JPS6029290B2 - Catalytic vapor phase oxidation method - Google Patents

Catalytic vapor phase oxidation method

Info

Publication number
JPS6029290B2
JPS6029290B2 JP8601077A JP8601077A JPS6029290B2 JP S6029290 B2 JPS6029290 B2 JP S6029290B2 JP 8601077 A JP8601077 A JP 8601077A JP 8601077 A JP8601077 A JP 8601077A JP S6029290 B2 JPS6029290 B2 JP S6029290B2
Authority
JP
Japan
Prior art keywords
reaction tube
reaction
reactor
shielding plate
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8601077A
Other languages
Japanese (ja)
Other versions
JPS5421966A (en
Inventor
昌博 高田
洋之 鵜原
高久 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP8601077A priority Critical patent/JPS6029290B2/en
Priority to AU37847/78A priority patent/AU529228B2/en
Priority to US05/922,791 priority patent/US4203906A/en
Priority to GB787829526A priority patent/GB2001257B/en
Priority to DE19782830765 priority patent/DE2830765A1/en
Priority to FR7821012A priority patent/FR2397381A1/en
Publication of JPS5421966A publication Critical patent/JPS5421966A/en
Priority to US06/037,930 priority patent/US4256783A/en
Publication of JPS6029290B2 publication Critical patent/JPS6029290B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00256Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles in a heat exchanger for the heat exchange medium separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00777Baffles attached to the reactor wall horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、固定床式多管式熱交換型反応器を用いて行う
接触気相酸化反応に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a catalytic gas phase oxidation reaction carried out using a fixed bed multi-tubular heat exchange reactor.

詳しく述べると本発明は、発熱を伴う接触気相酸化反応
を行う際に、それに使用する触媒をその最適反応条件下
に維持し、ホットスポット(触媒層局部の異常高温)の
生起を抑えうる多管式熱交換型反応器の構造およびその
使用法を提供するものである。<従釆技術>一般に接触
気相酸化反応は非常に発熱的であるため、反応温度を一
定範囲内にあるように制御したり、反応域内にホットス
ポットが生じないようにすることは、きわめて重要であ
り、当技術分野にある技術者のもっとも苦心を要すると
ころといわれている。
To be more specific, the present invention provides a method for maintaining a catalyst used in an exothermic catalytic gas phase oxidation reaction under its optimum reaction conditions and suppressing the occurrence of hot spots (abnormally high temperatures locally in the catalyst layer). The structure of a tubular heat exchange reactor and its use are provided. <Subsequent technology> Since catalytic gas phase oxidation reactions are generally very exothermic, it is extremely important to control the reaction temperature within a certain range and to prevent hot spots from occurring within the reaction zone. This is said to be the area that requires the most effort from engineers in this technical field.

とくに、ナフタリンやオルソキシレンを酸化して無水フ
タル酸を製造する場合、ベンゼン、ブチレンまたはブタ
ジェンを酸化して無水マレィン酸を製造する場合、プロ
ピレンを酸化してァクロレィンあるいはアクリル酸を製
造する場合あるいはプロピレンをアンモ酸化してアクリ
ロニトリルを製造する場合のように、酸化反応が逐次的
に反応して目的物に変換されねばならないとき、触媒と
の接触反応温度の制御が、反応器中の均一な熱媒循環の
みによっては、決して十分に行えず、いよいよホットス
ポットが発現し、そのため一部に過度酸化反応が起る。
そして、その結果望ましくない燃焼反応が増大し、目的
とする製品の収量減をもたらす。また、触媒が、ホット
スポットの存在により高温に恒常的にさらされるため、
触媒の寿命が短くなり、不利益を発生する。これらの不
都合を防ぐ目的で、かかる気相酸化においては種々の方
策がとられている。もっとも一般的な方法として、単位
触媒あたりの除熱量を大きくとるために、触媒充填管の
管径を小さくする方法がある。しかしこの方法で反応を
実施しようとすると、充填管数がやたらと多くなり、反
応器製作の経費がかさみ、触媒充填やその抜出し‘こ手
間がかかるという欠点を生ずる。他の有効な方法として
は、触媒層を不活性物質で稀釈したり、特開昭48−8
5485号公報明細書に記載されているごとく触媒の充
填された反応管の長さ方向について、その全部または一
部において管の断面の中央部に密閉された空筒物質を入
れて触媒の存在しない、且つ反応混合物の通過しない空
間部を設けて、ホットスポットをおさえる工夫がなされ
ている。
In particular, when naphthalene or ortho-xylene is oxidized to produce phthalic anhydride, when benzene, butylene or butadiene is oxidized to produce maleic anhydride, when propylene is oxidized to produce acrolein or acrylic acid, or when propylene is oxidized to produce acrolein or acrylic acid, When the oxidation reaction must be converted into the target product through sequential reactions, as in the case of producing acrylonitrile by ammoxidation of Circulation alone is never sufficient, and eventually hot spots develop, causing excessive oxidation reactions to occur in some areas.
As a result, undesirable combustion reactions increase, leading to a decrease in the yield of the desired product. Additionally, the catalyst is constantly exposed to high temperatures due to the presence of hot spots;
The life of the catalyst will be shortened, resulting in disadvantages. In order to prevent these disadvantages, various measures have been taken in such gas phase oxidation. The most common method is to reduce the diameter of the catalyst-filled tube in order to increase the amount of heat removed per unit catalyst. However, if this method is used to carry out the reaction, the number of tubes to be filled will be excessively large, the cost of manufacturing the reactor will increase, and the time and effort required to fill and extract the catalyst will be disadvantageous. Other effective methods include diluting the catalyst layer with an inert substance, and
As described in the specification of Japanese Patent No. 5485, in all or part of the length of the reaction tube filled with a catalyst, a sealed hollow material is placed in the center of the cross section of the tube so that no catalyst is present. , and a space through which the reaction mixture does not pass is provided to suppress hot spots.

これらの方法においては、実質的に不活性な物質が含ま
れる分だけ経費がかさむという欠点はさげられない。
These methods have the disadvantage that they are expensive due to the inclusion of substantially inert substances.

と同時に、触媒の活性が劣化した後抜き出した触媒から
、有効金属成分を回収する際にも回収に手間が生じると
いう欠点もある。他のもう一つの有効な方法としては、
触媒の活性を反応ガスの入口から出口に向けて、徐々に
高めることにより、ホットスポットの温度が高くなるの
をおさえるという方法がある。しかし、この方法も活性
の異なる触媒を少くとも2種以上製造しなければならな
いだけでなく、各々の層に充填された触媒の最適反応温
度を選択できるわけでもなく、しかもその活性が経時的
に変化した場合のそれぞれの変化の度合いが異なった時
には、最適な反応温度の制御維持がさらに困難になり、
全体としての目的物質の収率低下はさげられない。
At the same time, there is also the drawback that it takes time and effort to recover effective metal components from the catalyst that has been extracted after the activity of the catalyst has deteriorated. Another effective method is
There is a method of suppressing hot spot temperatures from increasing by gradually increasing the activity of the catalyst from the inlet to the outlet of the reactant gas. However, this method not only requires the production of at least two types of catalysts with different activities, it is not possible to select the optimal reaction temperature for the catalyst packed in each layer, and furthermore, the activity changes over time. When the degree of each change is different, it becomes more difficult to maintain optimal reaction temperature control.
The overall yield of the target substance is undeniably reduced.

