JPH0136001B2 - - Google Patents

Info

Publication number
JPH0136001B2
JPH0136001B2 JP58123828A JP12382883A JPH0136001B2 JP H0136001 B2 JPH0136001 B2 JP H0136001B2 JP 58123828 A JP58123828 A JP 58123828A JP 12382883 A JP12382883 A JP 12382883A JP H0136001 B2 JPH0136001 B2 JP H0136001B2
Authority
JP
Japan
Prior art keywords
weight
film
combustion device
liquid fuel
tar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58123828A
Other languages
Japanese (ja)
Other versions
JPS6016207A (en
Inventor
Tei Hikino
Kunihiro Tsuruta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58123828A priority Critical patent/JPS6016207A/en
Priority to US06/627,726 priority patent/US4616993A/en
Priority to CA000458296A priority patent/CA1228529A/en
Publication of JPS6016207A publication Critical patent/JPS6016207A/en
Publication of JPH0136001B2 publication Critical patent/JPH0136001B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Spray-Type Burners (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Evaporation-Type Combustion Burners (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は暖房器、調理器などに広く利用されて
いる気化式液体燃料燃焼装置に関するものであ
り、特にタールがたい積すると問題になる気化室
に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a vaporizing liquid fuel combustion device that is widely used in heaters, cookers, etc., and particularly relates to a vaporizing chamber that causes problems when tar accumulates. It is.

従来例の構成とその問題点 従来装置の気化室は金属もしくは金属上に耐熱
性皮膜を被覆したものであつた。ところが従来の
装置においては気化室内壁にタールがたい積し、
着火、消火時に白煙や臭気が発生する問題があつ
た。
Structure of the Conventional Example and Its Problems The vaporization chamber of the conventional device was made of metal or a heat-resistant film coated on metal. However, in conventional equipment, tar accumulates on the walls of the vaporization chamber,
There was a problem that white smoke and odor were generated when the fire was ignited and extinguished.

発明の目的 本発明はこのような従来の問題点を解決し、タ
ールのたい積の少ない気化室からなる気化式液体
燃料燃焼装置の提供を目的とするものである。
OBJECTS OF THE INVENTION It is an object of the present invention to solve these conventional problems and provide a vaporized liquid fuel combustion device that includes a vaporizing chamber in which less tar accumulates.

発明の構成 の目的を達成するために本発明は、気化室内壁
の全部もしくは一部を高熱伝導性でかつ高ふく射
性材料15〜50重量%、有機物分解触媒0.1〜15重
量%、および耐熱性結合材40〜80重量%よりな
る、ふく射率0.8以上、熱伝導率4Kcal/mh℃以
上、膜厚30ミクロン以下の有機物分解皮膜で被覆
し、気化面温度を350℃以上に保持することによ
り、伝熱およびふく射の熱的作用と共に触媒作用
によりタールのたい積を少なくするものである。
In order to achieve the object of the present invention, all or part of the wall of the vaporization chamber is made of a highly thermally conductive and highly radiation material in an amount of 15 to 50% by weight, an organic substance decomposition catalyst in an amount of 0.1 to 15% by weight, and a heat resistant material. By coating with an organic decomposition film consisting of 40 to 80% binder, emissivity of 0.8 or higher, thermal conductivity of 4Kcal/mh℃ or higher, and film thickness of 30 microns or lower, and maintaining the vaporizing surface temperature at 350℃ or higher, It reduces tar accumulation through the thermal effects of heat transfer and radiation as well as catalytic effects.

実施例の説明 本発明の気化室内壁皮膜の一つの主要成分は高
熱伝導性でかつ高ふく射性の微粉末材料であり、
炭素、黒鉛、酸化ベリリウム、酸化マグネシウ
ム、炭化ケイ素、バナジウムカーバイト、タング
ステンカーバイト、チタンカーバイト、窒化ボロ
ン、ジルコニウムボライドの群から選んだ少なく
とも1種以上を15〜50重量%含有することが必要
である。
DESCRIPTION OF THE EMBODIMENTS One main component of the vaporization chamber wall coating of the present invention is a fine powder material with high thermal conductivity and high radiation,
Contains 15 to 50% by weight of at least one selected from the group of carbon, graphite, beryllium oxide, magnesium oxide, silicon carbide, vanadium carbide, tungsten carbide, titanium carbide, boron nitride, and zirconium boride. is necessary.

