JPS6029504A - Liquid fuel combustion apparatus of evaporation type - Google Patents

Liquid fuel combustion apparatus of evaporation type

Info

Publication number
JPS6029504A
JPS6029504A JP58136992A JP13699283A JPS6029504A JP S6029504 A JPS6029504 A JP S6029504A JP 58136992 A JP58136992 A JP 58136992A JP 13699283 A JP13699283 A JP 13699283A JP S6029504 A JPS6029504 A JP S6029504A
Authority
JP
Japan
Prior art keywords
liquid fuel
fuel combustion
combustion device
tar
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58136992A
Other languages
Japanese (ja)
Other versions
JPH0136002B2 (en
Inventor
Tei Hikino
曳野 禎
Kunihiro Tsuruta
邦弘 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58136992A priority Critical patent/JPS6029504A/en
Priority to US06/627,726 priority patent/US4616993A/en
Priority to CA000458296A priority patent/CA1228529A/en
Publication of JPS6029504A publication Critical patent/JPS6029504A/en
Publication of JPH0136002B2 publication Critical patent/JPH0136002B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Evaporation-Type Combustion Burners (AREA)
  • Spray-Type Burners (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To shorten the time of evaporation and to decrease the depositing quantity of tar, by keeping the temperature in an evaporating surface at the temperature to boil a coating layer, by roughening the inside surface of a metallic evaporating cylinder, and by coating both surfaces with a layer to decompose organic substance made of material having high thermal conductivity and high heat radiant property, in the title combustion apparatus. CONSTITUTION:The inside surface of a metallic evaporating cylinder 1 is roughened and a layer 10 to decompose organic substance is coated on the roughly- treated surface. The layer is composed of a material 11 (shown by X) having high thermal conductivity and high heat radiant property, a catalyst 12 (shown by O) to decompose organic substance, and a refractory bonding material 13 (shown by shaded part), so that the evaporating surface can be kept at the temperature to boil the layer 10. With such an arrangement, liquid fuel containing unvolatile content 14 (shown by ) which causes formation of tar, is evaporated. By shortening the residence time of fuel on the layer, the quantity of tar deposited on the layer can be decreased.

Description

【発明の詳細な説明】 a・−−・ 産業上の利用分野 本発明は暖房器、調理器などに広く利用されている気化
式液体燃料燃焼装置に関するものであシ、特にタールが
たい積すると問題になる気化面に関するものである。
[Detailed Description of the Invention] a. --- Industrial Field of Use The present invention relates to a vaporized liquid fuel combustion device that is widely used in heaters, cookers, etc. In particular, there is a problem when tar accumulates. This is related to the vaporization surface.

従来例の構成とその問題点 従来装置の気化面は、アルミダイキャストや機械加工し
た平滑面を核沸騰温度域に保持しているためタールがた
い積しやすい開祖があった。
Conventional structure and problems The vaporizing surface of conventional devices is made of die-cast aluminum or machined to maintain a smooth surface in the nucleate boiling temperature range, making it easy for tar to accumulate.

発明の目的 本発明はこのような問題点全解決した、タールのたい積
の少ない気化面からなる気化式液体燃料燃焼装置の提供
を目的とするものである。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a vaporized liquid fuel combustion device which solves all of the above problems and has a vaporizing surface with less tar accumulation.

発明の構成 この目的を達成するために本発明は金属気化筒内面を粗
面化処理し、同処理面全高熱伝導性でかつ高ふく対性材
料、有機物分解触媒および耐熱性結合材よりなる有機物
分解皮膜で被覆し、気化面温度を膜沸騰温度に保持する
構成としたものである。この構成によって気化面積の拡
大、液体燃料粒子の再結合による粗大化の防止、ふく射
手向上による気化時間の短縮、触媒作用によりタールの
たい積が極めて少なくなる。
Structure of the Invention In order to achieve this object, the present invention roughens the inner surface of the metal vaporization cylinder, and the treated surface has an organic substance made of a material with high thermal conductivity and high flux resistance, an organic substance decomposition catalyst, and a heat-resistant binder. It is coated with a decomposition film to maintain the vaporizing surface temperature at the film boiling temperature. This configuration expands the vaporization area, prevents liquid fuel particles from becoming coarse due to recombination, shortens vaporization time by improving the atomizer, and extremely reduces tar accumulation due to catalytic action.