一方、反応器に種々の工夫がこらしたものも提案されて
いる。
On the other hand, reactors with various improvements have been proposed.

たとえば、特開昭48−80473号公報明細書には、
熱煤のの循環機構に調節器を設けることによって反応温
度の設定を反応過程に応じて変化させて高い収率を得よ
うとする技術が記載されているが、ここに開示された反
応器においては二つ以上の温度領域を得ることはとうて
い不可能である。また、米国特許第3147084号お
よびび西独公開特許第2513405号公報明細書には
、多管式熱交換型反応器のシェル側を遮蔽板で完全に2
つの空間に区切り、異なった温度の熱煤をそれぞれの空
間に循環せしめてなる反応器を使用した炭化水素の接触
酸化方法が開示されている。
For example, in the specification of JP-A-48-80473,
A technique has been described in which a regulator is provided in the hot soot circulation mechanism to change the reaction temperature setting according to the reaction process to obtain a high yield, but in the reactor disclosed herein, It is almost impossible to obtain more than two temperature ranges. Further, in US Pat. No. 3,147,084 and West German Published Patent Application No. 2,513,405, the shell side of a multi-tubular heat exchange reactor is completely separated by a shielding plate.
A method for catalytic oxidation of hydrocarbons is disclosed using a reactor which is divided into two spaces and hot soot at different temperatures is circulated through each space.

この反応器においては各反応管と遮蔽板は溶接によって
完全に固着されているために熱膨張による歪みの影響を
強く受け、使用条件によっては反応管あるいは遮蔽板の
変形、脱離が起こることが懸念される。さらには、熱媒
流による振動・腐蝕を生ぜしめ重大な破損をも招く可能
性を秘めている。さらに、この反応器は製作コストも高
く、製作上の技術にも困難性を帯びている。すなわち、
接触気相酸化反応においては除熱量も考慮されその各反
応管の管径は大きくとることができないので、一つの反
応器は数千本にも及ぶ反応管を抱している場合が多いが
、このそれぞれの反応管と遮蔽板とを溶接で固着する必
要があるからであり、あるいは、溶接を用いない場合に
は、反応管の外径に相当する径の孔を遮蔽板にあげる必
要があるがこれは技術上困難であると考えられる。<発
明が解決しようとする問題点> そこで、本発明は、発熱を伴う接触気相酸化反応を行う
際に、それに使用する触媒をその最適反応条件下に維持
し、ホットスポットの生起を抑えうる構造が簡単で製作
工程も簡略化でき、しかも製作コストが安い利点を有す
るばかりでなく、熱的な歪がほとんど発生しない構成を
有する多管式熱交換型反応器の構造およびその使用法を
提供することを目的とする。
In this reactor, each reaction tube and shielding plate are completely fixed by welding, so they are strongly affected by distortion due to thermal expansion, and depending on the usage conditions, the reaction tube or shielding plate may deform or come off. There are concerns. Furthermore, the flow of heat medium may cause vibration and corrosion, potentially causing serious damage. Furthermore, this reactor is expensive to manufacture and has difficult manufacturing techniques. That is,
In a catalytic gas phase oxidation reaction, the amount of heat removed is taken into consideration and the diameter of each reaction tube cannot be made large, so a single reactor often contains several thousand reaction tubes. This is because each reaction tube and shielding plate must be fixed by welding, or if welding is not used, it is necessary to make a hole in the shielding plate with a diameter equivalent to the outer diameter of the reaction tube. However, this is considered to be technically difficult. <Problems to be Solved by the Invention> Therefore, the present invention provides a method for maintaining a catalyst used in an exothermic catalytic gas phase oxidation reaction under its optimum reaction conditions, thereby suppressing the occurrence of hot spots. Provided is a structure of a multi-tubular heat exchange reactor that not only has a simple structure, can simplify the manufacturing process, and has the advantage of low manufacturing cost, but also has a configuration in which almost no thermal distortion occurs, and its usage. The purpose is to

<問題点を解決するための手段> 本発明者らは、かかる目的を達成するため、種々検討し
た結果本発明を完成させるに至った。
<Means for Solving the Problems> In order to achieve the above object, the present inventors have completed various studies and have completed the present invention.

すなわち、本発明者らは、発熱を伴う接触気相酸化反応
を、固定床式多管式熱交換型反応器を便用して行うにに
際し、該反応器としてシェル側が1枚以上の遮蔽板にて
反応管の長さ方向に対して2個以上の空間に区切られ、
各区間には熱煤が述填されて所望により各区間ごとにそ
れぞれ熱媒循環機構を備えてなり、該遮蔽板を貫く各々
の反応管は遮蔽板とは直接接触せず。反応管外壁と遮蔽
板との間隔が0.2〜5肋に保たれてなるものを使用し
、該反応器反応管内には1種または1種以上の酸化用触
媒が充填されてなり、かつ遮蔽板で区切られた区間の熱
煤温度をそれぞれ、その温度差が0〜10びCの範囲内
にあるように調節せしめられてなることを特徴とする接
触気相酸化方法を見し、出した。そして、さらに本発明
者らは、発熱を伴う接煤気相酸化反応を固定床式多管式
熱交換型反応器を使用して行うに際し、該反応器として
、シェル側が1枚以上の遮蔽板にて反応管の長さ方向に
対して2個以上に区切られ、所望ならば区切られた各区
間には熱媒が充填されて各区間ごとにそれぞれ熱媒循環
用機構を備えてなり、該遮蔽板を貫く各々の反応管は遮
蔽板と直接接触せず、反応管と反応管が貫く遮蔽板との
間隙を覆いうる大きさの外側直径を有してなるドーナツ
形状のフィンが反応管に固着されてなり、該フィンと遮
蔽板との距離が0.2〜5肌に保持されてなるものを使
用し、該反応器反応管内には1種または1種以上の酸化
用触媒が充填されてなり、かつ遮蔽板で区切られた区間
の熱煤温度をそれぞれの温度差が0〜100℃の範囲内
にあるように調節せしめられてなることを特徴とする接
触気相酸化方法を見出したのである。
That is, the present inventors have discovered that when carrying out an exothermic catalytic gas phase oxidation reaction using a fixed bed multi-tubular heat exchange reactor, the reactor is equipped with one or more shielding plates on the shell side. divided into two or more spaces in the length direction of the reaction tube,
Hot soot is filled in each section, and if desired, each section is provided with a heat medium circulation mechanism, respectively, and each reaction tube passing through the shielding plate does not come into direct contact with the shielding plate. A reaction tube is used in which the distance between the outer wall of the reaction tube and the shielding plate is maintained at 0.2 to 5 ribs, the inside of the reaction tube is filled with one or more oxidation catalysts, and We have discovered a catalytic vapor phase oxidation method characterized in that the temperature of hot soot in sections separated by shielding plates is adjusted so that the temperature difference is within the range of 0 to 10 degrees Celsius. did. Furthermore, the present inventors have discovered that when performing a soot-attached gas phase oxidation reaction accompanied by heat generation using a fixed bed multi-tubular heat exchange reactor, the reactor is equipped with one or more shielding plates on the shell side. The reaction tube is divided into two or more in the length direction, and if desired, each divided section is filled with a heating medium and each section is provided with a heating medium circulation mechanism. Each reaction tube that penetrates the shielding plate does not come into direct contact with the shielding plate, and the reaction tube is provided with a donut-shaped fin having an outer diameter large enough to cover the gap between the reaction tube and the shielding plate that the reaction tube penetrates. The distance between the fins and the shielding plate is maintained at 0.2 to 5 cm, and the reactor reaction tube is filled with one or more oxidation catalysts. We have discovered a catalytic vapor phase oxidation method characterized in that the temperature of hot soot in sections separated by shielding plates is adjusted so that the temperature difference between the sections is within the range of 0 to 100 degrees Celsius. It is.

