JPS6028259A - Manufacture of capacitor for semiconductor device - Google Patents
Manufacture of capacitor for semiconductor deviceInfo
- Publication number
- JPS6028259A JPS6028259A JP13610783A JP13610783A JPS6028259A JP S6028259 A JPS6028259 A JP S6028259A JP 13610783 A JP13610783 A JP 13610783A JP 13610783 A JP13610783 A JP 13610783A JP S6028259 A JPS6028259 A JP S6028259A
- Authority
- JP
- Japan
- Prior art keywords
- film
- ta2o5
- density
- tantalum oxide
- oxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 16
- 239000004065 semiconductor Substances 0.000 title claims description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 11
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 43
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 41
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 20
- 239000010703 silicon Substances 0.000 claims description 20
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 14
- 238000000151 deposition Methods 0.000 claims description 4
- 150000004767 nitrides Chemical class 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 8
- 238000004544 sputter deposition Methods 0.000 abstract description 8
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 abstract description 8
- 238000011109 contamination Methods 0.000 abstract description 4
- 229910021332 silicide Inorganic materials 0.000 abstract description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 abstract description 3
- 238000001552 radio frequency sputter deposition Methods 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 abstract 2
- 239000010408 film Substances 0.000 description 72
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 32
- 229910052757 nitrogen Inorganic materials 0.000 description 16
- 229910052715 tantalum Inorganic materials 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 239000012298 atmosphere Substances 0.000 description 10
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 230000003340 mental effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 150000003481 tantalum Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Formation Of Insulating Films (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は半導体装置用キャパシタの製造方法に関する。[Detailed description of the invention] The present invention relates to a method of manufacturing a capacitor for a semiconductor device.
従来、半導体装置用キャノくシタには、金属あるいは半
導体へ絶縁膜を付着し、さらに金属等の電極を被着した
構造のものが用いられて来た。絶縁膜としては2酸化シ
リコン(Si02)、アルミナ(71zOs)、窒化シ
リコン(8i3N4) 等の膜が用いられて来た。実装
密度の増加が望まれているためにこれらの絶縁膜よりも
大きな誘電率をもち、かつ極端に薄い誘電体膜が要求さ
れて来た。2. Description of the Related Art Conventionally, canisters for semiconductor devices have a structure in which an insulating film is attached to a metal or a semiconductor, and an electrode made of metal or the like is further attached. Films such as silicon dioxide (Si02), alumina (71zOs), and silicon nitride (8i3N4) have been used as insulating films. Since it is desired to increase the packaging density, a dielectric film having a larger dielectric constant than those of these insulating films and an extremely thin dielectric film has been required.
1981年春季応用物理学会学術講演会講演予稿集第5
88頁にタンタル酸化物の誘電体を有する薄膜キャパシ
タの形成方法が示されている。上記の方法では、第1の
キャパシタ電極となるシリコン基板上にタンタルの薄膜
が高周波(RF)スパッタで被着される。このタンタル
薄膜を有するシリコン基板はそれから525℃の酸素雰
囲気中で熱処理される。タンタルはすべてタンタル酸化
物に変換される。第2のキャパシタ電極がメンタル酸化
物の膜の上に付着される。上記の方法に於いて不利な点
はこのキャパシタはリーク電流が大きいことである。上
記の方法に於いてタンタル薄膜を525℃の酸素雰囲気
中で熱処理してタンタル酸化物に変換した後、さらに1
000℃の酸素雰囲気中で熱処理するとタンタル酸化膜
とシリコン基板との間に薄いシリコン膜が形成されその
ためにリーク電流が減少することが述べられている。Proceedings of the 1981 Spring Academic Conference of the Japan Society of Applied Physics, Volume 5
A method of forming a thin film capacitor having a tantalum oxide dielectric is shown on page 88. In the above method, a thin film of tantalum is deposited by radio frequency (RF) sputtering on a silicon substrate that will become a first capacitor electrode. The silicon substrate with this tantalum thin film is then heat treated in an oxygen atmosphere at 525°C. All tantalum is converted to tantalum oxide. A second capacitor electrode is deposited over the mental oxide film. A disadvantage of the above method is that the capacitor has a large leakage current. In the above method, the tantalum thin film is heat-treated in an oxygen atmosphere at 525°C to convert it into tantalum oxide, and then
It is stated that heat treatment in an oxygen atmosphere at 000° C. forms a thin silicon film between the tantalum oxide film and the silicon substrate, thereby reducing leakage current.