また第二の主要成分は有機物分解触媒であり、
チタン、ジルコニウム、バナジウム、クロム、モ
リブデン、タングステン、マンガン、鉄、コバル
ト、ニツケル、銅、および希土類の酸化物、元素
状の白金およびパラジウム、活性白土、ゼオライ
ト、ケイ酸カルシウム、アルミナセメント、炭酸
カリウムの群から選んだ少なくとも1種以上を
0.1〜15重量%含有することが必要である。さら
に第三の主要成分は耐熱性結合材で、水溶性リン
酸塩、水溶性ケイ酸塩、シリコン系塗料の群から
選んだものを40〜80重量%含有することが必要で
ある。
The second main component is an organic matter decomposition catalyst,
Oxides of titanium, zirconium, vanadium, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, copper, and rare earths, elemental platinum and palladium, activated clay, zeolites, calcium silicate, alumina cement, potassium carbonate. At least one species selected from the group
It is necessary to contain 0.1 to 15% by weight. Furthermore, the third main component is a heat-resistant binder, which must contain 40 to 80% by weight of a material selected from the group of water-soluble phosphates, water-soluble silicates, and silicone paints.

第1図は本発明装置の原理を示すもので、液体
燃料1を空気2と共に噴出させ、加熱気化面3で
気化し、混合ガスをバーナーヘツド4で燃焼させ
火炎5を形成させるものである。
FIG. 1 shows the principle of the apparatus of the present invention, in which liquid fuel 1 is ejected together with air 2, vaporized on a heating vaporization surface 3, and the mixed gas is combusted in a burner head 4 to form a flame 5.

6は鉄、アルミニウム、ステンレス、アルミニ
ウム処理鋼板などからなる金属気化筒であり、7
は気化筒加熱用電気ヒータ、8は温度検出素子で
ある。気化面3の温度は検出素子8により検出し
ながら燃焼立ち上り時には電気ヒータ7により、
定常燃焼時にはバーナーヘツド4からの伝導熱、
燃焼排ガスからの排熱回収により膜沸騰温度に保
持する。定常燃焼時には電気ヒータ7は補助熱源
として働く。
6 is a metal vaporizing cylinder made of iron, aluminum, stainless steel, aluminized steel plate, etc.;
8 is an electric heater for heating the vaporization cylinder, and 8 is a temperature detection element. The temperature of the vaporization surface 3 is detected by the detection element 8, and at the start of combustion, the temperature is detected by the electric heater 7.
During steady combustion, conductive heat from the burner head 4,
The film boiling temperature is maintained by recovering exhaust heat from the combustion exhaust gas. During steady combustion, the electric heater 7 acts as an auxiliary heat source.

第2図か気化室の部分拡大図であり皮膜3は高
熱伝導性かつ高ふく射性材料9(×で表示)、有
機物分解触媒10(Γで表示)および耐熱性結合
材10(斜線で表示)からなる。
Figure 2 is a partial enlarged view of the vaporization chamber, and the film 3 is made up of a highly thermally conductive and highly radiation material 9 (indicated by x), an organic decomposition catalyst 10 (indicated by Γ), and a heat-resistant binder 10 (indicated by diagonal lines). Consisting of

このような気化室を有する装置で気化面温度を
膜沸騰温度に保持し、タールの原因となる不揮発
成分12(△で表示)を多く含む悪質な液体燃料
1を気化させる場合、皮膜中に高熱伝導性でかつ
高ふく射性材料9が存在すると伝熱およびふく射
の熱的作用のため燃料中の揮発成分は極めて短時
間で気化し皮膜上での滞留時間が短くなりタール
が少なくなる。また皮膜の熱伝導性が高くなると
液体燃料は膜沸騰を起し球状となつて皮膜上を移
動しながら気化するため不揮発成分のたい積場所
が拡大する。このため不揮発成分分解作用を有す
る有機物分解触媒の負荷を軽減することになりタ
ール生成を少なくする。
When using a device with such a vaporization chamber to maintain the vaporization surface temperature at the film boiling temperature and vaporize a vicious liquid fuel 1 that contains a large amount of non-volatile components 12 (indicated by △) that cause tar, high heat is generated in the film. When the conductive and highly emissive material 9 is present, the volatile components in the fuel are vaporized in a very short time due to the thermal effects of heat transfer and radiation, and the residence time on the film is shortened, resulting in less tar. Furthermore, when the thermal conductivity of the film increases, the liquid fuel undergoes film boiling, becomes spherical, and evaporates while moving on the film, increasing the area where non-volatile components accumulate. This reduces the load on the organic matter decomposition catalyst that has the action of decomposing non-volatile components, thereby reducing tar production.