以下、本発明を実施するために使用される反応器につい
て図に従いし、説明する。
Hereinafter, the reactor used to carry out the present invention will be explained with reference to the drawings.

第1図は本発明にかかる反応器の1例であり、2個の温
度領域A,Bを有する反応器1の縦断面図を表わす。
FIG. 1 is an example of a reactor according to the present invention, and shows a longitudinal sectional view of a reactor 1 having two temperature regions A and B. FIG.

容器には反応管束4が装填され、各反応管はそれらの上
端およびび下端で管板7および7′と拡管法または熔接
などにより固着している。反応管には、反応目的に応じ
て触媒を充填してもよく、触媒が充填されている場合は
、反応管下部において、落下防止用に金網や受器14が
設置される。反応原料は導入管2を通り、前帽3に入り
、つついて反応管東4に入り、反応に供せられ目的物に
変換されて、後帽5から出口6を通り、捕集精製ならび
に回収の工程へと送られる。なお、この反応工程は、逆
に反応原料を6から導入し、1を経て搬出されるように
してもよい。反応器の反応管東の外側(シェル側)13
には、反応過程において反応管中の反応温度を一定に保
持するための熱交換用媒体が供給され、渦巻ポンプまた
は藤流燈梓機16およびび16′により、熱媒導入口1
1および11′より、公知の環状導管9Aおよび9Bを
通してA領域およびB領域にそれぞれ導入され、熱交換
作用に供されて12および12′より公3知の環状導管
9A′および9B′を通して排出され、熱交換器15お
よび15′(または加熱装置15および15′)により
、冷却(または加熱)されて循環に供せられる。熱媒体
の循環方法は勿論上に述べた方法にだけ限定されるべき
ものではない。
The container is loaded with a bundle of reaction tubes 4, each of which is fixed at its upper and lower ends to tube plates 7 and 7' by tube expansion, welding, or the like. The reaction tube may be filled with a catalyst depending on the purpose of the reaction, and when the catalyst is filled, a wire mesh or a receiver 14 is installed at the bottom of the reaction tube to prevent it from falling. The reaction raw material passes through the introduction tube 2, enters the front cap 3, enters the reaction tube east 4, is subjected to reaction and is converted into the target product, passes through the rear cap 5 to the outlet 6, and is collected, purified, and recovered. sent to the process. In addition, in this reaction step, the reaction raw materials may be introduced from 6 and transported out through 1. East outside of the reaction tube of the reactor (shell side) 13
A heat exchange medium is supplied to keep the reaction temperature in the reaction tube constant during the reaction process.
1 and 11' through known annular conduits 9A and 9B, respectively, and subjected to heat exchange action and discharged from 12 and 12' through known annular conduits 9A' and 9B'. , and are cooled (or heated) by heat exchangers 15 and 15' (or heating devices 15 and 15') and provided for circulation. Of course, the method of circulating the heat medium is not limited to the method described above.

たとえばA,B間の温度差が非常に大きい場合には熱媒
体の循環方法を、たとえばAの領域で11から導入する
場合はBの領域では12′より導入し、遮蔽板の位置で
の横方向の流れを同一方向にすることにより、反応温度
の維持、制御がより容易になる。又温度領域の温度制御
をより容易にするために、各々の循環機構に流量調節機
構を設けることもも可能であるし、あらかじめA,B両
領域での発熱量、A,B間での熱媒の移動量、及び16
,16′による熱媒循環装置での熱媒の循環量が知られ
ている場合は、15又は15′の熱煤冷却(又は加熱)
機構のいずれか一方を昇略することも可能である。又、
A,B両領域の温度制御をより厳密に行う場合は遮蔽板
の枚数を一枚以上にすることもも可能である。
For example, if the temperature difference between A and B is very large, the heat medium should be circulated, for example, if it is introduced from 11 in area A, it is introduced from 12' in area B, and the heat medium is introduced from 12' in area B, By making the flow in the same direction, it becomes easier to maintain and control the reaction temperature. In addition, in order to more easily control the temperature in the temperature range, it is also possible to provide a flow rate adjustment mechanism for each circulation mechanism, and to adjust the amount of heat generated in both areas A and B and the heat between A and B in advance. the amount of movement of the medium, and 16
, 16' if the amount of heat medium circulated in the heat medium circulation device is known, the hot soot cooling (or heating) of 15 or 15'
It is also possible to promote or omit either one of the mechanisms. or,
If temperature control in both areas A and B is to be performed more strictly, it is also possible to use one or more shielding plates.

なお、反応器の径が大きう、多数の反応管が備えられて
いる場合は、方向変換板1川こより熱煤の流路を変え、
熱交換効果をより高めることが推奨される。
In addition, if the reactor has a large diameter or is equipped with a large number of reaction tubes, change the flow path of hot soot from the direction change plate 1.
It is recommended to further enhance the heat exchange effect.

第1図中8は2個の反応温度領域を分けるための遮蔽板
である。
Reference numeral 8 in FIG. 1 is a shield plate for separating two reaction temperature regions.

この遮蔽板8をさらに詳細に示すために第2図に示す。
第2図は、遮蔽板の位置での反応器の横断面図の部分を
表わす。4は反応管であり、8は遮蔽板であり、4と8
との間隔は0.2〜5柵の距離を保って熱煤の移動が可
能なように工夫されている。
This shielding plate 8 is shown in FIG. 2 to show it in more detail.
FIG. 2 represents a section of the reactor in cross section at the location of the shielding plate. 4 is a reaction tube, 8 is a shielding plate, and 4 and 8 are
A distance of 0.2 to 5 fences is maintained to allow the movement of hot soot.

この間隔は重要であり、この間隔がなく反応管4と遮蔽
板8とが近接したり固着したりしていると、A,B領域
の温度差や、加熱、冷却が度々反応器において行われた
場合、反応管や遮蔽板に熱的な歪が生じたり、反応管と
遮蔽板が接触して摩耗を生じたりして好ましくない。
This spacing is important, and if there is no such spacing and the reaction tube 4 and the shielding plate 8 are close to each other or stuck together, there will be a temperature difference between areas A and B, and heating and cooling will occur frequently in the reactor. In such a case, thermal distortion may occur in the reaction tube or the shielding plate, or the reaction tube and the shielding plate may come into contact with each other, causing wear.

その上反応器の製作にも手間と費用がかかり得策ではな
い。逆に間隔が大きすぎるときは、A,B間の熱煤の移
動量が多くなり、温度制御が容易でなくなる。本発明者
らの知見によると、熱煤の移動がほとんど起らず、温度
制御を満足な状態で行うには反応管壁と遮蔽板間の間隔
を0.2肋〜5肋、好ましくは0.3〜1.仇帆とする
必要がある。
Moreover, manufacturing the reactor requires time and expense, which is not a good idea. On the other hand, if the interval is too large, the amount of hot soot transferred between A and B increases, making temperature control difficult. According to the findings of the present inventors, in order to achieve satisfactory temperature control with almost no movement of hot soot, the distance between the reaction tube wall and the shielding plate should be 0.2 to 5, preferably 0. .3-1. It is necessary to take revenge.

