JPS6028259A - Manufacture of capacitor for semiconductor device - Google Patents

Manufacture of capacitor for semiconductor device

Info

Publication number
JPS6028259A
JPS6028259A JP13610783A JP13610783A JPS6028259A JP S6028259 A JPS6028259 A JP S6028259A JP 13610783 A JP13610783 A JP 13610783A JP 13610783 A JP13610783 A JP 13610783A JP S6028259 A JPS6028259 A JP S6028259A
Authority
JP
Japan
Prior art keywords
film
ta2o5
density
tantalum oxide
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13610783A
Other languages
Japanese (ja)
Inventor
Shuichi Shirakawa
白川 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13610783A priority Critical patent/JPS6028259A/en
Publication of JPS6028259A publication Critical patent/JPS6028259A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the controllability of thickness of a Ta2O5 as well as to obtain the capacitor of high capacity density and low leak current by a method wherein an Si3N4 ultrathin film is formed on an Si substrate, and then a low N-impurity density and a high N-impurity density Ta2O5 are coated successively. CONSTITUTION:A heat treatment is performed on the N type Si substrate 1 at 1,200 deg.C for 1hr in 100% NH3, and an Si3N4 superthin film 2 of approximately 30Angstrom is formed thereon. Subsequently, at first a Ta2O5 film 3 of 300Angstrom containing N2 is coated in Ar+ O2 by performing an RF sputtering method using Ta2O5 as a target electrode, and while maintaining the above sputtering condition, a Ta2O5 film 4 of 200Angstrom containing high density of N2 is superposed by introducing N2 in Ar+O2. As a result, the density of N2 is high in the vicinity of surface 6 and it is gradually lowered in the direction of the interface of the films 2 and 5. Also, the Ta2O5 film 3 having high N-density is highly densed in structure, the contamination coming from outside can be prevented, and the leak current of the Ta2O5 film can also be reduced. An Al electrode 8 is attached, a heat treatment is performed at 400 deg.C for approximately 10min and the device is completed. As an ultrathin film 3 is used, the capacity is changed even when a heat treatment period is made longer, no Ta silicide is generated, and the capacitor having low leakage can be obtained.

Description

【発明の詳細な説明】 本発明は半導体装置用キャパシタの製造方法に関する。[Detailed description of the invention] The present invention relates to a method of manufacturing a capacitor for a semiconductor device.

従来、半導体装置用キャノくシタには、金属あるいは半
導体へ絶縁膜を付着し、さらに金属等の電極を被着した
構造のものが用いられて来た。絶縁膜としては2酸化シ
リコン(Si02)、アルミナ(71zOs)、窒化シ
リコン(8i3N4) 等の膜が用いられて来た。実装
密度の増加が望まれているためにこれらの絶縁膜よりも
大きな誘電率をもち、かつ極端に薄い誘電体膜が要求さ
れて来た。
2. Description of the Related Art Conventionally, canisters for semiconductor devices have a structure in which an insulating film is attached to a metal or a semiconductor, and an electrode made of metal or the like is further attached. Films such as silicon dioxide (Si02), alumina (71zOs), and silicon nitride (8i3N4) have been used as insulating films. Since it is desired to increase the packaging density, a dielectric film having a larger dielectric constant than those of these insulating films and an extremely thin dielectric film has been required.

1981年春季応用物理学会学術講演会講演予稿集第5
88頁にタンタル酸化物の誘電体を有する薄膜キャパシ
タの形成方法が示されている。上記の方法では、第1の
キャパシタ電極となるシリコン基板上にタンタルの薄膜
が高周波(RF)スパッタで被着される。このタンタル
薄膜を有するシリコン基板はそれから525℃の酸素雰
囲気中で熱処理される。タンタルはすべてタンタル酸化
物に変換される。第2のキャパシタ電極がメンタル酸化
物の膜の上に付着される。上記の方法に於いて不利な点
はこのキャパシタはリーク電流が大きいことである。上
記の方法に於いてタンタル薄膜を525℃の酸素雰囲気
中で熱処理してタンタル酸化物に変換した後、さらに1
000℃の酸素雰囲気中で熱処理するとタンタル酸化膜
とシリコン基板との間に薄いシリコン膜が形成されその
ためにリーク電流が減少することが述べられている。
Proceedings of the 1981 Spring Academic Conference of the Japan Society of Applied Physics, Volume 5
A method of forming a thin film capacitor having a tantalum oxide dielectric is shown on page 88. In the above method, a thin film of tantalum is deposited by radio frequency (RF) sputtering on a silicon substrate that will become a first capacitor electrode. The silicon substrate with this tantalum thin film is then heat treated in an oxygen atmosphere at 525°C. All tantalum is converted to tantalum oxide. A second capacitor electrode is deposited over the mental oxide film. A disadvantage of the above method is that the capacitor has a large leakage current. In the above method, the tantalum thin film is heat-treated in an oxygen atmosphere at 525°C to convert it into tantalum oxide, and then
It is stated that heat treatment in an oxygen atmosphere at 000° C. forms a thin silicon film between the tantalum oxide film and the silicon substrate, thereby reducing leakage current.