もし皮膜中にアルミニウムのような高熱伝導性
であつても低ふく射性材料が存在すると液体燃料
は膜沸騰を起すが気化時間が長くなり燃料の再結
合、粗大化が起り燃焼に悪影響をおよぼし好まし
くない。
If a material with high thermal conductivity but low emissivity, such as aluminum, is present in the film, the liquid fuel will undergo film boiling, but the vaporization time will be prolonged, causing recombination and coarsening of the fuel, which will adversely affect combustion. do not have.

有機物分解触媒はタールの原因となる不揮発成
分の酸化分解、部分酸化分解、もしくはクラツキ
ングによりタール生成を少なくする。
Organic matter decomposition catalysts reduce tar production by oxidative decomposition, partial oxidative decomposition, or cracking of nonvolatile components that cause tar.

耐熱性結合材は高熱伝導性でかつ高ふく射性材
料および有機物分解触媒を気化筒に接着するため
に必要な材料である。
The heat-resistant bonding material is a material that has high thermal conductivity and is necessary for bonding the highly radiation material and the organic substance decomposition catalyst to the vaporization cylinder.

主材は水溶性リン酸塩、水溶性ケイ酸塩、シリ
コン系塗料であるが、硬化の完全化、硬化時間の
短縮などのため硬化材を使用したり、耐火性、耐
油性、耐水性などの皮膜性状を確保するため充填
材を使用する。皮膜組成としては高熱伝導性でか
つ高ふく射性材料および有機物分解触媒の含有量
は多いほど、耐熱性結合材の含有量は少ないほど
タール生成量は少なくなるが気化筒との密着性、
皮膜強化を確保するために40〜90重量%の耐熱性
結合材の添加が必要である。
The main materials are water-soluble phosphate, water-soluble silicate, and silicone-based paints, but hardening materials are used to ensure complete curing and shorten curing time, as well as fire resistance, oil resistance, water resistance, etc. A filler is used to ensure the proper film properties. As for the film composition, the higher the content of high thermal conductivity and high radiation material and organic decomposition catalyst, the lower the content of heat-resistant binder, the less the amount of tar generated, but the better the adhesion with the vaporizing cylinder.
Addition of 40-90% by weight of heat-resistant binder is necessary to ensure film reinforcement.

以下具体例により説明する。 This will be explained below using a specific example.

まず、従来例について説明する。 First, a conventional example will be explained.

(1) 従来の耐熱性皮膜を被覆した装置に関し、充
填材としてフエライトを含むシリコン系耐熱性
結合材を使用したものである。その構造は第1
図に示したのと同様で、厚さ1.6mmのアルミ処
理鋼板からなる内径40mm、高さ30mmの気化室内
壁に上記耐熱性皮膜を厚さ30μに被覆したもの
である。本実施例における皮膜の200℃におけ
るふく射率は0.80、熱伝導率は約0.8Kcal/m
h℃である。
(1) Regarding devices coated with a conventional heat-resistant film, a silicon-based heat-resistant binder containing ferrite is used as a filler. Its structure is the first
Similar to the one shown in the figure, the above-mentioned heat-resistant film was coated to a thickness of 30 μm on the wall of the vaporization chamber, which was made of an aluminized steel plate with a thickness of 1.6 mm and had an inner diameter of 40 mm and a height of 30 mm. The film in this example has an emissivity of 0.80 and a thermal conductivity of approximately 0.8 Kcal/m at 200°C.
It is h℃.