実施例の説明 以下、本発明の実旌例全図面を用いて説明する。Description of examples Hereinafter, a practical example of the present invention will be explained using all the drawings.

まず従来例について第1図a、bにより説明する。First, a conventional example will be explained with reference to FIGS. 1a and 1b.

平滑な内面を有する金属気化筒1の気化面に熱伝導性の
低い皮膜2を被覆し液体燃料3を空気4と共に噴出させ
、加熱気化面の皮膜2で気化し、混合ガス盆バーナヘッ
ド5で燃焼させ火炎6を形成するものである。7は気化
筒加熱用電気ヒータ、8は温度検出素子であり、気化面
温度は温度検出素子8により検出しながら電気ヒータ7
およびバーナヘッド5からの伝導熱により一定温度に保
持するものである。このような従来装置においては9に
示す場所にタールが集中してたい積する欠点があった。
The vaporizing surface of the metal vaporizing tube 1 having a smooth inner surface is coated with a film 2 having low thermal conductivity, and the liquid fuel 3 is ejected together with air 4, vaporized by the film 2 on the heated vaporizing surface, and then transferred to the mixed gas tray burner head 5. It burns to form a flame 6. 7 is an electric heater for heating the vaporization cylinder; 8 is a temperature detection element; while the vaporization surface temperature is detected by the temperature detection element 8, the electric heater 7
The temperature is maintained at a constant temperature by conductive heat from the burner head 5. Such a conventional device has a drawback that tar is concentrated and accumulated at the location shown in 9.

次に本発明の例について説明する。Next, an example of the present invention will be described.

本発明の一実施例を第2図a + bに示す。気化筒材
質、形状寸法、燃焼方法は第1図の従来例と同じである
が気化面は液体燃料の粒径以上に粗面5べ一−二″ 化処理し、同処理面上に有機物分解皮膜10を被覆した
ものである。気化面温度は温度検出素子8により検出し
ながら電気ヒータ7およびバーナヘッド5からの伝導熱
により膜沸騰゛潟度に保持したものである。有機物分解
皮膜10の一つの主要成分は高熱伝導性でかつ高ふく対
性の微粉末材料であり、炭素、黒鉛、酸化ベリリウム、
酸化マグネシウム、炭化ケイ素、バナジウムカーバイト
、タングステンカーバイド、チタンカーバイト、窒化ボ
ロン、ジルコニウムポライドの群から選んだ少なくとも
1種以上を15〜50重量%含有することが必要である
。また第二の主要成分は有機物分解触媒であり、チタン
、ジルコニウム、バナジウム、クロム、モリブデン、タ
ングステン、マンガン、鉄、コバルト、ニッケル、銅、
および希土類の酸化物、元素状の白金およびパラジウム
、活性白土、ゼオライト、ケイ酸カルシウム、アルミナ
セメント、炭酸カリウムの群から選んだ少なくとも1種
以上’i 0.1〜15重量%含有することが必要であ
る。さらに第三の主要成分は耐熱性結合材6 ゛ で、水溶性リン酸塩、水溶性グイ酸塩、シリコン系塗料
の群から選んだもの全40〜80重量%含有することが
必要である。
An embodiment of the present invention is shown in FIG. 2a + b. The material, shape, and combustion method of the vaporizer cylinder are the same as the conventional example shown in Figure 1, but the vaporization surface is treated to have a roughened surface of 5-2" to be rougher than the particle size of the liquid fuel, and organic matter decomposition is carried out on the same treated surface. The organic matter decomposition film 10 is coated with a film 10.The temperature of the vaporized surface is detected by the temperature detection element 8, and the temperature is maintained at film boiling temperature by the conduction heat from the electric heater 7 and the burner head 5. One of the main components is a fine powder material with high thermal conductivity and high flux, including carbon, graphite, beryllium oxide,
It is necessary to contain 15 to 50% by weight of at least one selected from the group of magnesium oxide, silicon carbide, vanadium carbide, tungsten carbide, titanium carbide, boron nitride, and zirconium polide. The second main component is an organic decomposition catalyst, which includes titanium, zirconium, vanadium, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, copper,
and at least one selected from the group of rare earth oxides, elemental platinum and palladium, activated clay, zeolite, calcium silicate, alumina cement, and potassium carbonate. It is. Furthermore, the third main component is a heat-resistant binder, which must contain 40 to 80% by weight of a material selected from the group of water-soluble phosphates, water-soluble guates, and silicone paints.