第3図は、反応管に固着せしめたフィンにより熱煤の移
動がほとんど起らないようにする場合の遮蔽板の位置で
の反応器の縦断面図の部分を示している。
FIG. 3 shows a portion of a longitudinal cross-sectional view of the reactor at the position of the shielding plate in the case where the movement of hot soot is almost prevented by fins fixed to the reaction tube.

4は反応管であり、8は遮蔽板であり、4と8との間隔
は0.2〜15側の距離を保って熱煤の移動が可能なよ
うにに工夫されている。
4 is a reaction tube, 8 is a shielding plate, and the distance between 4 and 8 is designed to maintain a distance of 0.2 to 15 to allow movement of hot soot.

この間隔の存在は重要であり、この間隔がなく反応管4
と遮蔽板8とが近接したり固着したりしていると、A,
B領域の温度差や、加熱、冷却が度々反応器において行
われた場合、反応管や遮蔽板に熱的な歪が生じたり、反
応管と遮蔽板が接触して摩耗を生じたりして好ましくな
い。
The existence of this gap is important, and without this gap the reaction tube 4
If the and shielding plate 8 are close to each other or stuck together, A,
If there is a temperature difference in region B or if heating and cooling are frequently performed in the reactor, thermal distortion may occur in the reaction tube or shielding plate, or contact between the reaction tube and the shielding plate may cause wear. do not have.

その上反応器の製作にも手間がかかり得策でない。しか
し、この間隔をことさら大きくすることは不必要であり
、得策ではない。反応管と反応管の間隔は通常の多菅式
反応器において6〜3仇めであるから、遮蔽板と反応管
との間隔もおのずから限度がある。そして、第3図に明
示しているように、フィンが上記間隔を覆うように張出
して反応管に固着されている。
Moreover, it takes time and effort to manufacture the reactor, which is not a good idea. However, it is unnecessary and not advisable to make this interval particularly large. Since the distance between the reaction tubes is 6 to 3 meters in a normal multi-tube reactor, the distance between the shielding plate and the reaction tubes is naturally limited. As clearly shown in FIG. 3, the fins extend over the space and are fixed to the reaction tube.

フィンと遮蔽板との間隔は0.2〜5側、好ましくは0
.3〜1肋に調節され熱煤循環中、その移動がほとんど
起らず、各反応温度領域の温度制御が満足に行なわれる
。フィンは遮蔽板と平行に設置されてもよいし、第4図
のごとくフィンの先端緑が遮蔽板との至近距離になるよ
うに設けられてもよい。もちろんフィンは遮蔽板の上下
どちらにとりつけられてもよいし、第5図のごとく上下
交互にとりつけられてもよい。もちろん以上記述してき
た0.2〜5肋、好ましくは0.3〜5柵という間隔は
、使用する熱煤によつて多少影響を受ける。
The distance between the fin and the shielding plate is 0.2 to 5, preferably 0.
.. The temperature is adjusted to 3 to 1 soot, so that almost no movement occurs during the hot soot circulation, and the temperature in each reaction temperature range can be satisfactorily controlled. The fins may be installed parallel to the shielding plate, or may be installed so that the green tips of the fins are at close distance to the shielding plate, as shown in FIG. Of course, the fins may be attached to either the upper or lower sides of the shielding plate, or they may be attached alternately to the upper and lower sides as shown in FIG. Of course, the spacing of 0.2 to 5 bars, preferably 0.3 to 5 bars, as described above will be influenced to some extent by the hot soot used.

粘性の大きい、たとえば溶融塩(主として硝酸カリウム
、および亜硝酸ナトリウムの混合物)を用いるときは、
反応温度も高く、しかも間隔が多少広くてもその間を移
動する熱媒体の量は少なくてすむ。しかし、フェニルェ
ーテル系(たとえば「ダウサム」など)熱線を使用する
場合は、溶融塩に〈らべて低温の反応でも間隔は多少狭
くとるほうが好ましい。本発明で使用しうる熱媒として
は、上述の2種以外にも、水蒸気、熱油、ナフタリン誘
導体(S.K油)、水銀などが挙げられる。
When using a highly viscous molten salt (mainly a mixture of potassium nitrate and sodium nitrite),
The reaction temperature is high, and even if the spacing is somewhat wide, the amount of heat transfer medium that moves between them can be small. However, when using a phenyl ether type (such as "Dowsome") hot wire, it is preferable to keep the spacing somewhat narrower than in molten salts, even for low-temperature reactions. In addition to the above two types, examples of the heat medium that can be used in the present invention include steam, hot oil, naphthalene derivatives (SK oil), mercury, and the like.

かくして、接触気相酸化反応は、本発明が規定する反応
器を使用してきわめて容易に行いうる。
Thus, catalytic gas phase oxidation reactions can be carried out very easily using the reactor defined by the present invention.

すでに述べたごとく、本発明で特定してなる反応器は、
逐次的酸化反応を遂行するのにもっとも適しているが、
本発明者らの知見によると、各区間の熱煤温度は最大1
00qoもの温度差を生じせしめておくことも可能とな
ることがわかった。したがって、本発明の反応器の適用
される反応およびその具体的実施の態様につき、以下に
説明する。まず、オルソキシレンやナフタリンから無水
フタル酸を製造する場合には、たとえば第1図のような
A,B2個の反応温度区間を使用した場合、前段では3
00〜4000C、後段では350〜45000の温度
が採用され、触媒が読一組成になる場合30〜600C
の温度差が維持される必要があるが、この条件は容易に
充足される。また無水マレィン酸を製造する場合にも、
A,B2個の反応温度区間を採用した場合、前段では3
20〜400oo、後段では350〜450℃の温度が
採用され、その温度差は20〜50ooを維持すること
が好結果をもたらすが、これも容易に充足しうるもので
ある。もちろん、2種以上の異なった組成の触媒を用い
て、本発明方法を遂行しても好結果をえることができる
As already mentioned, the reactor specified in the present invention is
Most suitable for carrying out sequential oxidation reactions,
According to the findings of the present inventors, the hot soot temperature in each section is at most 1
It has been found that it is possible to create a temperature difference of 00 qo. Therefore, the reactions to which the reactor of the present invention is applied and the specific implementation thereof will be explained below. First, when producing phthalic anhydride from ortho-xylene or naphthalene, for example, if two reaction temperature zones A and B as shown in Figure 1 are used, the first stage
00 to 4000C, 350 to 45000C in the latter stage, and 30 to 600C if the catalyst has a single composition.
A temperature difference of . Also, when producing maleic anhydride,
When two reaction temperature zones A and B are adopted, 3 in the first stage
A temperature of 20 to 400° C. is employed in the latter stage, and a temperature of 350 to 450° C. is employed in the latter stage, and good results are obtained by maintaining the temperature difference between 20 and 50° C., which can also be easily satisfied. Of course, the method of the present invention can also be carried out with good results using two or more catalysts of different compositions.