本装置においてヒータおよび燃焼熱により気
化筒温度を350℃とし、タールの原因となる不
揮発成分を37.5ppm含む悪質な灯油を2.8lit/
Hr、空気量5.3Nm3/Hrの割合で噴霧気化し、
燃焼させながらたい積タール量の経時変化を測
定すると第3図に示す特性線1となつた。1000
時間で約300mgのタールがたい積し15000時間で
は1g以上のタールがたい積する見込みとな
り、点火、消火時に臭気、炭化水素、一酸炭素
排出量が増加し燃焼器として望ましくない結果
となる。
In this device, the temperature of the vaporizer cylinder is set to 350℃ using a heater and combustion heat, and 2.8 liters of bad kerosene containing 37.5 ppm of non-volatile components that cause tar are heated.
Spray and vaporize at a rate of 5.3Nm 3 /Hr, air amount 5.3Nm 3 /Hr,
When the time-dependent change in the amount of accumulated tar was measured during combustion, characteristic line 1 shown in FIG. 3 was obtained. 1000
Approximately 300mg of tar will accumulate in an hour, and it is expected that more than 1g of tar will accumulate in 15,000 hours, resulting in an increase in odor, hydrocarbon, and carbon monoxide emissions during ignition and extinguishing, which is undesirable for a combustor.

この従来皮膜は熱伝導率が低いため灯油は衝
突面近傍で核沸騰気化しここにタールがたい積
する問題点を示した。
Since this conventional coating has low thermal conductivity, kerosene vaporizes by nucleate boiling near the collision surface, causing tar to accumulate there.

次に、本発明の例について説明する。 Next, an example of the present invention will be described.

(2) 上記(1)の例と同様の気化筒に焼成後の皮膜組
成として黒鉛45重量%、二酸化マンガン10重量
%、耐熱性結合材45重量%から成る厚さ約30μ
の有機物分解皮膜を形成した。
(2) After firing, the same vaporizer cylinder as in the example (1) above has a film composition of approximately 30μ thick consisting of 45% by weight of graphite, 10% by weight of manganese dioxide, and 45% by weight of heat-resistant binder.
An organic matter decomposition film was formed.

本実施例における耐熱性結合材(以下、結合
材という)は主材として第1リン酸アルミニウ
ム、硬化材としてリン酸ナトリウム、充填材と
してアルミナより構成されたものである。
The heat-resistant bonding material (hereinafter referred to as bonding material) in this example is composed of primary aluminum phosphate as a main material, sodium phosphate as a hardening material, and alumina as a filler.

この皮膜の200℃におけるふく射率は0.90、
熱伝導率は約15Kcal/mh℃である。
The radiation rate of this film at 200℃ is 0.90,
Thermal conductivity is approximately 15 Kcal/mh°C.

上記(1)と同じ条件でたい積タール量の経時変
化を測定すると第3図に示す特性線2となつ
た。
When the change over time in the amount of accumulated tar was measured under the same conditions as in (1) above, characteristic line 2 was obtained as shown in FIG.

1000時間で約4.3mgのタールがたい積し、
15000時間でも約6mgと極めて少なくなる見込
みである。
Approximately 4.3mg of tar accumulates in 1000 hours,
Even after 15,000 hours, the amount is expected to be extremely low at approximately 6 mg.

本実施例の皮膜は熱伝導率が高いため灯油は
300℃以上で膜沸騰を起し気化室底面全域で気
化した。
The film in this example has high thermal conductivity, so kerosene is
Film boiling occurred at temperatures above 300°C and vaporization occurred throughout the bottom of the vaporization chamber.

(3) 第4図および第5図に示すようにたて形の気
化室において灯油衝突面は金属、他の面は上記
(2)の例と同じ皮膜で被覆し、上記(1)の例と同じ
条件でたい積タール量の経時変化を測定すると
第3図に示す特性線3となつた。
(3) As shown in Figures 4 and 5, in the vertical vaporization chamber, the kerosene collision surface is metal, and the other surfaces are as above.
When the sample was coated with the same film as in example (2) and the time-dependent change in the amount of accumulated tar was measured under the same conditions as in example (1) above, characteristic line 3 as shown in FIG. 3 was obtained.

