JPS5814487A - Heater for electric furnace - Google Patents

Heater for electric furnace

Info

Publication number
JPS5814487A
JPS5814487A JP11066181A JP11066181A JPS5814487A JP S5814487 A JPS5814487 A JP S5814487A JP 11066181 A JP11066181 A JP 11066181A JP 11066181 A JP11066181 A JP 11066181A JP S5814487 A JPS5814487 A JP S5814487A
Authority
JP
Japan
Prior art keywords
heater
molybdenum
electric furnace
carbide
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11066181A
Other languages
Japanese (ja)
Inventor
小泉 英雄
忠 森田
福原 由雄
高橋 「でん」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP11066181A priority Critical patent/JPS5814487A/en
Publication of JPS5814487A publication Critical patent/JPS5814487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電気炉用ヒータに係抄、更に詳しくは高温にお
ける耐酸化性、耐消耗性に優れ、従って長寿命である電
気炉用ヒータに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heater for an electric furnace, and more particularly to a heater for an electric furnace that has excellent oxidation resistance and wear resistance at high temperatures, and therefore has a long life.

例えげ高温真空炉或は還元性零HfAPRの抵抗加熱体
としてモリブデン線材が用−られている。これは高一点
(mp、約!4130C)を有する為通常粉末冶金法に
よって得られる遍當断面が円形のモリブデン線材を例え
ば正弦波廖状に威廖し、このrri、16体を炉壁等に
密に貼着して透電発熱させるものである。−1 このモリブデン線材は、モリブデン粉末を、粉末冶金法
に基づ、−で、例えば柱状に成形、焼結して得られるイ
ンゴットを転打加工(スェージング)、線臀【加工(ド
ローイング)などして所望形伏の線材として得られてい
るのである。
For example, molybdenum wire is used as a resistance heating element in a high-temperature vacuum furnace or a reducing zero HfAPR. Since this has a high single point (MP, approx.!4130C), a molybdenum wire rod with a circular cross section, which is usually obtained by powder metallurgy, is made into a sinusoidal shape, and 16 pieces of this rri are attached to the furnace wall, etc. It is attached closely and generates heat through electricity. -1 This molybdenum wire rod is produced by molding molybdenum powder into a columnar shape and sintering it using powder metallurgy. As a result, a wire rod having the desired shape is obtained.

ところが、従来のモリブデンヒータは、モリブデンが高
融点を有して−る為に、高温(〜1800C)の真空炉
、還元性雰囲気炉などに重用されるところとなっている
のであるが、実用上かかる高温において不可避の酸素分
圧によって酸化し、又は高温下におけるモリブデン自体
の消耗によってヒータの褒面が劣化し、更には断線して
、寿命が低減されると−う不都合があったO     
 一 本発明の目的は、従来の電気炉用ヒータが有して−た上
述功不都合を解消して、高温における耐酸化性、耐消耗
性に優れ、従って長寿命である電気炉用ヒータを提供す
ることにある。
However, because molybdenum has a high melting point, conventional molybdenum heaters are often used in high-temperature (~1800C) vacuum furnaces, reducing atmosphere furnaces, etc., but they are not practical. At such high temperatures, molybdenum is oxidized by the unavoidable partial pressure of oxygen, or molybdenum itself is consumed at high temperatures, causing deterioration of the heater's surface and even breaking, reducing its lifespan.
One object of the present invention is to provide a heater for electric furnaces that overcomes the above-mentioned disadvantages of conventional heaters for electric furnaces, has excellent oxidation resistance and wear resistance at high temperatures, and has a long lifespan. It's about doing.

即ち、本発明の電気炉用ヒータは、モリプデン纏体と、
譲纏体の表層部の全域を被覆するセラミックス薄膜から
成ることを特徴とするものである。
That is, the electric furnace heater of the present invention includes a molybdenum wrapping body;
It is characterized by being made of a ceramic thin film that covers the entire surface layer of the compact.