さらに、各触媒性能に通した反応温度での反応遂行が可
能となるからである。そして、さらに特徴的なことは、
本発明方法は、プロピレンからのアクロレイン、アクロ
レインをさらに酸化してアクリル酸というような各反応
帯の反応温度が50〜100℃も異なるような接触気相
酸化反応をも遂行可能なことが判明した。
Furthermore, it is possible to carry out the reaction at a reaction temperature that meets the performance of each catalyst. And what is even more distinctive is that
It has been found that the method of the present invention can also perform catalytic gas phase oxidation reactions in which the reaction temperatures in each reaction zone differ by 50 to 100°C, such as acrolein from propylene and acrylic acid by further oxidizing acrolein. .

次に実施例に基づき本発明の方法をさらに詳しく説明す
る。実施例 1 長さが4ので内径25.0側、外径29.山肌の鋼鉄製
の反応管24本を有する竪型多管式反応器において、遮
蔽板がその中間の高さにあり、遮蔽板を貫く反応管と遮
蔽板との間隔がほぼ0.6側に調節されてなる第1図の
ごとき反応器を用いて、オルソキシレンを空気で接触気
相酸化して、無水フタル酸合を成せしめた。
Next, the method of the present invention will be explained in more detail based on Examples. Example 1 Since the length is 4, the inner diameter is 25.0 and the outer diameter is 29.0. In a vertical multitubular reactor with 24 reaction tubes made of mountain steel, the shielding plate is located at the middle height, and the distance between the reaction tubes penetrating the shielding plate and the shielding plate is approximately 0.6. Phthalic anhydride was synthesized by catalytic gas phase oxidation of ortho-xylene with air using a regulated reactor as shown in FIG.

この酸化に用いた触媒は特公昭49−41271号明細
書記載の実施例1に従い調製されたもので、その触媒成
分の組成比は、V24:Ti02=2.1:97.9重
量比で、V2Q,Ti02の合計に対してP2050.
49重量%、K200.146重量%、Nb2050.
244重量%、Gd2030.04重量%を含むもので
あった。
The catalyst used for this oxidation was prepared according to Example 1 described in Japanese Patent Publication No. 49-41271, and the composition ratio of the catalyst components was V24:Ti02 = 2.1:97.9 weight ratio. P2050 for the total of V2Q, Ti02.
49% by weight, K200.146% by weight, Nb2050.
It contained 244% by weight and 2030.04% by weight of Gd.

この触媒を水銀圧入法ポロシメーターで紬孔分布を測定
したところ0.05〜0.45一の細孔の占める織孔容
積が10仏以下の全細孔容積の88%であった。かくし
てえられた触媒を反応管1本につき、1500cc充填
し、層長を3のとなるようにした。
When the pore distribution of this catalyst was measured using a mercury intrusion porosimeter, it was found that the pore volume occupied by 0.05 to 0.45 pores was 88% of the total pore volume of 10 or less. Each reaction tube was filled with 1500 cc of the catalyst thus obtained, so that the layer length was 3.

そして、充填層全長のうち1肌が前段Aの温度領域に2
仇が後段Bの温度領域にあるようにした。反応初期にお
いては反応器シェル側の溶融塩温度のうちAの温度領域
を355G0、Bの温度領域を37500にそれぞれ保
ち、20夕−空気/ターオルソキシレンの濃度で空間速
度(S.V)4000hr‐1(NTP)で反応を開始
した。その後は最適無水フタル酸収率がえられるように
、A,B両温度領域の温度を制御しながら1ケ年反応を
継続した。その結果を表−1に示す。表中の無水フタル
酸の収率は供給したオルソキシレンに対する重量%であ
る。ガス濃度(G.C)はZ−空気−ターオルソキシレ
ンを表わす。表−1比較例 1 実施例1で使用したのと同じ触媒を使用し、遮蔽板を設
置していない、温度領域が一つになるようにしてなる、
実施例1と同規模の反応器を使用して、表−2に示す反
応条件下に12ケ月反応を継続した。
Then, one part of the total length of the packed layer is in the temperature range of the previous stage A.
The enemy was made to be in the temperature range of the second stage B. At the initial stage of the reaction, the temperature range of A and B of the molten salt temperature on the reactor shell side were kept at 355G0 and 37500, respectively, and the space velocity (S.V) was set at a concentration of 20 hours - air/orthoxylene at a space velocity (S.V) of 4000 hours. -1 (NTP) to start the reaction. Thereafter, the reaction was continued for one year while controlling the temperature in both temperature ranges A and B so as to obtain the optimum phthalic anhydride yield. The results are shown in Table-1. The yield of phthalic anhydride in the table is the weight percent based on the supplied ortho-xylene. Gas concentration (G.C) represents Z-air-terortho-xylene. Table 1 Comparative Example 1 The same catalyst as used in Example 1 was used, no shielding plate was installed, and the temperature range was one.
Using a reactor of the same scale as in Example 1, the reaction was continued for 12 months under the reaction conditions shown in Table 2.

その結果を表−2に示す。表−2 実施例 2 実施例1で使用したのと同じ触媒と反応器を用いてガス
濃度を16夕−空気/ターオルソキシレンに上げて、表
−3に示す反応条件下に12ケ月反応を行った。
The results are shown in Table-2. Table 2 Example 2 Using the same catalyst and reactor as used in Example 1, the reaction was carried out for 12 months under the reaction conditions shown in Table 3, with the gas concentration raised to 16 minutes - air/t-ortho-xylene. went.

その結果を表−3に示す。表一3 比較例 2 比較例1において、ガス濃度を16夕−空気/ターオル
ソキシレンに上げて表−4に示す反応条件下に3ケ月反
応を継続した。
The results are shown in Table-3. Table 13 Comparative Example 2 In Comparative Example 1, the gas concentration was increased to 16 minutes - air/t-ortho-xylene, and the reaction was continued for 3 months under the reaction conditions shown in Table 4.

その結果を表−4に示す。表−4 実施例 3 2種の触媒を使用して実施例1の方法に従って無水フタ
ル酸を製造した。
The results are shown in Table 4. Table 4 Example 3 Phthalic anhydride was produced according to the method of Example 1 using two types of catalysts.

触媒は特開昭51−43732号明細書記載の実施例1
に従い調製した。すなわち、前段触媒として触媒活性物
質の組成割合が、V2Q:Tj02:Nb203:P2
05:K20:Na20=2:班:0.25:1.02
:0.15:0.1(重量比)をえた。
The catalyst was Example 1 described in JP-A-51-43732.
Prepared according to. That is, the composition ratio of the catalytically active material as the front catalyst is V2Q:Tj02:Nb203:P2
05:K20:Na20=2:Group:0.25:1.02
:0.15:0.1 (weight ratio) was obtained.

この触媒を水銀圧入式ポロシメーターにかけ、細孔分布
測定をしたところ、0.15〜0.45〃の細孔による
紬孔容積が10山以下の全細孔容積の88%であった。
以下これは“0.15〜0.45ムの紬孔容積が88%
”と略記する。これを前段触媒とする。次に後段触媒と
して、触媒活性物質の組成割合が、V2Q:Tj02:
Nb24:P205:K20:Na20=2:聡:0.
25:1.3:0.15:0.1(重量比)であり、0
.15〜0.45仏の紬孔容積が87%である触媒をえ
た。
When this catalyst was subjected to a mercury intrusion porosimeter to measure the pore distribution, it was found that the volume of pores with 0.15 to 0.45 pores was 88% of the total pore volume with 10 or less pores.
Below, this means that 88% of the pongee hole volume is between 0.15 and 0.45 mm.
This is abbreviated as ``.This is the first-stage catalyst.Next, as the second-stage catalyst, the composition ratio of the catalytically active material is V2Q:Tj02:
Nb24:P205:K20:Na20=2:Satoshi:0.
25:1.3:0.15:0.1 (weight ratio), 0
.. A catalyst having a pongee hole volume of 87% between 15 and 0.45 French was obtained.