1000時間で約3.2mgのタールが気化室底面に
たい積した。
Approximately 3.2 mg of tar accumulated on the bottom of the vaporization chamber in 1000 hours.

(4) 上記(1)の例と同じ気化筒に焼成後の皮膜組成
として酸化ベリリウム20重量%、有機物分解触
媒としてアルミナセメント10重量%、結合材70
重量%からなる厚さ約30μの有機物分解皮膜を
形成した。本実施例における結合材は主材とし
てケイ酸ナトリウム、充填材としてシリカより
構成されたものである。この皮膜の200℃にお
けるふく射率は0.82、熱伝導率は約10Kcal/m
h℃である。(1)の例と同じ条件でたい積タール
量の経時変化を測定すると第3図に示す特性線
4となつた。1000時間で約12mgのタールが気化
室底面にたい積した。
(4) In the same vaporizer cylinder as in the example (1) above, the film composition after firing is 20% by weight of beryllium oxide, 10% by weight of alumina cement as an organic matter decomposition catalyst, and 70% by weight of a binder.
An organic matter decomposition film with a thickness of about 30 μm was formed. The binder in this example is composed of sodium silicate as the main material and silica as the filler. The radiation coefficient of this film at 200℃ is 0.82, and the thermal conductivity is approximately 10Kcal/m
It is h℃. When the change over time in the amount of accumulated tar was measured under the same conditions as in example (1), characteristic line 4 shown in Fig. 3 was obtained. Approximately 12 mg of tar accumulated on the bottom of the vaporization chamber in 1000 hours.

(5) 上記(1)の例と同じ気化筒に焼成後の皮膜組成
として黒鉛23重量%、結合材76.8重量%、有機
物分解触媒として0.2重量%の白金を担持した
厚さ約30μの有機物分解皮膜を形成した。
(5) Organic substance decomposition with a thickness of approximately 30 μm on the same vaporizing cylinder as in the example (1) above, with a film composition after firing of 23% by weight of graphite, 76.8% by weight of binder, and 0.2% by weight of platinum as an organic substance decomposition catalyst. A film was formed.

本実施例における結合材は主材として第1リ
ン酸アルミニウム、硬化材としてリン酸ナトリ
ウム、充填材としてアルミナより構成されたも
のである。この皮膜の200℃におけるふく射率
は0.81、熱伝導率は約7Kcal/mh℃である。
The binder in this example is composed of primary aluminum phosphate as the main material, sodium phosphate as the hardening material, and alumina as the filler. The radiation coefficient of this film at 200°C is 0.81, and the thermal conductivity is approximately 7 Kcal/mh°C.

(1)の例と同じ条件でたい積タールの経時変化
を測定すると第3図に示す特性線5となつた。
1000時間で約13mgのタールが気化室底面にたい
積した。
When the change in accumulated tar over time was measured under the same conditions as in example (1), the characteristic line 5 shown in FIG. 3 was obtained.
Approximately 13 mg of tar accumulated on the bottom of the vaporization chamber in 1000 hours.

(6) 上記(1)の例と同じ気化筒に焼成後の皮膜組成
として黒鉛23重量%、二酸化マンガン10重量
%、結合材67重量%からなる厚さ約30μの有機
物分解皮膜を形成した。本実施例における結合
材として第1リン酸アルミニウム、硬化材とし
てリン酸ナトリウム、充填材としてアルミナよ
り構成されたものである。この皮膜の200℃に
おけるふく射率は0.83、熱伝導率は約8Kcal/
mh℃である。(1)の例と同じ条件でたい積ター
ル量の経時変化を測定すると第3図に示す特性
線6となつた。1000時間で約40mgのタールが気
化室底面にたい積した。
(6) An organic matter decomposition film with a thickness of about 30 μm was formed on the same vaporizing cylinder as in Example (1) above, with a film composition after firing of 23% by weight of graphite, 10% by weight of manganese dioxide, and 67% by weight of binder. In this example, the bonding material is primary aluminum phosphate, the hardening material is sodium phosphate, and the filler is alumina. The radiation coefficient of this film at 200℃ is 0.83, and the thermal conductivity is approximately 8Kcal/
mh℃. When the change over time in the amount of accumulated tar was measured under the same conditions as in example (1), characteristic line 6 shown in FIG. 3 was obtained. Approximately 40 mg of tar accumulated on the bottom of the vaporization chamber in 1000 hours.