上記、セラミックス薄膜としては、例えば、炭化チタニ
ウム、炭化へ7ニウム、炭化タンタル、炭化ジルコニウ
ム、炭化ニオビウム、炭化タングステン、炭化モリブデ
ン、炭化クロム、炭化ケイ素などの炭化物事窒化タンタ
ル、窒化ジルコニウム、窒化チタニウム、窒化ニオビウ
ム、窒化バナジウム、窒化ホウ素などの窒化物蓼硼化へ
7二中^、硼化ジルコニウム、硼化チタニウム、硼化タ
ンタル、硼化バナジウム、硼化り讐ムなどの硼化物事ケ
イ化タンタル、ケイ化タングステン、ケイ化モリブデン
、ケイ化ニオビウム、ケイ化ジルコニウム、ケイ化り田
ムflどI)+4化物s酸化!ダネシウム、−化ジルコ
ニウム、酸化ベリリウム、酸化アルミニウムなどの酸化
物1などが挙げられる。
Examples of the ceramic thin film mentioned above include carbides such as titanium carbide, he7nium carbide, tantalum carbide, zirconium carbide, niobium carbide, tungsten carbide, molybdenum carbide, chromium carbide, silicon carbide, tantalum nitride, zirconium nitride, titanium nitride, Nitrides such as niobium nitride, vanadium nitride, boron nitride, etc., borides such as zirconium boride, titanium boride, tantalum boride, vanadium boride, tantalum silicide, etc. , tungsten silicide, molybdenum silicide, niobium silicide, zirconium silicide, silicide oxide, etc. Examples include oxides 1 such as dunesium, zirconium oxide, beryllium oxide, and aluminum oxide.

これらのうち、炭化ハフニウム、炭化タンタル、炭化ジ
ルコニウム、炭化ニオビウム、炭化チタニウム、炭化ク
ロム、炭化ケイ素などの炭化物事窒化ジルコニウム、窒
化チタニウム、窒化ホウ素などの窒化物事硼化^7ニウ
ム、硼化ジルコニウム、硼化チタニウム、硼化タンタル
硼化バナジウム、硼化クロムなどの硼化物事ケイ化タン
タル、ケイ化タングステン、ケイ化モリブデン、ケイ化
クロムなどのケイ化物審酸化マグネシウム、酸化ジルコ
ニウム、酸化ベリリウム、酸化アルミニウムなどの酸化
物書、更には炭化ケイ素、硼化へ7エウム、硼化クロム
、ケイ化タングステン、ケイ化モリブデン、ケイ化りa
ム、酸化マグネシウム、酸化ジルコニウム、酸化ベリリ
ウムなどであることが、高温における耐酸化性、耐消耗
性にと抄わけ優れて−る為好ましい。
Among these, carbides such as hafnium carbide, tantalum carbide, zirconium carbide, niobium carbide, titanium carbide, chromium carbide, and silicon carbide, nitrides such as zirconium nitride, titanium nitride, and boron nitride, boron, zirconium boride, Borides such as titanium boride, tantalum boride, vanadium boride, and chromium boride; Silicides such as tantalum silicide, tungsten silicide, molybdenum silicide, and chromium silicide; magnesium oxide, zirconium oxide, beryllium oxide, and aluminum oxide. Oxide books such as silicon carbide, boride, chromium boride, tungsten silicide, molybdenum silicide, a
It is preferable to use aluminum, magnesium oxide, zirconium oxide, beryllium oxide, etc. because they have excellent oxidation resistance and abrasion resistance at high temperatures.

かかるセラミックス薄膜の膜厚は、3〜20μm1更に
5〜10 sw*であることが好ましい。
The thickness of such a ceramic thin film is preferably 3 to 20 μm1, and preferably 5 to 10 sw*.

3μm以下であると、薄膜による被覆効果が十分に得ら
れず、20μmを超えると、モリブデン線体とセラミッ
クス薄膜の熱膨張係数の差に基づいてこれら両者が剥離
し易くなる為である。
If the thickness is less than 3 μm, a sufficient coating effect cannot be obtained by the thin film, and if it exceeds 20 μm, the molybdenum wire and the ceramic thin film tend to peel off due to the difference in thermal expansion coefficient between the two.

次に、本発明の電気炉用ヒータを、以下に述べる製造例
に即して更に詳細に説明する。
Next, the electric furnace heater of the present invention will be described in more detail with reference to manufacturing examples described below.

先づ、通常の粉京冶金法に基づいてモリブデン線体を得
る。このモリブデン線体の褒状は特にIl室されない。
First, a molybdenum wire is obtained based on the usual powder metallurgy method. The award of this molybdenum wire is not particularly specified.

通常は線lit〜7msの断面が円形のものである。Usually, the cross section of the line lit~7ms is circular.

次いで、かくして得られたモリブデン線体の表層部の全
域をセラミックス薄膜で被覆する。
Next, the entire surface layer of the molybdenum wire thus obtained is covered with a ceramic thin film.