しかしながら新たにタンタル酸化膜とシリコン基板の界
面に形成されるシリコン酸化膜は誘電率が小さいために
タンタル酸化膜のみの場合とくらべると全体の容量が低
下してしまうという欠点があった。又タンタルがタンタ
ル酸化物に変換される時、タンタル酸化物の膜厚はタン
タル膜の膜厚の約2倍になるためシリコン基板面内のタ
ンタル膜厚バラツキの絶対値は2倍に拡大されてタンタ
ル酸化膜厚のバラツキの絶対値になってあられれるので
タンタル酸化膜の膜厚制御という面で製造技術上の問題
点があった。
However, since the silicon oxide film newly formed at the interface between the tantalum oxide film and the silicon substrate has a small dielectric constant, there is a drawback that the overall capacitance is lower than in the case of only the tantalum oxide film. Also, when tantalum is converted to tantalum oxide, the thickness of tantalum oxide is approximately twice that of the tantalum film, so the absolute value of the variation in tantalum film thickness within the silicon substrate is doubled. Since the variation in the thickness of the tantalum oxide film is determined by the absolute value, there is a problem in manufacturing technology in terms of controlling the thickness of the tantalum oxide film.

本発明はタンタル酸化膜とシリコン基板の間に超薄窒化
シリコン膜を形成することにょシタンタル酸化膜とシリ
コン基板が直接的に相互反応することを阻止してかつメ
ンタル酸化膜のリーク電流を減少させ、さらにタンタル
酸化膜のシリコン基板面内の膜厚制御を良くするために
タンタル膜を被着してからその後の熱処理でタンタル酸
化膜に変換するのではなく高周波スパッタ法を用いてタ
ンタル酸化物を被着形成してシリコン基板内の膜厚制御
を良くシ、さらにタンタル酸化膜表面近傍に膜質のちみ
つな窒素含有濃度の高いタンタル酸化膜を形成すること
によシ、外部からの汚染を防止し、リーク電流を減少さ
せ、さらにまたシリコン酸化膜よシも誘電率の犬き々超
薄窒化シリコン膜を使うことによって全体の容量低下も
少なくして上記の欠点を解消した半導体装置用キャパシ
タの製造方法を提供するものである。
The present invention prevents direct interaction between the tantalum oxide film and the silicon substrate and reduces leakage current of the mental oxide film by forming an ultra-thin silicon nitride film between the tantalum oxide film and the silicon substrate. Furthermore, in order to better control the thickness of the tantalum oxide film within the plane of the silicon substrate, instead of depositing the tantalum film and converting it into a tantalum oxide film through subsequent heat treatment, we used high-frequency sputtering to convert the tantalum oxide into a tantalum oxide film. By depositing and forming a tantalum oxide film to better control the film thickness within the silicon substrate, and by forming a thick tantalum oxide film with a high nitrogen content near the surface of the tantalum oxide film, it prevents contamination from the outside. Manufacture a capacitor for semiconductor devices that eliminates the above drawbacks by reducing leakage current and by using an ultra-thin silicon nitride film that has a much higher dielectric constant than a silicon oxide film, thereby reducing overall capacitance drop. The present invention provides a method.