かくして得られた触媒を実施例1で用いたのと同様の反
応器の反応管に、Bの温度領域に後段触媒を1.5の充
幹し、次いでAの温度領域に前段触媒を1.5肌充填し
、反応を行った。
The thus obtained catalyst was placed in a reaction tube of a reactor similar to that used in Example 1, with 1.5 liters of the latter stage catalyst in the temperature region B, and then 1.5 liters of the former stage catalyst in the temperature region A. 5 skin was filled and a reaction was performed.

反応条件と反応結果を表−5に示す。表−5実施例 4 実施例1と同様の反応器によりり、ベンゼンから無水マ
レィン酸の合成を行った。
The reaction conditions and reaction results are shown in Table-5. Table 5 Example 4 Maleic anhydride was synthesized from benzene using the same reactor as in Example 1.

この酸化に用いた触媒は、特開昭51−64487号明
細書実施例1に従い調製されたものである。えられた完
成触媒の触媒物質組成比は、V2Q:Moo3:P20
5:Na20=1:0.40:0.015:0.06(
モル比)であり、見掛気孔率総%、表面積約0.05力
/夕および孔雀100一以下の細孔の占める細孔容積の
95%が10一以上の紐孔よりなるものであった。
The catalyst used in this oxidation was prepared according to Example 1 of JP-A-51-64487. The catalyst material composition ratio of the completed catalyst obtained is V2Q:Moo3:P20
5:Na20=1:0.40:0.015:0.06(
The total apparent porosity was %, the surface area was approximately 0.05 molar ratio, and 95% of the pore volume occupied by pores with a diameter of 100 or less was composed of string pores with a diameter of 10 or more. .

かくしてえられた触媒を反応管1本について、1500
cc充填し、層長を3のになるようにした。反応初期に
おいては、Aの温度領域を私5℃、Bの温度領域を37
0℃にそれぞれ保ち、ベンゼンを、22そ一空気/ター
ベンゼンの濃度でS.V.250皿r‐1(NTP)ぜ
反応を開始した。その後は最適なマレィン酸の収率がえ
られるように、A,B両区間の温度を制御しながら12
ケ月反応を継続した。その結果を表−6に示す。表−6 比較例 3 実施例4で使用したのと同じ触媒を使用し、遮蔽板を設
けていない、温度領域が一つになるようにしてなる、実
施例4と同規模の反応器を使用して、表−7に示す反応
条件下に反応を継続した。
The thus obtained catalyst was used at a rate of 1,500 ml per reaction tube.
cc filling, and the layer length was set to 3. At the beginning of the reaction, the temperature range of A is 5℃, and the temperature range of B is 37℃.
Benzene was added to S.C. at a concentration of 22 soybean/terbenzene, each maintained at 0.degree. V. A 250-dish r-1 (NTP) reaction was initiated. After that, the temperature in both zones A and B is controlled to obtain the optimum yield of maleic acid.
The reaction continued for several months. The results are shown in Table-6. Table 6 Comparative Example 3 Using the same catalyst as used in Example 4, using a reactor of the same scale as Example 4, without a shielding plate, with a single temperature range. The reaction was then continued under the reaction conditions shown in Table 7.

その結果を表−7にに示す。表−7実施例 5 1本の反応管の長さが6のである以外は実施例1と同様
の反応器において、プ。
The results are shown in Table-7. Table 7 Example 5 In the same reactor as in Example 1 except that the length of one reaction tube was 6.

ピレンの酸化によるアクリル酸の合成を行った。この酸
化に用いた触媒は、プロピレンから主としてアクロレィ
ンを製造する触媒として特公昭47−42813号明細
書の実施例1の触媒(前段触媒)及び、アクロレィンを
酸化してアクリル酸を製造するための触媒として、袴公
昭49−11371号明細書の実施例1の触媒(後段触
媒)を調製した。すなわち、前段触媒としては、触媒の
酸素を除く組成が原子比で、C。4FeIBiIW2M
Acrylic acid was synthesized by oxidation of pyrene. The catalysts used for this oxidation were the catalyst of Example 1 of Japanese Patent Publication No. 47-42813 (first stage catalyst) as a catalyst for mainly producing acrolein from propylene, and the catalyst for producing acrylic acid by oxidizing acrolein. The catalyst (second stage catalyst) of Example 1 of Hakamako Sho 49-11371 was prepared. That is, as for the first-stage catalyst, the composition of the catalyst excluding oxygen is C in atomic ratio. 4FeIBiIW2M
.

10Sil.35ふり6F。10Sil. 35 pretend 6F.

心Bである酸化触媒であり、また後段触媒としては、触
媒の金属組成が、M。
The oxidation catalyst is the core B, and as the latter stage catalyst, the metal composition of the catalyst is M.

12V4.6C比.2Crか6W2.4である損持酸化
触媒をそれぞれ使用した。
12V4.6C ratio. Both 2Cr and 6W2.4 oxidation catalysts were used, respectively.

これらの触媒のうち、まず後段触媒を反応管1本当り、
1250ccづっBの温度領域に充填し層高2.5のと
した。
Among these catalysts, first, the latter stage catalyst was used per reaction tube,
1250 cc was filled in a temperature range of B, and the bed height was set to 2.5.

その上に反応ガス冷却用として5脚ぐの球形アランダム
250ccを充填しその上端が、遮蔽板と同一の平面に
あるようにした。さらにその上に前段用触媒1000c
cを充填し、その充幹層長が2肌となるようにした。反
応組成ガスとして、プロピレン6.0容量%、酸素12
.咳容量%、水蒸気として10.咳容量%、残りが主に
窒素である不活性ガスからなる組成の混合ガスを、前段
触媒に対してS.V.160他r‐1(NTP)で供v
給し、反応初期においてはAの温度領域を310午○、
Bの温度領域を240午0に保ち反応を開始した。その
後は最適なアクリル酸収率がえられるように、A,Bの
両温度領域の温度を制御しながら12ケ月の反応を継続
した。その結果を表−8に示す。表−8 実施例 6 実施例5において反応器は反応管外壁と遮蔽板との間隔
がほぼ0.6肌に調節されてなるものであるが、この時
のA領域の熱媒温度は310qoであり、遮蔽板8より
下部250柳の距離におけるB領域の熱媒温度は240
であった。
On top of it, 250 cc of spherical alundum with five legs was filled for cooling the reaction gas so that its upper end was on the same plane as the shielding plate. Furthermore, on top of that, 1000c of catalyst for the front stage
c was filled so that the length of the full trunk layer was 2 skins. Reaction composition gas: propylene 6.0% by volume, oxygen 12%
.. Cough volume %, as water vapor 10. A mixed gas having a composition of % cough volume and an inert gas with the remainder being mainly nitrogen is supplied to the pre-catalyst by S.I. V. Provided by 160 other r-1 (NTP)
In the early stage of the reaction, the temperature range of A is 310 pm,
The reaction was started while keeping the temperature range of B at 240:00. Thereafter, the reaction was continued for 12 months while controlling the temperatures in both temperature ranges A and B so as to obtain the optimum yield of acrylic acid. The results are shown in Table-8. Table 8 Example 6 In Example 5, the reactor was configured such that the distance between the outer wall of the reaction tube and the shielding plate was adjusted to approximately 0.6 cm, but the heat medium temperature in area A at this time was 310 qo. Yes, the heating medium temperature in area B at a distance of 250 willows below the shielding plate 8 is 240
Met.