装置方法としては、通常のセラ電ツクコーティング方法
として用いられる、例えば気相蒸着法、プラズマスプレ
ー法、イオンプレテインダ法など何れの方法を用−ても
良い。中でも気相蒸着法によることが、モリブデン線体
との密着性に“  優れた薄膜が得られ、且つその膜厚
の制御が容易に行−得る為に好ましい。
As the apparatus method, any method used as a normal ceramic coating method, such as a vapor phase deposition method, a plasma spray method, an ion pretender method, etc., may be used. Among these, the vapor phase deposition method is preferred because a thin film with excellent adhesion to the molybdenum wire can be obtained and the film thickness can be easily controlled.

蒸着法としては、通常用−られる方法で良く、例えばT
i 、Hf 、Ta 、Zr 、Nb 、W、Me 、
Cr 、81 、V。
As the vapor deposition method, any commonly used method may be used, for example, T
i, Hf, Ta, Zr, Nb, W, Me,
Cr, 81, V.

B、M7.ム處などの単体もL(は^田ゲン化瞼の気化
物、水素ガス、及び必要に応じて炭化水II’す1の気
化物、窒素ガスもしくは炭酸ガスなどから成る混合ガス
を、モリブデン線体を配置し、適宜の蒸着温度に保持し
ている反応炉内に導入し、以そモリブデン線体上に所望
のセラミックス薄膜を形成する方法などが用いられる。
B, M7. A single substance such as a molybdenum wire is also used to heat a mixed gas consisting of a vaporized product of the eyelids, hydrogen gas, and if necessary a vaporized product of hydrocarbon II'1, nitrogen gas or carbon dioxide gas, etc., to a molybdenum wire. A method is used in which a desired ceramic thin film is formed on a molybdenum wire body by arranging the molybdenum wire body and introducing it into a reaction furnace maintained at an appropriate deposition temperature.

本発明の電気炉用ヒータによれば、モリブデンヒータの
表層部の全域がセラミックス薄膜で被覆されている羞に
、長期間に亘ってヒータを通電し高温加熱しても、不可
避の酸素分圧によってモリブデンが讃化し、或はモリブ
デン自体が消耗することがな−。従って長寿命である。
According to the electric furnace heater of the present invention, even if the entire surface layer of the molybdenum heater is coated with a ceramic thin film, even if the heater is energized for a long period of time and heated to high temperature, the unavoidable oxygen partial pressure Molybdenum will not become depleted or molybdenum itself will be consumed. Therefore, it has a long life.

本発明の電気炉用ヒータは、高温真空炉、還元性雰囲気
炉などに有用である。
The electric furnace heater of the present invention is useful for high-temperature vacuum furnaces, reducing atmosphere furnaces, and the like.

実施例 断面が円形(径6腸)の本発明の電気炉用ヒータを作製
した。
EXAMPLE An electric furnace heater of the present invention having a circular cross section (6 diameters) was manufactured.

即ち、気相蒸着法に基づいて、通常の粉末冶、金法によ
秒得られたモリブデン線体を配置し蒸着温度1100m
:”に保たれた反応炉内に、環化チタンの気化物、水素
ガス、゛窒素ガスから成る混合ガスを1時間に■って導
入し、モリブデン線体の褒層部の全域を膜厚teamの
TIN膜で被覆して本発明の電気炉用ヒータを得た。
That is, based on the vapor phase deposition method, a molybdenum wire body obtained by ordinary powder metallurgy and metallurgy methods was arranged, and the deposition temperature was 1100 m.
A mixed gas consisting of a vaporized titanium cyclide, hydrogen gas, and nitrogen gas was introduced into the reactor maintained at a temperature of A heater for an electric furnace of the present invention was obtained by coating with a team TIN film.

比較例として、上記実施例においてTiN膜を被覆処理
しない以外は同一の材料、方法を用−て同−要談の電気
炉用ヒータを得た。
As a comparative example, a heater for an electric furnace according to the same summary was obtained using the same materials and method as in the above example except that the TiN film was not coated.

かくして得られた本発明の電気炉用ヒータ及び比較例を
正弦波褒状に加工し、真空炉の炉壁に貼着、炉温度約1
300Cとなる様に通電加熱して使用した。
The thus obtained electric furnace heater of the present invention and the comparative example were processed into a sine wave shape and attached to the furnace wall of a vacuum furnace, and the furnace temperature was about 1.
It was used by heating with electricity to a temperature of 300C.

この結果、本発明の電気炉用ヒータは、5年経過後にお
−て亀、ヒータ断線がなく、且つ表面が消N劣化するこ
とがなかった。一方、比較例は1都経過後に断線し使用
不能となった。
As a result, the electric furnace heater of the present invention had no cracks or heater disconnections after 5 years, and the surface did not deteriorate due to nitrogen removal. On the other hand, the comparative example broke after one cycle and became unusable.