すなわち、キャパシタの第1電極となるシリコン基板を
窒素を構成原子としてふくむ雰囲気中で熱処理して該シ
リコン基板の表面部に超薄窒化シリコン膜を形成し、上
記超薄窒化シリコン膜表面に、クンタル酸化物ターゲッ
トを用いて高周波スパッタ法でスパッタガス雰囲気中に
一定時間後から窒素を導入してタンタル酸化膜を被着形
成しタンタル酸化心中の窒素含有濃度をその膜厚方向に
対してタンタル酸化鉱lと超薄窒化シリコン脱界面近傍
で小さく、タンタル酸化膜表面に向って漸次増加してタ
ンタル酸化膜表面に至る窒素濃度勾配をもたせかかる絶
縁膜にキャパシタの第2電極を被着することを特徴とす
る半導体装置用キャパシタの製造方法である。
That is, a silicon substrate, which will become the first electrode of the capacitor, is heat-treated in an atmosphere containing nitrogen as a constituent atom to form an ultra-thin silicon nitride film on the surface of the silicon substrate, and Kuntal is applied to the surface of the ultra-thin silicon nitride film. Using an oxide target, nitrogen is introduced into the sputtering gas atmosphere after a certain period of time using a high-frequency sputtering method to form a tantalum oxide film, and the nitrogen concentration in the tantalum oxide core is adjusted in the direction of the film thickness. The second electrode of the capacitor is deposited on the insulating film, which has a nitrogen concentration gradient that is small near the interface between L and ultra-thin silicon nitride, gradually increases toward the surface of the tantalum oxide film, and reaches the surface of the tantalum oxide film. This is a method of manufacturing a capacitor for a semiconductor device.

以下本発明を第1図(a)〜O))を参月しながら実施
例について説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1(a) to O)).

1ず第1図(a)に示すようにΩ・cmO比抵抗のN型
シリコン半導体基板1を用い、100%アンモニア(N
H3)ガス中で、1200℃1時間加熱して第1図(1
))に示すようにシリコン半導体基板1の表面部3OA
の厚みの部分を超薄窒化シリコン膜2に変換プる。次に
第1図(C)に示すように超薄窒化シリコン膜2の上に
、5酸化タンタルをターゲット電極として、R−Fスパ
ッタ法にょシはしめにアルゴント酸素の混合ガス雰囲気
中で30OAの厚みの窒素を含″1.々いクンタル酸化
膜層3を被着形成し次にスパッタ状態を継持しながらア
ルゴンと酸素の混合ガス雰囲気中に窒素を導入して上記
の窒素を含まないタンタル酸化膜層3上に20OAの厚
みの窒素含有濃度の高いクンタル酸化膜層 64を被着
形成する。上記のRFスパッタに於いてはじめにアルゴ
ンと酸素の混合ガス雰囲気中で一定時間スバッタして窒
素を含まないタンタル酸化膜層3を形成した後、チャン
バー内に新たに蟹素を導入することにょシチャンバー内
に徐々に窒素が増力口して設定値に到達するためにタン
タル酸化膜5中の窒素含有濃度がその膜厚方向に対して
タンタル酸化膜の表面6の近傍でのみ大きくタンタル酸
化膜5と超薄窒化シリコン膜2との界面7に向って漸次
減少する窒素浸度勾配が自動的に形成される。上記の窒
素含有濃度の高いタンタル酸化膜層3は構造がちみっで
あるために外部からの汚染を防ぎかつまたクンタル酸化
膜のリーク電流を減少させるのに効果がある。
1. As shown in FIG. 1(a), an N-type silicon semiconductor substrate 1 with a resistivity of Ω·cmO is used, and 100% ammonia (N
H3) in a gas atmosphere at 1200°C for 1 hour.
)), the surface portion 3OA of the silicon semiconductor substrate 1
The thickness of the silicon nitride film 2 is converted into an ultra-thin silicon nitride film 2. Next, as shown in FIG. 1(C), tantalum pentoxide is used as a target electrode on the ultra-thin silicon nitride film 2, and a thickness of 30 OA is applied in an argon-oxygen mixed gas atmosphere by R-F sputtering. 1. Deposit and form a tantalum oxide film layer 3, and then introduce nitrogen into a mixed gas atmosphere of argon and oxygen while maintaining the sputtering state to form the above nitrogen-free tantalum oxide. A Kuntal oxide film layer 64 having a high nitrogen content concentration and having a thickness of 20 OA is deposited on the film layer 3. In the above RF sputtering, first sputtering is performed for a certain period of time in a mixed gas atmosphere of argon and oxygen to contain nitrogen. After forming the tantalum oxide film layer 3, the nitrogen content in the tantalum oxide film 5 is gradually increased by introducing nitrogen into the chamber to reach the set value. A nitrogen immersion gradient is automatically formed in which the concentration is large only near the surface 6 of the tantalum oxide film in the film thickness direction and gradually decreases toward the interface 7 between the tantalum oxide film 5 and the ultra-thin silicon nitride film 2. Since the tantalum oxide film layer 3 having a high nitrogen content concentration has a rigid structure, it is effective in preventing contamination from the outside and also in reducing leakage current of the Kuntal oxide film.

