove is further provided to intersect the rib forming the secondary groove. 2. The single-phase flow heat exchanger tube structure according to the patent scope 1, characterized in that the pitch of the -order grooves is formed in the range of 2 to 5a+.
JP13597683A 1983-07-27 1983-07-27 Construction of single-phase flow heat-transfer pipe Pending JPS6029593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13597683A JPS6029593A (en) 1983-07-27 1983-07-27 Construction of single-phase flow heat-transfer pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13597683A JPS6029593A (en) 1983-07-27 1983-07-27 Construction of single-phase flow heat-transfer pipe

Publications (1)

Publication Number Publication Date
JPS6029593A true JPS6029593A (en) 1985-02-14

Family

ID=15164269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13597683A Pending JPS6029593A (en) 1983-07-27 1983-07-27 Construction of single-phase flow heat-transfer pipe

Country Status (1)

Country Link
JP (1) JPS6029593A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221788A (en) * 1992-12-16 1994-08-12 Carrier Corp Pipe of heat exchanger
WO1995009324A1 (en) * 1993-09-30 1995-04-06 Siemens Aktiengesellschaft Internally ribbed tube for a steam generator, and a steam generator using such tubes
US5992513A (en) * 1997-09-17 1999-11-30 Hitachi Cable, Ltd. Inner surface grooved heat transfer tube
EP1538415A1 (en) * 2003-12-01 2005-06-08 Balcke-Dürr GmbH Flow duct

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221788A (en) * 1992-12-16 1994-08-12 Carrier Corp Pipe of heat exchanger
WO1995009324A1 (en) * 1993-09-30 1995-04-06 Siemens Aktiengesellschaft Internally ribbed tube for a steam generator, and a steam generator using such tubes
US5992513A (en) * 1997-09-17 1999-11-30 Hitachi Cable, Ltd. Inner surface grooved heat transfer tube
EP1538415A1 (en) * 2003-12-01 2005-06-08 Balcke-Dürr GmbH Flow duct

Similar Documents

Publication Publication Date Title
Webb et al. Heat transfer and friction characteristics of internal helical-rib roughness
US6006823A (en) Streamlined surface
Bergles Enhanced heat transfer: Endless frontier, or mature and routine?
RU2289076C2 (en) Pipes with grooves for reversible usage at heat exchangers
Wang et al. An investigation of influence factor including different tube bundles on inclined elliptical fin-tube heat exchanger
Ji et al. Summary and evaluation on the heat transfer enhancement techniques of gas laminar and turbulent pipe flow
Altun et al. Effects of trapezoidal and twisted trapezoidal tapes on turbulent heat transfer in tubes
Saysroy et al. Performance assessment of turbular heat exchanger tubes containing rectangular-cut twisted tapes with alternate axes
Zhang et al. Numerical investigation of flow and heat transfer in enhanced tube with slot dimples
Meyer et al. A review of the recent developments in laminar, transitional, quasi-turbulent and turbulent forced and mixed convective flow through horizontal tubes
JPS6029593A (en) Construction of single-phase flow heat-transfer pipe
Kumar et al. Experimental investigations on thermo-hydraulic performance due to flow-attack-angle in multiple V-ribs with gap in a rectangular duct of solar air heaters
Liu et al. Experiment on critical heat flux of subcooled flow boiling in compound heat transfer tubes
Wei et al. Heat transfer enhancement of a partially serrated twisted finned tube with non-grooving on the leeward side
CN109522586B (en) Method for optimizing fin structure of heat exchanger based on field synergy theory
Asadi et al. An experimental study on heat transfer surface area of wavy-fin heat exchangers
Kumar et al. An experimental investigation of enhanced heat transfer due to a gap in a continuous multiple V-rib arrangement in a solar air channel
CN204115547U (en) Heat exchanging tube for condensator
Jamshed et al. Investigation of entropy generation rate and its minimization in helical grooved tubes
JPS62142995A (en) Heat transfer pipe with inner surface spiral groove
Saha et al. 2D Roughness, 3D Roughness and Roughness Applications
Shifeng et al. HEAT TRANSFER ENHANCEMENT IN INSERTED EXTRUDED ALUMINUM FINNED TUBES.
CN113586165B (en) Turbine blade with single kerosene cooling channel
Gu et al. Shell-side flow study and structural optimization of a double helical-like flow heat exchanger
Jia et al. Research on the heat transfer and flow characteristics of a new type of aluminum noncontact thermal resistance finned tubes