しかし、反応管外壁と遮蔽板との間隔を6肌に調節した
場合同条件でB領域の熱煤温度が240℃を示した距離
は100仇鷹を要し、AおよびB領域の熱蝶温度制御が
困難であった。
However, when the distance between the outer wall of the reaction tube and the shielding plate is adjusted to 6 degrees, the distance at which the hot soot temperature in area B reaches 240°C under the same conditions is 100 degrees, and the hot soot temperature in areas A and B is It was difficult to control.

<効 果> 以上の説明から明らかなように、本発明方法が上述のご
とく侍定した反応器は、礎造が簡単で製作工程も簡略化
でき、しかも製作コストが安い利点を有するばかりでな
く、熱煤の温度制御が容易であり熱的な歪がほとんど発
生しない構成をとるものである特徴を有するのである。
<Effects> As is clear from the above explanation, the reactor provided by the method of the present invention as described above not only has the advantage that the foundation is easy to construct, the manufacturing process can be simplified, and the manufacturing cost is low. It has the characteristics that the temperature of hot soot can be easily controlled and that almost no thermal distortion occurs.

この反応器を用いることにより、接触気相酸化反応の遂
行はもっとも発熱の多い触媒層部分での熱煤温度を、他
の部分でのの熱煤温度より低く調節することが可能とな
り、ホットスポットの発熱をおさえ、次の部分で酸化さ
れるべき原料の転化率を実質的に100%近くまで達す
るように反応温度を制御することが可能になり、もっと
も有効に触媒が使用できることとなる。とくに、逐次的
に反応が進行する鞍色気相反応に上記反応器を使用する
においては、ホットスポットでのゆきすぎ反応による無
駄な燃焼がおさえられ、目的とする生成物の収率を高め
ることが可能になったばかりでなく、さらに原料の濃度
を従来の接触気相酸化に較べ高めることも可能になった
By using this reactor, it is possible to carry out the catalytic gas phase oxidation reaction by adjusting the hot soot temperature in the catalyst layer part where the most heat is generated to be lower than the hot soot temperature in other parts, and hot spots. This makes it possible to control the reaction temperature so that the conversion of the raw material to be oxidized in the next step reaches substantially 100%, and the catalyst can be used most effectively. In particular, when using the above reactor for saddle-colored gas phase reactions in which reactions proceed sequentially, wasteful combustion due to over-propagating reactions at hot spots can be suppressed and the yield of the desired product can be increased. Not only has it become possible, but it has also become possible to increase the concentration of the raw material compared to conventional catalytic gas phase oxidation.

また、逐次的に反応が進行する場合で各段階において、
異なる触媒と異なる反応温度のため、従来二つの反応器
が必要であった反応も、本発明の方法をとれば、一つの
反応器で行うことが可能となつた。
In addition, when the reaction proceeds sequentially, at each stage,
Reactions that conventionally required two reactors due to different catalysts and different reaction temperatures can now be carried out in one reactor using the method of the present invention.

さらに、本発明の利点として、触媒の寿命を驚異的に長
くすることが可能になったこともあげることができる。
A further advantage of the present invention is that it has become possible to surprisingly extend the life of the catalyst.

図面の簡単な説明第1図は本発明の反応を実施するため
の反応器の縦断面図を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a longitudinal section through a reactor for carrying out the reaction of the invention.

第2図は遮蔽板面での反応器の横断面図の1部分の1部
分を示す。第3図は遮蔽板の位置でフィンをとりつけた
反応管の縦断面図、第4図はフィンをとりつけた反応管
の他の例を示す縦断面図、第5図はフィンが反応管の上
下に交互にとりつけられた例を示す。第1図 第2図 第3図 第4図 第5図
FIG. 2 shows a section of a cross-sectional view of the reactor in the plane of the shield. Figure 3 is a longitudinal sectional view of a reaction tube with fins attached at the position of the shielding plate, Figure 4 is a longitudinal sectional view showing another example of a reaction tube with fins attached, and Figure 5 is a longitudinal sectional view of a reaction tube with fins attached at the top and bottom of the reaction tube. An example is shown in which they are attached alternately. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 発熱を伴う接触気相酸化反応を、固定床式多管式熱
交換型反応器を使用して行うに際し、該反応器として、
シエル側が1枚以上の遮蔽板にて反応管の長さ方向に対
して2個以上の空間に区切られ、各区間には熱媒が充填
されて所望により各区間ごとにそれぞれ熱媒循環機構を
備えてなり、該遮蔽板を貫く各々の反応管は遮蔽板とは
直接接触せず、反応管外壁と遮蔽板との間隔が0.2〜
5mmに保たれてなるものを使用し、該反応器反応管内
には1種または1種以上の酸化用触媒が充填されてなり
、かつ遮蔽板で区切られた区間の熱媒温度をそれぞれ、
その温度差が0〜100℃の範囲内にあるように調節せ
しめられてなることを特徴とする接触気相酸化方法。 2 発熱を伴う接触気相酸化反応を、固定床多管式熱交
換型反応器を使用して行うに際し、該反応器として、シ
エル側が1枚以上の遮蔽板にて反応管の長さ方向に対し
て2個以上に区切られ、所望により区切られた各区間に
は熱媒が充填されて各区間ごとにそれぞれ熱媒循環用機
構を備えてなり、該遮蔽板を貫く各々の反応管は遮蔽板
と直接接触せず、反応管と反応管が貫く遮蔽板との間隙
を覆いうる大きさの外側直径を有してなるドーナツ形状
のフインが反応管に固着されてなり、該フインと遮蔽板
との距離が0.2〜5mmに保持されてなるものを使用
し、該反応器反応管内には1種または1種以上の酸化用
触媒が充填されてなり、かつ、遮蔽板で区切られた区間
の熱媒温度をそれぞれその温度差が0〜100℃の範囲
内にあるように調節せしめられてなることを特徴とする
接触気相酸化方法。
[Claims] 1. When carrying out an exothermic catalytic gas phase oxidation reaction using a fixed bed multi-tubular heat exchange reactor, the reactor includes:
The shell side is divided into two or more spaces in the length direction of the reaction tube by one or more shielding plates, each section is filled with a heating medium, and if desired, a heating medium circulation mechanism is installed in each section. Each reaction tube passing through the shielding plate does not come into direct contact with the shielding plate, and the distance between the outer wall of the reaction tube and the shielding plate is 0.2 to 0.2.
5 mm, the reactor reaction tube is filled with one or more oxidation catalysts, and the heating medium temperature in the sections separated by shielding plates is
A catalytic gas phase oxidation method characterized in that the temperature difference is adjusted to be within the range of 0 to 100°C. 2. When carrying out an exothermic catalytic gas phase oxidation reaction using a fixed bed multi-tubular heat exchange reactor, the shell side of the reactor is covered with one or more shielding plates in the length direction of the reaction tube. The reaction tube is divided into two or more sections, each section is filled with a heating medium as desired, and each section is provided with a heating medium circulation mechanism, and each reaction tube passing through the shielding plate is shielded. A donut-shaped fin is fixed to the reaction tube and has an outer diameter large enough to cover the gap between the reaction tube and the shielding plate through which the reaction tube passes without directly contacting the plate, and the fin and the shielding plate are fixed to each other. The reactor reaction tube is filled with one or more oxidation catalysts and separated by a shielding plate. A catalytic gas phase oxidation method characterized in that the temperature of the heating medium in each section is adjusted so that the temperature difference is within the range of 0 to 100°C.
JP8601077A 1977-07-13 1977-07-20 Catalytic vapor phase oxidation method Expired JPS6029290B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP8601077A JPS6029290B2 (en) 1977-07-20 1977-07-20 Catalytic vapor phase oxidation method
AU37847/78A AU529228B2 (en) 1977-07-13 1978-07-07 Catalytic vapour phase oxidation
US05/922,791 US4203906A (en) 1977-07-13 1978-07-07 Process for catalytic vapor phase oxidation
GB787829526A GB2001257B (en) 1977-07-13 1978-07-11 Process for catalytic vapour phase oxidation and reactor used therefor
DE19782830765 DE2830765A1 (en) 1977-07-13 1978-07-13 Fixed bed shell and tube heat exchanger reactor - for catalytic vapour phase oxidn. of hydrocarbon cpds., e.g. in phthalic anhydride mfr.
FR7821012A FR2397381A1 (en) 1977-07-13 1978-07-13 CATALYTIC OXIDATION PROCESS IN VAPOR PHASE AND REACTOR FOR THIS USE
US06/037,930 US4256783A (en) 1977-07-13 1979-05-09 Catalytic vapor phase oxidation reactor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8601077A JPS6029290B2 (en) 1977-07-20 1977-07-20 Catalytic vapor phase oxidation method