(7) 上記(1)の例と同じ気化筒に焼成後の皮膜組成
として黒鉛23重量%、ゼオライト〔Ca(Na、
K)4・Al6Si30O72〕8重量%、活性白土
〔Al2Si13O29〕2重量%、結合材67重量%から
なる厚さ約30μの有機物分解皮膜を形成した。
(7) The same vaporizing cylinder as in the example (1) above has a film composition of 23% by weight of graphite, zeolite [Ca(Na,
K) An organic matter decomposition film having a thickness of about 30 μm was formed consisting of 8% by weight of 4.Al 6 Si 30 O 72 ], 2% by weight of activated clay [Al 2 Si 13 O 29 ], and 67% by weight of a binder.

本実施例における結合材は主材として第1リ
ン酸アルミニウム、硬化材としてリン酸ナトリ
ウム、充填材としてアルミナより構成されたも
のである。この皮膜の200℃におけるふく射率
は0.83、熱伝導率は約6Kcal/mh℃である。
The binder in this example is composed of primary aluminum phosphate as the main material, sodium phosphate as the hardening material, and alumina as the filler. The radiation coefficient of this film at 200°C is 0.83, and the thermal conductivity is approximately 6 Kcal/mh°C.

(1)の例と同じ条件でたい積タール量の経時変
化を測定する第3図に示す特性線7となつた。
1000時間で約52mgのタールが気化室底面にたい
積した。
The characteristic line 7 shown in FIG. 3 was obtained by measuring the change over time in the amount of accumulated tar under the same conditions as in example (1).
Approximately 52 mg of tar accumulated on the bottom of the vaporization chamber in 1000 hours.

(8) 上記(1)の例と同じ気化筒に焼成後の皮膜組成
としてホウ素化ジルコン20重量%、二酸化マン
ガン13重量%、結合材67重量%からなる厚さ約
30μの有機物分解皮膜を形成した。本実施例に
おける結合材は主材としてシリコン樹脂、充填
材としてフエライトより構成されたものであ
る。この皮膜の200℃におけるふく射率は0.81、
熱伝導率は約6Kcal/mh℃である。
(8) The film composition after firing on the same vaporizing cylinder as in the example (1) above is approximately 20% by weight of boronated zircon, 13% by weight of manganese dioxide, and 67% by weight of binder.
A 30μ thick organic matter decomposition film was formed. The bonding material in this example is composed of silicone resin as the main material and ferrite as the filler. The radiation coefficient of this film at 200℃ is 0.81,
Thermal conductivity is approximately 6 Kcal/mh°C.

(1)の例と同じ条件でたい積タール量の経時変
化を測定すると第3図に示す特性線8となつ
た。1000時間で約110mgのタールが気化室底面
にたい積した。
When the change over time in the amount of accumulated tar was measured under the same conditions as in example (1), a characteristic line 8 shown in FIG. 3 was obtained. Approximately 110 mg of tar accumulated on the bottom of the vaporization chamber in 1000 hours.

(9) 上記(1)の例と同じ気化筒に焼成後の皮膜組成
として炭化けい素20重量%、けい酸カルシウム
10重量%、結合材70重量%からなる有機物分解
皮膜を形成した。本実施例における結合材はケ
イ酸ナトリウムを主材としシリカを充填材とす
るものである。
(9) The film composition after firing is 20% by weight of silicon carbide and calcium silicate on the same vaporizing cylinder as in the example (1) above.
An organic matter decomposition film consisting of 10% by weight and 70% by weight of the binder was formed. The binder in this example is made of sodium silicate as the main material and silica as the filler.

この皮膜の200℃におけるふく射率は0.80、
熱伝導率は約4Kcal/mh℃である。
The radiation rate of this film at 200℃ is 0.80,
Thermal conductivity is approximately 4Kcal/mh°C.