本発明の気化面金拡大して第3図に示す。金属気化筒1
の内面を粗面化処理し、その処理面に有機物分解皮膜1
0全被覆したものである。同皮膜は高熱伝導性でかつ高
ふく対性材料11(×で表示)、有機物分解触媒12(
Oで表示)および耐熱性結合材13(斜線で表示)から
なる。このような気化面金有する装置で気化面温度を瞑
沸騰幅度に保持し、タールの原因となる不揮発成分14
(△で表示)を含む液体燃料1を気化させると、皮膜中
に高熱伝導性でかつ高ふく対性材料11が存在するため
伝熱およびふく射の熱的作用により燃料中の揮発成分は
極めて短時間で気化し、皮膜上での滞留時間が短くなり
タールが少なくなる。
FIG. 3 shows an enlarged view of the vaporized surface of the present invention. Metal vaporizer cylinder 1
The inner surface is roughened and an organic decomposition film 1 is applied to the treated surface.
0 fully coated. The film consists of a highly thermally conductive and highly resistant material 11 (indicated by an x), an organic matter decomposition catalyst 12 (
(indicated by O) and a heat-resistant bonding material 13 (indicated by diagonal lines). This type of vaporization surface metal device maintains the temperature of the vaporization surface within the boiling range and eliminates the non-volatile components 14 that cause tar.
When the liquid fuel 1 containing (indicated by △) is vaporized, the volatile components in the fuel are extremely short-lived due to the thermal effects of heat transfer and radiation because the material 11 with high thermal conductivity and high flux is present in the film. It vaporizes over time, shortening the residence time on the film and reducing the amount of tar.

有機物分解触媒はタールの原因となる不揮発成分の酸化
分解、部分酸化分解、もしくはクランキングによシター
ル生成を少なくする。耐熱性結合材は高熱伝導性でかつ
高ふく対性材料および有機物7パ二゛ 分解触媒全気化筒に接着するために必要な材料である。
Organic matter decomposition catalysts reduce tar formation through oxidative decomposition, partial oxidative decomposition, or cranking of nonvolatile components that cause tar. The heat-resistant bonding material is a material that has high thermal conductivity and high flux and is necessary for adhering to the organic substance heptad decomposition catalyst total vaporization cylinder.

これの主材は水溶性リン酸塩、水溶性ケイ酸塩、シリコ
ン系塗料であるが、硬化の完全化、硬化時間の短縮など
のため硬化材全使用したり、耐火性、耐油性、耐水性な
どの反映性状全確保するため充填材全使用する。耐熱性
結合材は気化筒との密着性、皮膜強度全確保するために
40〜90重量%必要である。
The main materials for this are water-soluble phosphate, water-soluble silicate, and silicone paints, but in order to achieve complete curing and shorten curing time, all hardening materials are used, and they are fire-resistant, oil-resistant, and water-resistant. All fillers are used in order to ensure all reflective properties such as gender. The heat-resistant bonding material is required in an amount of 40 to 90% by weight in order to ensure adhesion to the vaporization tube and full film strength.

以下、具体例により説明する。A specific example will be explained below.