かかる絶縁膜2,3,4上に第1図(d)に示すように
1μmn厚さのアルミニウムを被Mしパターニングして
電極8を作る。次に400℃のN2雰囲気中で10分間
熱処理を行ないキャパシタとする。
As shown in FIG. 1(d), aluminum is coated and patterned to a thickness of 1 μm on the insulating films 2, 3, and 4 to form electrodes 8. Next, heat treatment is performed for 10 minutes in a N2 atmosphere at 400° C. to form a capacitor.

上記の方法で作製したキャパシタはタンタル膜をクンタ
ル酸化膜に変換する工程を経ずに直接R−F :X バ
ッタでタンタル酸化膜を形成するので、シリコン基板内
のタンタル酸化膜の膜厚制御性の良いものが得られる。
In the capacitor manufactured by the above method, the tantalum oxide film is directly formed using R-F:X batter without going through the process of converting the tantalum film to the quintal oxide film, so it is easy to control the film thickness of the tantalum oxide film in the silicon substrate. You can get good things.

またタンタル酸化膜とシリコン半導体基板の間に超薄窒
化シリコン膜があるために従来メンタル酸化膜のみの場
合問題となっていたリーク電流を減少させることが出来
る。さらにタンタル酸化膜表面近傍に構造のちみつな窒
素含有濃度の高いタンタル酸化膜層があるだめに外部か
らの汚染を防ぎ、タンタル酸化膜のリーク電流を減らす
ことが出来る。
Furthermore, since there is an ultra-thin silicon nitride film between the tantalum oxide film and the silicon semiconductor substrate, it is possible to reduce leakage current, which has conventionally been a problem when only a mental oxide film is used. Furthermore, since there is a tantalum oxide film layer with a rich structure and high nitrogen content near the surface of the tantalum oxide film, it is possible to prevent contamination from the outside and reduce leakage current of the tantalum oxide film.

さらにタンタル酸化膜とシリコン半導体基板との間に酸
化雰囲気中で熱処理することによって2酸化シリコン膜
を形成してリーク電流を減少させる公知の方法は、熱処
理時間を増すとそれにともなって2酸化シリコン膜厚が
増加しそのため全体の容量値が時間と共に減少する。さ
らに高温で熱処理すると薄い2酸化シリコン膜ではタン
タルシリサイドの形成を防ぐととが出来ないという欠点
があるが、本発明の方法はちみつな超薄窒化シリコン膜
を使っているので、熱処理時間を長くしても容量値は変
化せず、タンタルシリサイドの形成も防ぐことが出来、
リーク電流の少々いキャノ(シタが得られる。
Furthermore, in the known method of reducing leakage current by forming a silicon dioxide film between a tantalum oxide film and a silicon semiconductor substrate by heat treatment in an oxidizing atmosphere, as the heat treatment time increases, the silicon dioxide film The thickness increases so that the overall capacitance value decreases over time. Furthermore, when heat-treated at high temperatures, a thin silicon dioxide film cannot prevent the formation of tantalum silicide. However, the capacitance value does not change and the formation of tantalum silicide can be prevented.
A slight leakage current can be obtained.

以上詳細に説明したように、本発明はシリコン半導体基
板に超薄窒化シリコン膿を形成し、その後窒素含有!5
度の低い、タンタル酸化膜層と窒素含有濃度の高い6タ
ンタル酸什診層とを順次被着形成することによって、タ
ンクル醇化膜の膜厚制御性が良く容量密度が太きくしか
もリーク電流の小さいキャパシタかえられる。
As explained in detail above, the present invention forms ultra-thin silicon nitride pus on a silicon semiconductor substrate, and then contains nitrogen! 5
By sequentially depositing a tantalum oxide layer with a low concentration and a 6-tantalum acid inspection layer with a high nitrogen content, the tantalum oxide film has good film thickness controllability, high capacitance density, and low leakage current. Capacitor can be replaced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜((i)は各々本発明に係るキャノくシ
タの製造工程を説明する工程順断面図である。 なお1lDKkいて、1・・・・・・シリコン半導体基
板、2・・・・・・超薄り化シリコン欣、3・・・・・
・窒素含有濃度の高いクンクル酸化腰層、5・・・・・
・タンタル酸化膜、6・・・・・・クンタル酸化■゛−
表面、7・・・・−・タンクル酸化膜と超薄値化シリコ
ン膜との界面、8−・・・金属電極、である。
FIGS. 1(a) to 1(i) are sequential cross-sectional views illustrating the manufacturing process of a canopy according to the present invention. ...Ultra-thin silicone, 3...
- Kunkle oxidized waist layer with high nitrogen content, 5...
・Tantalum oxide film, 6... Kuntal oxide ■゛-
Surface, 7... Interface between tank oxide film and ultra-thinned silicon film, 8-... Metal electrode.