しかしながら新たにタンタル酸化膜とシリコン基板の界
面に形成されるシリコン酸化膜は誘電率が小さいために
タンタル酸化膜のみの場合とくらべると全体の容量が低
下してしまうという欠点があった。又タンタルがタンタ
ル酸化物に変換される時、タンタル酸化物の膜厚はタン
タル膜の膜厚の約2倍になるためシリコン基板面内のタ
ンタル膜厚バラツキの絶対値は2倍に拡大されてタンタ
ル酸化膜厚のバラツキの絶対値になってあられれるので
タンタル酸化膜の膜厚制御という面で製造技術上の問題
点があった。However, since the silicon oxide film newly formed at the interface between the tantalum oxide film and the silicon substrate has a small dielectric constant, there is a drawback that the overall capacitance is lower than in the case of only the tantalum oxide film. Also, when tantalum is converted to tantalum oxide, the thickness of tantalum oxide is approximately twice that of the tantalum film, so the absolute value of the variation in tantalum film thickness within the silicon substrate is doubled. Since the variation in the thickness of the tantalum oxide film is determined by the absolute value, there is a problem in manufacturing technology in terms of controlling the thickness of the tantalum oxide film.
本発明はタンタル酸化膜とシリコン基板の間に超薄窒化
シリコン膜を形成することにょシタンタル酸化膜とシリ
コン基板が直接的に相互反応することを阻止してかつメ
ンタル酸化膜のリーク電流を減少させ、さらにタンタル
酸化膜のシリコン基板面内の膜厚制御を良くするために
タンタル膜を被着してからその後の熱処理でタンタル酸
化膜に変換するのではなく高周波スパッタ法を用いてタ
ンタル酸化物を被着形成してシリコン基板内の膜厚制御
を良くシ、さらにタンタル酸化膜表面近傍に膜質のちみ
つな窒素含有濃度の高いタンタル酸化膜を形成すること
によシ、外部からの汚染を防止し、リーク電流を減少さ
せ、さらにまたシリコン酸化膜よシも誘電率の犬き々超
薄窒化シリコン膜を使うことによって全体の容量低下も
少なくして上記の欠点を解消した半導体装置用キャパシ
タの製造方法を提供するものである。The present invention prevents direct interaction between the tantalum oxide film and the silicon substrate and reduces leakage current of the mental oxide film by forming an ultra-thin silicon nitride film between the tantalum oxide film and the silicon substrate. Furthermore, in order to better control the thickness of the tantalum oxide film within the plane of the silicon substrate, instead of depositing the tantalum film and converting it into a tantalum oxide film through subsequent heat treatment, we used high-frequency sputtering to convert the tantalum oxide into a tantalum oxide film. By depositing and forming a tantalum oxide film to better control the film thickness within the silicon substrate, and by forming a thick tantalum oxide film with a high nitrogen content near the surface of the tantalum oxide film, it prevents contamination from the outside. Manufacture a capacitor for semiconductor devices that eliminates the above drawbacks by reducing leakage current and by using an ultra-thin silicon nitride film that has a much higher dielectric constant than a silicon oxide film, thereby reducing overall capacitance drop. The present invention provides a method.
すなわち、キャパシタの第1電極となるシリコン基板を
窒素を構成原子としてふくむ雰囲気中で熱処理して該シ
リコン基板の表面部に超薄窒化シリコン膜を形成し、上
記超薄窒化シリコン膜表面に、クンタル酸化物ターゲッ
トを用いて高周波スパッタ法でスパッタガス雰囲気中に
一定時間後から窒素を導入してタンタル酸化膜を被着形
成しタンタル酸化心中の窒素含有濃度をその膜厚方向に
対してタンタル酸化鉱lと超薄窒化シリコン脱界面近傍
で小さく、タンタル酸化膜表面に向って漸次増加してタ
ンタル酸化膜表面に至る窒素濃度勾配をもたせかかる絶
縁膜にキャパシタの第2電極を被着することを特徴とす
る半導体装置用キャパシタの製造方法である。That is, a silicon substrate, which will become the first electrode of the capacitor, is heat-treated in an atmosphere containing nitrogen as a constituent atom to form an ultra-thin silicon nitride film on the surface of the silicon substrate, and Kuntal is applied to the surface of the ultra-thin silicon nitride film. Using an oxide target, nitrogen is introduced into the sputtering gas atmosphere after a certain period of time using a high-frequency sputtering method to form a tantalum oxide film, and the nitrogen concentration in the tantalum oxide core is adjusted in the direction of the film thickness. The second electrode of the capacitor is deposited on the insulating film, which has a nitrogen concentration gradient that is small near the interface between L and ultra-thin silicon nitride, gradually increases toward the surface of the tantalum oxide film, and reaches the surface of the tantalum oxide film. This is a method of manufacturing a capacitor for a semiconductor device.
以下本発明を第1図(a)〜O))を参月しながら実施
例について説明する。Embodiments of the present invention will be described below with reference to FIGS. 1(a) to O)).