壕ず、従来例について説明する。第1図に示した構造の
気化筒全アルミニウムで製造した。板厚3mm、内径4
 Q mm、高さ3Qmmの気化筒で、気化面の皮膜2
は表面粗度10μ以下に機械加工した平滑なアルミニウ
ム上に充填材としてフェライト、結合材としてシリコン
系塗料からなる厚さ約30/1の皮1漢を形成した。こ
の皮膜の200℃におけるふく対生は0.80、熱伝導
率は0.8 ’!i/mh ’Cである。本装置におい
てヒータおよび燃焼熱により気化面温度に350’cと
し、タールの原因となる不揮発成分i 37.5 T)
l)m含む悪質な灯油全2.8I!it/)(r %空
気量5.3 N m’/ Hrの割合で噴霧気化し、燃
焼しながらたい積タール量の経時変化全測定すると第4
図に示す特性線Aとなった。1000時間で約300 
’Qのクールが第1図の9の場所にたい積し、1500
0時間では1y−以上のタールが局所的にたい積する見
込みとなり、点火、消火時に臭気、炭化水素、−酸化炭
素の排出量が多くなり燃焼装置として望ましくない。こ
の従来皮膜は熱伝導率が低いため、灯油は衝突面近傍で
核沸騰気化しここにタールがたい積する問題点全示した
Without further ado, a conventional example will be explained. The vaporizer cylinder having the structure shown in FIG. 1 was manufactured entirely from aluminum. Plate thickness 3mm, inner diameter 4
Q mm, height 3 Q mm vaporizing cylinder, film 2 on the vaporizing surface.
A skin of approximately 30/1 thickness was formed on smooth aluminum machined to a surface roughness of 10 μm or less, consisting of ferrite as a filler and silicone paint as a binder. This film has a thermal conductivity of 0.80 and a thermal conductivity of 0.8' at 200℃! i/mh'C. In this device, the temperature of the vaporization surface is set to 350'C by the heater and combustion heat, and the non-volatile components that cause tar are 37.5 T).
l) All 2.8I of bad kerosene including m! It/) (r % Air amount 5.3 N m'/Hr) Spray vaporizes at a rate of 5.3 N m'/Hr, and measures all changes over time in the amount of accumulated tar while burning.
The characteristic line A shown in the figure was obtained. Approximately 300 in 1000 hours
'Q's cool is accumulated at the place 9 in Figure 1, and 1500
At 0 hours, tar of 1y- or more is expected to accumulate locally, and when igniting and extinguishing, the amount of odor, hydrocarbons, and carbon oxides emitted increases, which is not desirable as a combustion device. Since this conventional coating has low thermal conductivity, kerosene vaporizes by nucleate boiling near the collision surface, causing tar to accumulate there.

次に本発明の例について説明する。Next, an example of the present invention will be described.

(1)上記従来例と同様の気化筒内面全第3図に示す様
に表面粗度約700μに粗面化処理し、その上に燃成後
の皮膜組成として黒鉛45重量%、二酸化マンガン10
重量%、耐熱性結合材45重量%からなる厚さ約30μ
の有機物分解皮膜全形成した。本実施例における耐熱性
結合材は主材として第1リン酸アルミニウム、硬化材と
してリン酸ナトリウム、充填材としてアルミナ9 ペー
ジ より構成されたものである。この皮膜の200°Cにお
けるふく対生は0.90、熱伝導率は約15−7m h
 ’Cである。気化面温度’1350’cとし上記従来
例と同じ条件でたい積タール量の経時変化全測定すると
第4図に示す特性線1となった。1000時間で約3.
5mgのタールがたい積し、15000時間後において
も約5m1と極めて少なくなる見込みである。本実施例
における噴霧灯油の粒径は約1 mm、気化面に衝突後
の粒径は約0.2〜0.5mであった。
(1) The entire inner surface of the vaporizer cylinder, similar to the above conventional example, is roughened to a surface roughness of approximately 700μ as shown in Figure 3, and the coating composition after combustion is 45% by weight of graphite and 10% by weight of manganese dioxide.
Approximately 30μ thick, made of 45% by weight heat-resistant binder.
The organic matter decomposition film was completely formed. The heat-resistant bonding material in this example is composed of primary aluminum phosphate as a main material, sodium phosphate as a hardening material, and alumina as a filler. The thermal conductivity of this film at 200°C is 0.90 and the thermal conductivity is approximately 15-7m h.
'C. When the temperature of the vaporization surface was set to 1350'c and the change in the amount of accumulated tar over time was measured under the same conditions as in the conventional example, characteristic line 1 shown in FIG. 4 was obtained. Approximately 3.00 hours in 1000 hours.
It is expected that 5 mg of tar will accumulate and the amount will be extremely small at about 5 ml even after 15,000 hours. The particle size of the sprayed kerosene in this example was about 1 mm, and the particle size after colliding with the vaporizing surface was about 0.2 to 0.5 m.

(2)上記1の例と同様に粗面化処理した気化筒内面に
焼成後の皮膜組成として酸化ぺIJ IJウム20重量
%、有機物分解触媒としてアルミナセメント20重量%
、耐熱性結合材70重量%からなる厚さ約30μの有機
物分解皮膜全形成した。
(2) After firing, the inner surface of the vaporizer cylinder was roughened in the same manner as in Example 1 above, and the film composition after firing was 20% by weight of aluminum oxide, and 20% by weight of alumina cement as an organic matter decomposition catalyst.
An organic decomposition film of approximately 30 μm in thickness consisting of 70% by weight of a heat-resistant binder was completely formed.