(1)の例と同じ条件でたい積タール量の経時変
化を測定すると第3図に示す特性線9となつ
た。1000時間で約140mgのタールが気化室底面
にたい積した。
When the change over time in the amount of accumulated tar was measured under the same conditions as in example (1), a characteristic line 9 shown in FIG. 3 was obtained. Approximately 140 mg of tar accumulated on the bottom of the vaporization chamber in 1000 hours.

発明の効果 以上のように本発明によれば、高熱伝導性でか
つ高ふく射性材料15〜50重量%、有機物分解触媒
0.1〜15重量%、および耐熱性結合材40〜80重量
%よりなる、ふく射率0.8以上、熱伝導率4Kcal/
mh℃以上、膜厚30ミクロン以下の有機物分解皮
膜で被覆した気化面の温度を350℃以上に保持す
る構成とすることにより、たい積するタール量を
従来より30%〜1/10に低減した気化式液体燃料燃
焼装置が得られる。
Effects of the Invention As described above, according to the present invention, 15 to 50% by weight of a highly thermally conductive and highly radiation material, an organic matter decomposition catalyst,
Composed of 0.1 to 15% by weight and 40 to 80% by weight of heat-resistant binder, radiation rate of 0.8 or more, thermal conductivity of 4Kcal/
By maintaining the temperature of the vaporization surface coated with an organic decomposition film of mh℃ or higher and 30 microns or less in thickness at 350℃ or higher, the amount of tar accumulated is reduced by 30% to 1/10 compared to conventional vaporizers. A type liquid fuel combustion device is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは本発明の気化式液体燃料燃焼装
置の一実施例を示す上面図および断面図、第2図
は同装置における気化室の部分拡大断面図、第3
図は燃焼時間とたい積タール量の関係を示す特性
図、第4図a,bは本発明の他の実施例の上面図
および断面図、第5図は同装置における気化室の
部分拡大断面図である。 3……気化面、7……電気ヒータ、8……温度
検出素子。
1a and 1b are top views and sectional views showing one embodiment of the vaporization type liquid fuel combustion device of the present invention, FIG. 2 is a partially enlarged sectional view of the vaporization chamber in the same device, and FIG.
The figure is a characteristic diagram showing the relationship between the combustion time and the amount of accumulated tar, Figures 4a and 4b are top views and cross-sectional views of other embodiments of the present invention, and Figure 5 is a partially enlarged cross-sectional view of the vaporizing chamber in the same device. It is. 3... Vaporization surface, 7... Electric heater, 8... Temperature detection element.

Claims (1)