Publications (2)

Publication Number Publication Date
JPS5421966A JPS5421966A (en) 1979-02-19
JPS6029290B2 true JPS6029290B2 (en) 1985-07-10

Family

ID=13874710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8601077A Expired JPS6029290B2 (en) 1977-07-13 1977-07-20 Catalytic vapor phase oxidation method

Country Status (1)

Country Link
JP (1) JPS6029290B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455306U (en) * 1987-10-01 1989-04-05
DE19836792A1 (en) * 1998-08-13 2000-02-17 Basf Ag Tube bundle reactor, for oxidation reactions, has partitioned headers allowing heat exchange medium supply to the lower header to be combined with co-current passage within the reactor
DE19910508A1 (en) * 1999-03-10 2000-09-21 Basf Ag Process of catalytic gas phase oxidation of acrolein to acrylic acid
MY119958A (en) * 1999-03-10 2005-08-30 Basf Ag Catalytic gas-phase oxidation of propene to acrylic acid
JP3646027B2 (en) * 1999-11-05 2005-05-11 株式会社日本触媒 Reactor for catalytic gas phase oxidation and method for producing (meth) acrylic acid using the same
CA2413388C (en) * 2000-06-29 2009-12-22 H2Gen Innovations Inc. Improved system for hydrogen generation through steam reforming of hydrocarbons and integrated chemical reactor for hydrogen production from hydrocarbons
DE10040827A1 (en) * 2000-08-21 2002-03-07 Basf Ag Process for the preparation of phthalic anhydride
ZA200200048B (en) 2001-01-25 2002-07-16 Nippon Catalytic Chem Ind Process for extracting sold material from shell-and-tube reactor.
RU2232952C1 (en) * 2003-06-03 2004-07-20 Алиева Елена Антоновна Method of heating and cooling fluid medium
KR100553825B1 (en) 2003-09-01 2006-02-21 주식회사 엘지화학 Method of producing unsaturated aldehyde and unsaturated acid in fixed-bed catalytic partial oxidation reactor with enhanced heat control system
JP2005289919A (en) 2004-04-01 2005-10-20 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acid or (meth)acrolein
JP4742520B2 (en) * 2004-05-27 2011-08-10 三菱化学株式会社 Reactor, reactor control system, and catalytic gas phase oxidation reaction method
CN1988950B (en) * 2004-05-28 2012-09-05 住友化学株式会社 Heat exchange type reactor
KR100868454B1 (en) 2005-07-08 2008-11-11 주식회사 엘지화학 Method of producing unsaturated acid in fixed-bed catalytic partial oxidation reactor with high efficiency
US7897813B2 (en) 2006-07-19 2011-03-01 Nippon Shokubai Co., Ltd. Reactor for gas phase catalytic oxidation and a process for producing acrylic acid using it
JP5239995B2 (en) * 2008-03-31 2013-07-17 三菱化学株式会社 Plate reactor and reaction product production method
US8673245B2 (en) 2008-09-22 2014-03-18 Nippon Shokubai Co., Ltd. Fixed-bed reactor and process for producing acrylic acid using the reactor
US20100185001A1 (en) * 2009-01-19 2010-07-22 Van Maaren Wouter Process and apparatus for the production of ethylene oxide
JP2013083371A (en) * 2011-10-06 2013-05-09 Hitachi Industrial Equipment Systems Co Ltd Screw compressor
CN110787741A (en) * 2019-11-25 2020-02-14 榆林学院 Fixed bed reactor for preparing fluorocarbon imidazoline quaternary ammonium salt

Also Published As

Publication number Publication date
JPS5421966A (en) 1979-02-19

Similar Documents

Publication Publication Date Title
JPS6029290B2 (en) Catalytic vapor phase oxidation method
US4203906A (en) Process for catalytic vapor phase oxidation
US5276178A (en) Process for producing methacrolein and methacrylic acid
US6808689B1 (en) Reactor for catalytic gas phase oxidation
JP3646027B2 (en) Reactor for catalytic gas phase oxidation and method for producing (meth) acrylic acid using the same
US6563000B1 (en) Process for producing acrylic acid
JP4850851B2 (en) Process for producing unsaturated fatty acids
JPH0784400B2 (en) Process for producing unsaturated aldehyde and unsaturated acid
JPS5946132A (en) Catalyst for synthesis of methacrolein
KR20010112617A (en) A process for producing acrylic acid
US7238836B2 (en) Method of producing unsaturated aldehyde and unsaturated acid in fixed-bed catalytic partial oxidation reactor with enhanced heat control system
US7262324B2 (en) Method of producing unsaturated acid in fixed-bed catalytic partial oxidation reactor with enhanced heat control system
US6969774B2 (en) Method for producing methacrylic acid
JP4824867B2 (en) Method for producing methacrolein and methacrylic acid
JP2002212127A (en) Method for producing methacrolein and methacrylic acid
WO2002098827A1 (en) Process for producing (meth)acrolein and/or (meth)acrylic acid
JP4824871B2 (en) Method for producing acrolein and acrylic acid
JP6762370B2 (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4248163B2 (en) Method for producing methacrylic acid
KR810000227B1 (en) Process for catalytic vapor phase oxidation
JP5433321B2 (en) Method for producing (meth) acrylic acid
KR100992173B1 (en) Shell-and-tube heat exchanger type reactor and method of producing unsaturated aldehyde and/or unsaturated fatty acid using the same