本実施例における耐熱性結合材は主材としてケイ酸ナト
リウム、充填材としてシリカより構成さnたものである
。この皮膜の200℃におけるふく対生は0.82、熱
伝導率は約101d/mh’Cである。気化面温度を3
50°Cとし、上記従来10 ページ 例と同じ条件でたい積タール量の経時変化を測定すると
第4図に示す特性線2となった。1000時間で約1.
0”gのタールが気化室底面にたい積した。
The heat-resistant binder in this example is composed of sodium silicate as the main material and silica as the filler. The thermal conductivity of this film at 200° C. is 0.82 and the thermal conductivity is approximately 101 d/mh'C. Evaporation surface temperature 3
When the change in accumulated tar amount over time was measured at 50 DEG C. under the same conditions as in the conventional example on page 10, characteristic line 2 shown in FIG. 4 was obtained. Approximately 1 in 1000 hours.
0''g of tar accumulated on the bottom of the vaporization chamber.

(3)上記1の例と同じ気化筒に焼成後の皮膜組成とし
て黒鉛23重量%、耐熱性結合材76.2重量%、有機
物分解触媒として0.2重量%の白金を担持した厚さ約
30μの有機物分解皮膜を形成した。本実施例における
耐熱性結合材は主材として第1リン酸アルミニウム、硬
化材としてリン酸ナトリウム、充填材としてアルミナよ
り構成さ扛たものである。この皮膜の200 ’Cにお
けるふく対生は0.81、熱伝導率は約7圓/m−h・
°Cである。気化面部属を350°Cとし従来例と同じ
条件でたい積タール量の経時変化を測定すると第4図に
示す特性曲線3となった。
(3) The same vaporizing cylinder as in Example 1 above is coated with 23% by weight of graphite, 76.2% by weight of a heat-resistant binder, and 0.2% by weight of platinum as an organic matter decomposition catalyst after firing. A 30μ thick organic matter decomposition film was formed. The heat-resistant bonding material in this example is composed of primary aluminum phosphate as a main material, sodium phosphate as a hardening material, and alumina as a filler. The thermal conductivity of this film at 200'C is 0.81, and the thermal conductivity is approximately 7 g/m-h.
It is °C. When the vaporization surface temperature was set at 350° C. and the change in accumulated tar amount over time was measured under the same conditions as in the conventional example, a characteristic curve 3 shown in FIG. 4 was obtained.

1000時間で約11mgのタールが気化室底面にたい
積した。
Approximately 11 mg of tar accumulated on the bottom of the vaporization chamber in 1000 hours.

に)上記1の例と同じ気化筒に焼成後の皮膜組成として
黒鉛23重量%、二酸化マンガン10重11、−ジ 量%、耐熱性結合材67重量%からなる厚さ約30μの
有機物分解皮膜を形成した。本実施例における耐熱性結
合材は主材としてリン酸アルミニウム、硬化材としてリ
ン酸ナトリウム、充填材としてアルミナより構成された
ものである。
2) On the same vaporizing cylinder as in Example 1 above, an organic matter decomposition film with a thickness of about 30μ consisting of 23% by weight of graphite, 10% by weight of manganese dioxide, 11% by weight of manganese dioxide, and 67% by weight of a heat-resistant binder was applied. was formed. The heat-resistant bonding material in this example is composed of aluminum phosphate as a main material, sodium phosphate as a hardening material, and alumina as a filler.

この皮膜の200℃におけるふく射手は0.83、熱伝
導率は約6■/mh’cである。従来例と同じ条件でた
い積タール量の経時変化を測定すると第4図に示す特性
線4となった。1000時間で約32m7のタールが気
化室底面にたい積した(51 上記1の例と同じ気化筒
に焼成後のBl暎組成として黒鉛23重量%、ゼオライ
ト[Ca(Na。
The thermal conductivity of this film at 200° C. is 0.83 and the thermal conductivity is approximately 6 μm/mh'c. When the change in the amount of accumulated tar over time was measured under the same conditions as in the conventional example, a characteristic line 4 shown in FIG. 4 was obtained. Approximately 32 m7 of tar accumulated on the bottom of the vaporization chamber in 1000 hours (51) In the same vaporization cylinder as in Example 1 above, the composition of Bl after firing was 23% by weight of graphite, zeolite [Ca(Na).