以上の結果から1明らかな様に、本発明の電気−用ヒー
タは従来のモ9プデンヒータと比べ、高温における画一
化性、及び耐消耗性に優れ、且つ長寿命のものである。
As is clear from the above results, the electric heater of the present invention has excellent uniformity at high temperatures and wear resistance, and has a longer lifespan than the conventional Mo9pden heater.

Claims (1)

【特許請求の範囲】 t モリブデン線体と、該線体の表層部の全域を被曹す
るセラ識ツクス薄膜から成ることを特徴とする電気炉用
ヒータ。 2 セラミツタス薄膜が気相蒸着法によって形成された
薄膜である特許請求の範囲第1頂記戦の電気炉用ヒータ
[Scope of Claims] t. A heater for an electric furnace, comprising a molybdenum wire body and a ceramic thin film covering the entire surface layer of the wire body. 2. A heater for an electric furnace according to claim 1, wherein the ceramitus thin film is a thin film formed by a vapor phase deposition method.
JP11066181A 1981-07-17 1981-07-17 Heater for electric furnace Pending JPS5814487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11066181A JPS5814487A (en) 1981-07-17 1981-07-17 Heater for electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11066181A JPS5814487A (en) 1981-07-17 1981-07-17 Heater for electric furnace

Publications (1)

Publication Number Publication Date
JPS5814487A true JPS5814487A (en) 1983-01-27

Family

ID=14541274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11066181A Pending JPS5814487A (en) 1981-07-17 1981-07-17 Heater for electric furnace

Country Status (1)

Country Link
JP (1) JPS5814487A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181482A (en) * 1983-03-07 1984-10-15 日立金属株式会社 Heater for glow plug
JPS6264088A (en) * 1985-09-13 1987-03-20 三菱マテリアル株式会社 Heating material for resistance type high temperature electric furnace and manufacturing thereof
JPS63116385A (en) * 1986-11-04 1988-05-20 日本タングステン株式会社 Sic covered heater
JPH06240362A (en) * 1993-02-15 1994-08-30 Sumitomo Metal Ind Ltd Method for controlling temperature in working heat treatment for seamless steel pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181482A (en) * 1983-03-07 1984-10-15 日立金属株式会社 Heater for glow plug
JPS6264088A (en) * 1985-09-13 1987-03-20 三菱マテリアル株式会社 Heating material for resistance type high temperature electric furnace and manufacturing thereof
JPS63116385A (en) * 1986-11-04 1988-05-20 日本タングステン株式会社 Sic covered heater
JPH06240362A (en) * 1993-02-15 1994-08-30 Sumitomo Metal Ind Ltd Method for controlling temperature in working heat treatment for seamless steel pipe

Similar Documents

Publication Publication Date Title
Campbell et al. The Vapor‐Phase Deposition of Refractory Materials: I. General Conditions and Apparatus
WO1998051127A1 (en) Deposited resistive coatings
US4690872A (en) Ceramic heater
US6605352B1 (en) Corrosion and erosion resistant thin film diamond coating and applications therefor
US3294880A (en) Continuous method of manufacturing ablative and refractory materials
JP3813413B2 (en) Externally heated rotary kiln
Zmij et al. Complex protective coatings for graphite and carbon-carbon composite materials
Goto High-speed deposition of zirconia films by laser-induced plasma CVD
JPS5814487A (en) Heater for electric furnace
US3458341A (en) Metal boride-metal carbide-graphite deposition
JPS61251021A (en) Filming apparatus
JP2754814B2 (en) Heater element
US3375127A (en) Plasma arc spraying of hafnium oxide and zirconium boride mixtures
SE516644C2 (en) Resistance elements for extreme temperatures
Zmii et al. Protection of carbon materials from high-temperature gas corrosion
JPH083748A (en) Crucible for vapor deposition and its production
JPS60200877A (en) Formation of metal compound membrane
JPS63116385A (en) Sic covered heater
JPH0694196B2 (en) Composite corrosion resistant electrode with boride coating and composite corrosion resistant heating element
JP2500367Y2 (en) Multi-layer ceramic heater
Schlichting et al. Silicides
JPH06210885A (en) Thermal head
JPH06280117A (en) Heating furnace for graphite fiber production
JPS62128410A (en) Hot cathode parts
JPS62201264A (en) Membrane type thermal head