【特許請求の範囲】 1 高熱伝導性でかつ高ふく射性材料15〜50重量
%、有機物分解触媒0.1〜15重量%、耐熱性結合
材40〜80重量%よりなる、ふく射率0.80以上、熱
伝導率4Kcal/mh℃以上、膜厚30ミクロン以下
の有機物分解皮膜で被覆した気化面を350℃以上
に保持する構成とした気化式液体燃料燃焼装置。 2 高熱伝導性でかつ高ふく射性材料として、炭
素、黒鉛、酸化ベリリウム、酸化マグネシウム、
炭化ケイ素、バナジウムカーバイト、タングステ
ンカーバイト、チタンカーバイト、窒化ボロン、
ジルコニウムボライドの群から選んだ少なくとも
1種以上を含む特許請求の範囲第1項記載の気化
式液体燃料燃焼装置。 3 有機物分解触媒として、チタン、ジルコニウ
ム、バナジウム、クロム、モリブデン、タングス
テン、マンガン、鉄、コバルト、ニツケル、銅、
および希土類の酸化物、元素状の白金およびパラ
ジウム、活性白土、ゼオライト、ケイ酸カルシウ
ム、アルミナセメントおよび炭酸カリウムの群か
ら選んだ1種以上を含む特許請求の範囲第1項記
載の気化式液体燃料燃焼装置。 4 耐熱性結合材として、水溶性リン酸塩塗料、
水溶性ケイ酸塩塗料、シリコン系塗料の群より選
んだ特許請求の範囲第1項記載の気化式液体燃料
燃焼装置。 5 電気ヒータ、温度検出素子により気化室温度
を350℃以上に保持する構成とした特許請求の範
囲第1項記載の気化式液体燃料燃焼装置。
[Claims] 1. A material with radiation coefficient of 0.80 or more and thermal conductivity, consisting of 15 to 50% by weight of a material with high thermal conductivity and high radiation, 0.1 to 15% by weight of an organic substance decomposition catalyst, and 40 to 80% by weight of a heat-resistant binder. A vaporizing liquid fuel combustion device configured to maintain the vaporizing surface at 350°C or higher, coated with an organic matter decomposition film with a rate of 4Kcal/mh°C or higher and a film thickness of 30 microns or less. 2. Carbon, graphite, beryllium oxide, magnesium oxide,
silicon carbide, vanadium carbide, tungsten carbide, titanium carbide, boron nitride,
The vaporized liquid fuel combustion device according to claim 1, which contains at least one member selected from the group of zirconium borides. 3. As organic matter decomposition catalysts, titanium, zirconium, vanadium, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, copper,
and one or more selected from the group of rare earth oxides, elemental platinum and palladium, activated clay, zeolite, calcium silicate, alumina cement, and potassium carbonate. Combustion device. 4 Water-soluble phosphate paint as a heat-resistant binder,
The vaporized liquid fuel combustion device according to claim 1, which is selected from the group of water-soluble silicate paints and silicone paints. 5. The vaporizing liquid fuel combustion device according to claim 1, wherein the vaporizing chamber temperature is maintained at 350° C. or higher using an electric heater and a temperature detecting element.
JP58123828A 1983-07-07 1983-07-07 Evaporating type liquid fuel combustion device Granted JPS6016207A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58123828A JPS6016207A (en) 1983-07-07 1983-07-07 Evaporating type liquid fuel combustion device
US06/627,726 US4616993A (en) 1983-07-07 1984-07-03 Liquid fuel combustion apparatus
CA000458296A CA1228529A (en) 1983-07-07 1984-07-06 Liquid fuel combustion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58123828A JPS6016207A (en) 1983-07-07 1983-07-07 Evaporating type liquid fuel combustion device

Publications (2)

Publication Number Publication Date
JPS6016207A JPS6016207A (en) 1985-01-28
JPH0136001B2 true JPH0136001B2 (en) 1989-07-28

Family

ID=14870368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58123828A Granted JPS6016207A (en) 1983-07-07 1983-07-07 Evaporating type liquid fuel combustion device

Country Status (1)

Country Link
JP (1) JPS6016207A (en)

Also Published As

Publication number Publication date
JPS6016207A (en) 1985-01-28

Similar Documents

Publication Publication Date Title
CA2270971A1 (en) Process and appliance for the combustion of liquid fuel
US2233675A (en) Device for heating liquids
US4465458A (en) Apparatus for burning liquid fuel equipped with heating-type fuel vaporizer
JPH0136001B2 (en)
US20090169900A1 (en) Ceramic Resistor Element or Sensor Element
JPH0136002B2 (en)
US4518347A (en) Liquid fuel combustion apparatus
US4985291A (en) Burner skeleton
US4616993A (en) Liquid fuel combustion apparatus
JPS5527065A (en) Kerosene vaporization catalyst
JPS6015467A (en) Organic matter decomposing film
JPH0136003B2 (en)
JPS6066005A (en) Evaporation type liquid fuel combustion apparatus
JPS63105964A (en) Protection of metal surface from vanadium/sodium corrosion
JPS60155809A (en) Vaporizing liquid fuel burner
JPH0631300Y2 (en) Combustion device
US20070207418A1 (en) Refractory burner tiles having improved emissivity and combustion apparatus employing the same
JPS54151585A (en) Combustion of liquid fuel
JPS60207818A (en) Liquid fuel burner
KR100669843B1 (en) Absorbent composition of radiant heat energy and product manufactured by coating the same on a surface of the product
Wu et al. Influence of limestone fillers on combustion characteristics of asphalt mortar for pavements
JPH0586255B2 (en)
KR960018337A (en) Liquid Fuel Combustor
DE549349C (en) Gas firing for water tube boiler
Krishna et al. Low NOx Burner Development