K)4A116S13oO72〕8重量%、活性白土[
Al 2S113029]2重量%、耐熱性結合材67
重量%からなる厚さ約30μの有機物分解皮膜を形成し
た。本実施例における耐熱性結合材は主材トシて第1リ
ン酸アルミニウム、硬化材としてリン酸ナトリウム、充
填材としてアルミナより構成されたものである。この皮
膜の2000Cにおけるふく射手は0.83、熱伝導率
は約6vmh’Cである。上記従来例と同じ条件でたい
積タール量の経時変化を測定すると第4図に示す特性線
5となった。1000時間で約som’iのタールが気
化室底面にたい積した。
K) 4A116S13oO72] 8% by weight, activated clay [
Al 2S113029] 2% by weight, heat-resistant binder 67
An organic matter decomposition film having a thickness of about 30 μm was formed. The heat-resistant bonding material in this example is composed of primary aluminum phosphate as the main material, sodium phosphate as the hardening material, and alumina as the filler. The thermal conductivity of this film at 2000C is 0.83 and the thermal conductivity is approximately 6vmh'C. When the change in accumulated tar amount over time was measured under the same conditions as in the conventional example, a characteristic line 5 shown in FIG. 4 was obtained. Approximately som'i of tar accumulated on the bottom of the vaporization chamber in 1000 hours.

(6)上記1の例と同じ気化筒に焼成後の皮膜組成とし
てホウ素化ジルコン20重量%、二酸化マンガン13重
量%、耐熱性結合材67重量%からなる厚さ約30μの
有機物分解皮膜全形成した。本実施例における耐熱性結
合材は主材としてシリコン樹脂、充填材としてフェライ
トより構成されたものである。この皮膜の200℃にお
けるふく射手は0.81、熱伝導率は約6−/mh℃で
ある。従来例と同じ条件でたい積タール量の経時変化全
測定すると第4図に示す特性線6となった。1000時
間で約100”iFのタールが気化室底面にたい積した
(6) Complete formation of an organic decomposition film with a thickness of about 30 μm on the same vaporizing cylinder as in Example 1 above, which has a film composition after firing of 20% by weight of boronated zircon, 13% by weight of manganese dioxide, and 67% by weight of heat-resistant binder. did. The heat-resistant bonding material in this example is composed of silicone resin as the main material and ferrite as the filler. This film has a thermal conductivity of 0.81 and a thermal conductivity of about 6-/mh°C at 200°C. When all changes over time in the amount of accumulated tar were measured under the same conditions as in the conventional example, a characteristic line 6 shown in FIG. 4 was obtained. Approximately 100"iF of tar accumulated on the bottom of the vaporization chamber in 1000 hours.

(7)上記1の例と同じ気化筒に焼成後の皮膜組成とし
て炭化ケイ素20重量%、ケイ酸カルシウム10重量%
、耐熱性結合材70重量%からなる有機物分解皮膜全形
成した。本実施例におけ13、、、−。
(7) The same vaporizing cylinder as in Example 1 above has a film composition of 20% by weight of silicon carbide and 10% by weight of calcium silicate.
, an organic decomposition film consisting of 70% by weight of a heat-resistant binder was completely formed. 13,,,- in this example.

る耐熱性結合材はケイ酸ナトリウムを主材としシリカケ
充填材とするものである。この皮膜の200°Cにおけ
るふく射手は0.80%熱伝導率は約4 kA / m
 h ’Cである。従来例と同じ条件でたい積タール量
の経時変化を測定すると第4図に示す特性線7となった
。1000時間で約1201ngのタールが気化室底面
にたい積した。
The heat-resistant binder is mainly composed of sodium silicate and has a silica filler. The thermal conductivity of this film at 200°C is 0.80%, approximately 4 kA/m.
h'C. When the change in accumulated tar amount over time was measured under the same conditions as in the conventional example, a characteristic line 7 shown in FIG. 4 was obtained. Approximately 1201 ng of tar accumulated on the bottom of the vaporization chamber in 1000 hours.