Claims (1)

【特許請求の範囲】[Claims] シリコン基板の主表面上に窒化シリコン膜を形成し、該
窒化シリコン膜主表面上に、タンタル酸化物ターゲット
を用いて高周波スノ(ツタ法テスノ(ツタガス雰囲気中
に一定時間後から窒素を導入してタンタル酸化膜を被着
形成することを特徴とする半導体装置用キャパシタの製
造方法。
A silicon nitride film is formed on the main surface of a silicon substrate, and a tantalum oxide target is used on the main surface of the silicon nitride film to form a high-frequency nitride film. A method for manufacturing a capacitor for a semiconductor device, which comprises depositing a tantalum oxide film.
JP13610783A 1983-07-26 1983-07-26 Manufacture of capacitor for semiconductor device Pending JPS6028259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13610783A JPS6028259A (en) 1983-07-26 1983-07-26 Manufacture of capacitor for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13610783A JPS6028259A (en) 1983-07-26 1983-07-26 Manufacture of capacitor for semiconductor device

Publications (1)

Publication Number Publication Date
JPS6028259A true JPS6028259A (en) 1985-02-13

Family

ID=15167444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13610783A Pending JPS6028259A (en) 1983-07-26 1983-07-26 Manufacture of capacitor for semiconductor device

Country Status (1)

Country Link
JP (1) JPS6028259A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291538A (en) * 1987-05-21 1988-11-29 Binshiyoo:Kk Edible book for eating while reading
JPS6432088U (en) * 1987-08-24 1989-02-28
US5254505A (en) * 1990-08-31 1993-10-19 Nec Corporation Process of forming capacitive insulating film
EP0880167A2 (en) * 1997-05-23 1998-11-25 Lucent Technologies Inc. Capacitor comprising improved ta0x-based dielectric

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291538A (en) * 1987-05-21 1988-11-29 Binshiyoo:Kk Edible book for eating while reading
JPS6432088U (en) * 1987-08-24 1989-02-28
US5254505A (en) * 1990-08-31 1993-10-19 Nec Corporation Process of forming capacitive insulating film
EP0880167A2 (en) * 1997-05-23 1998-11-25 Lucent Technologies Inc. Capacitor comprising improved ta0x-based dielectric
EP0880167A3 (en) * 1997-05-23 1998-12-02 Lucent Technologies Inc. Capacitor comprising improved ta0x-based dielectric

Similar Documents

Publication Publication Date Title
JP2722873B2 (en) Semiconductor device and manufacturing method thereof
JPS58220457A (en) Method of forming dielectric material
JPH01225149A (en) Capacitor and manufacture thereof
JPH04279053A (en) High-valued tantalum oxide capacitor
JPH09116104A (en) Manufacture of capacitor for semiconductor element
JPH09246477A (en) Manufacture of capacitor of semiconductor device
JPH0563205A (en) Semiconductor device
JPH0311635A (en) Manufacture of compound semiconductor device
JPH05243487A (en) Integrated circuit
US6740941B2 (en) Semiconductor device including a gate insulating film made of high-dielectric-constant material
JPS6028259A (en) Manufacture of capacitor for semiconductor device
JPH0745475A (en) Thin film capacitor and fabrication thereof
TWI222697B (en) A capacitor having a TaON dielectric film in a semiconductor device and a method for manufacturing the same
JPS5928369A (en) Manufacture of capacitor for semiconductor device
JPS58112360A (en) Capacitor for semiconductor device and manufacture thereof
JPS59215764A (en) Manufacture of capacitor for semiconductor device
GB2179679A (en) Forming a dielectric film and semiconductor device including said film
JPH09260372A (en) Manufacture of insulating film of semiconductor device
JPS60160155A (en) Method for forming capacitance element
JPH021124A (en) Manufacture of dielectric film
JPS5943549A (en) Method of forming aluminum wiring layer
JPS59188957A (en) Manufacture of capacitor for semiconductor device
JPS6242392B2 (en)
JPH0587164B2 (en)
JPS60107838A (en) Manufacture of semiconductor device