発明の効果、 以上のように本発明によれば、金属気化筒内面を粗面化
処理し、同処理面に高熱伝導性でかつ高ふく射性材料、
有機物分解触媒および耐熱性結合材よりなる有機物分解
皮膜を被覆し、気化面温度を膜沸騰温度に保持する構成
とすることにより、タールたい積の極めて少ない気化式
液体燃料燃焼装置が得られる。
Effects of the Invention As described above, according to the present invention, the inner surface of the metal vaporization cylinder is roughened, and the treated surface is coated with a material having high thermal conductivity and high radiation property.
By covering with an organic decomposition film made of an organic decomposition catalyst and a heat-resistant binder and maintaining the vaporizing surface temperature at the film boiling temperature, a vaporizing liquid fuel combustion device with extremely low tar accumulation can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bは従来の気化式液体燃料燃焼装置の一実1
包例を示す断面図および上面図、第2図a。 bは本発明の気化式液体燃料燃焼装置の一実施例を示す
断面図および上面図、第3図は同装置にお14/、−あ げる気化面の部分拡大断面図、@4図は燃焼時間とたい
積タール量の関係を示す特性図である。 1・・・・・・金属気化筒、7・・・・・・電気ヒータ
、8・旧・・温度検出素子、1o・・・・・・有機物分
解皮膜。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第2 第3図 4図 す在焼時間(Hr)
Figures 1a and 1b show an example of a conventional vaporized liquid fuel combustion device.
Cross-sectional view and top view showing an example package, FIG. 2a. b is a sectional view and a top view showing an embodiment of the vaporized liquid fuel combustion device of the present invention, FIG. 3 is a partially enlarged sectional view of the vaporizing surface of the same device, and FIG. It is a characteristic diagram showing the relationship between the amount of accumulated tar and the amount of accumulated tar. 1...Metal vaporization tube, 7...Electric heater, 8.Old temperature detection element, 1o...Organic substance decomposition film. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2 Figure 3 Figure 4 Burning time (Hr)

Claims (1)

【特許請求の範囲】 (1) 金属気化筒内面を粗面化処理し、同処理面に高
熱伝導性かつ高ふく対性材料、有機物分解触媒および耐
熱性結合材よりなる有機物分解皮膜を被ダし、気化面温
度を膜沸騰温度に保持する構成とした気化式液体燃料燃
焼装置。 (2)表面粗度が液体燃料の粒径以上である特許請求の
範囲第1項記載の気化式液体燃料燃焼装置。 (3有機物分解皮膜として高熱伝導性でかつ高ふく対性
材料15〜50重量%、有機物分解触媒0.1〜15重
量%、耐熱性結合材40〜80重量%よりなる特許請求
の範囲第1項記載の気化式液体燃料燃焼装置。 G4) 高熱伝導性でかつ高ふく対性材料として、炭素
、黒鉛、酸化ベリリウム、酸化マグネシウム、炭化グイ
累、バナジウムカーバイト、タングステンカーバイド、
チタンカーバイト、窒化ポロン、2 −・ ジルコニウムポライドの群から選んだ少なくとも1種以
上を含む特許請求の範囲第3項記載の気化式液体燃料燃
焼装置。 (5) 有機物分解触媒として、チタン、ジルコニウム
、バナジウム、クロム、モリブデン、タングステン、マ
ンガン、鉄、コバルト、ニッケル、銅、および希土類酸
化物、元素状の白金およびパラジウム、活性白土、ゼオ
ライト、ケイ酸カルシウム、アルミナセメントおよび炭
酸カリウムの群から選んだ1種以上を含む特許請求の範
囲第3項記載の気化式液体燃料燃焼装置。 (6)#熱性結合材として、水溶性リン酸塩塗料、水溶
性ケイ酸塩塗料、シリコン系塗料の群より選んだ特許請
求の範囲第3項記載の気化式液体燃料燃焼装置。 (7)燃焼熱、電気ヒータ、温度検出素子により、気化
面温度を膜沸騰温度に保持する構成とした特許請求の範
囲@1項記載の気化式液体燃料燃焼装置。
[Scope of Claims] (1) The inner surface of the metal vaporization cylinder is subjected to surface roughening treatment, and the treated surface is coated with an organic matter decomposition film made of a highly thermally conductive and highly fused material, an organic matter decomposition catalyst, and a heat-resistant binder. A vaporizing liquid fuel combustion device configured to maintain the vaporizing surface temperature at the film boiling temperature. (2) The vaporized liquid fuel combustion device according to claim 1, wherein the surface roughness is equal to or larger than the particle size of the liquid fuel. (3) The organic matter decomposition film consists of 15 to 50% by weight of a material with high thermal conductivity and high flux resistance, 0.1 to 15% by weight of an organic matter decomposition catalyst, and 40 to 80% by weight of a heat-resistant binder. The vaporized liquid fuel combustion device described in Section 4.G4) High thermal conductivity and high flux resistance materials include carbon, graphite, beryllium oxide, magnesium oxide, carbonized carbide, vanadium carbide, tungsten carbide,
The vaporized liquid fuel combustion device according to claim 3, which contains at least one member selected from the group consisting of titanium carbide, poron nitride, and 2-zirconium polide. (5) As organic substance decomposition catalysts, titanium, zirconium, vanadium, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, copper, and rare earth oxides, elemental platinum and palladium, activated clay, zeolite, calcium silicate 4. The vaporized liquid fuel combustion device according to claim 3, which comprises one or more selected from the group consisting of , alumina cement, and potassium carbonate. (6) #The vaporized liquid fuel combustion device according to claim 3, wherein the thermal binder is selected from the group of water-soluble phosphate paints, water-soluble silicate paints, and silicone paints. (7) The vaporizing liquid fuel combustion device according to claim 1, wherein the vaporizing surface temperature is maintained at the film boiling temperature using combustion heat, an electric heater, and a temperature detection element.
JP58136992A 1983-07-07 1983-07-26 Liquid fuel combustion apparatus of evaporation type Granted JPS6029504A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58136992A JPS6029504A (en) 1983-07-26 1983-07-26 Liquid fuel combustion apparatus of evaporation type
US06/627,726 US4616993A (en) 1983-07-07 1984-07-03 Liquid fuel combustion apparatus
CA000458296A CA1228529A (en) 1983-07-07 1984-07-06 Liquid fuel combustion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58136992A JPS6029504A (en) 1983-07-26 1983-07-26 Liquid fuel combustion apparatus of evaporation type

Publications (2)

Publication Number Publication Date
JPS6029504A true JPS6029504A (en) 1985-02-14
JPH0136002B2 JPH0136002B2 (en) 1989-07-28

Family

ID=15188248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58136992A Granted JPS6029504A (en) 1983-07-07 1983-07-26 Liquid fuel combustion apparatus of evaporation type

Country Status (1)

Country Link
JP (1) JPS6029504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246509A (en) * 1985-04-23 1986-11-01 Matsushita Electric Ind Co Ltd Burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246509A (en) * 1985-04-23 1986-11-01 Matsushita Electric Ind Co Ltd Burner

Also Published As

Publication number Publication date
JPH0136002B2 (en) 1989-07-28

Similar Documents

Publication Publication Date Title
US3050409A (en) Manufacture of refractory oxide coatings
US4303737A (en) Coating material
JPS5891089A (en) Manufacture of composite material
JPS6029504A (en) Liquid fuel combustion apparatus of evaporation type
US4975621A (en) Coated article with improved thermal emissivity
JPH11504309A (en) Pyrotechnic materials
Arcondeguy et al. Effects of spraying parameters onto flame-sprayed glaze coating structures
JPS6066005A (en) Evaporation type liquid fuel combustion apparatus
JPS6015467A (en) Organic matter decomposing film
US4616993A (en) Liquid fuel combustion apparatus
JPH0136001B2 (en)
JPS60155809A (en) Vaporizing liquid fuel burner
US20190032966A1 (en) Solar heat collector tube and production method thereof
JPH0136003B2 (en)
JPS5817265B2 (en) Method of manufacturing thermal radiant material
JPS60196508A (en) Evaporation type liquid fuel combustion device
JPH0343529B2 (en)
JPS60251186A (en) Heat resistant sintered body with ceramic infrared high effeciency radiation layer
JPS59161607A (en) Liquid fuel evaporating device
JPH04267040A (en) X-ray-tube anode and manufacture thereof
JPS59142312A (en) Evaporating type kerosene burner
KR100669843B1 (en) Absorbent composition of radiant heat energy and product manufactured by coating the same on a surface of the product
JPS5814487A (en) Heater for electric furnace
JPS60202217A (en) Evaporating device
JPS593215B2 (en) kerosene burning wick