1ず第1図(a)に示すようにΩ・cmO比抵抗のN型
シリコン半導体基板1を用い、100%アンモニア(N
H3)ガス中で、1200℃1時間加熱して第1図(1
))に示すようにシリコン半導体基板1の表面部3OA
の厚みの部分を超薄窒化シリコン膜2に変換プる。次に
第1図(C)に示すように超薄窒化シリコン膜2の上に
、5酸化タンタルをターゲット電極として、R−Fスパ
ッタ法にょシはしめにアルゴント酸素の混合ガス雰囲気
中で30OAの厚みの窒素を含″1.々いクンタル酸化
膜層3を被着形成し次にスパッタ状態を継持しながらア
ルゴンと酸素の混合ガス雰囲気中に窒素を導入して上記
の窒素を含まないタンタル酸化膜層3上に20OAの厚
みの窒素含有濃度の高いクンタル酸化膜層 64を被着
形成する。上記のRFスパッタに於いてはじめにアルゴ
ンと酸素の混合ガス雰囲気中で一定時間スバッタして窒
素を含まないタンタル酸化膜層3を形成した後、チャン
バー内に新たに蟹素を導入することにょシチャンバー内
に徐々に窒素が増力口して設定値に到達するためにタン
タル酸化膜5中の窒素含有濃度がその膜厚方向に対して
タンタル酸化膜の表面6の近傍でのみ大きくタンタル酸
化膜5と超薄窒化シリコン膜2との界面7に向って漸次
減少する窒素浸度勾配が自動的に形成される。上記の窒
素含有濃度の高いタンタル酸化膜層3は構造がちみっで
あるために外部からの汚染を防ぎかつまたクンタル酸化
膜のリーク電流を減少させるのに効果がある。1. As shown in FIG. 1(a), an N-type silicon semiconductor substrate 1 with a resistivity of Ω·cmO is used, and 100% ammonia (N
H3) in a gas atmosphere at 1200°C for 1 hour.
)), the surface portion 3OA of the silicon semiconductor substrate 1
The thickness of the silicon nitride film 2 is converted into an ultra-thin silicon nitride film 2. Next, as shown in FIG. 1(C), tantalum pentoxide is used as a target electrode on the ultra-thin silicon nitride film 2, and a thickness of 30 OA is applied in an argon-oxygen mixed gas atmosphere by R-F sputtering. 1. Deposit and form a tantalum oxide film layer 3, and then introduce nitrogen into a mixed gas atmosphere of argon and oxygen while maintaining the sputtering state to form the above nitrogen-free tantalum oxide. A Kuntal oxide film layer 64 having a high nitrogen content concentration and having a thickness of 20 OA is deposited on the film layer 3. In the above RF sputtering, first sputtering is performed for a certain period of time in a mixed gas atmosphere of argon and oxygen to contain nitrogen. After forming the tantalum oxide film layer 3, the nitrogen content in the tantalum oxide film 5 is gradually increased by introducing nitrogen into the chamber to reach the set value. A nitrogen immersion gradient is automatically formed in which the concentration is large only near the surface 6 of the tantalum oxide film in the film thickness direction and gradually decreases toward the interface 7 between the tantalum oxide film 5 and the ultra-thin silicon nitride film 2. Since the tantalum oxide film layer 3 having a high nitrogen content concentration has a rigid structure, it is effective in preventing contamination from the outside and also in reducing leakage current of the Kuntal oxide film.
かかる絶縁膜2,3,4上に第1図(d)に示すように
1μmn厚さのアルミニウムを被Mしパターニングして
電極8を作る。次に400℃のN2雰囲気中で10分間
熱処理を行ないキャパシタとする。As shown in FIG. 1(d), aluminum is coated and patterned to a thickness of 1 μm on the insulating films 2, 3, and 4 to form electrodes 8. Next, heat treatment is performed for 10 minutes in a N2 atmosphere at 400° C. to form a capacitor.
上記の方法で作製したキャパシタはタンタル膜をクンタ
ル酸化膜に変換する工程を経ずに直接R−F :X バ
ッタでタンタル酸化膜を形成するので、シリコン基板内
のタンタル酸化膜の膜厚制御性の良いものが得られる。In the capacitor manufactured by the above method, the tantalum oxide film is directly formed using R-F:X batter without going through the process of converting the tantalum film to the quintal oxide film, so it is easy to control the film thickness of the tantalum oxide film in the silicon substrate. You can get good things.
またタンタル酸化膜とシリコン半導体基板の間に超薄窒
化シリコン膜があるために従来メンタル酸化膜のみの場
合問題となっていたリーク電流を減少させることが出来
る。さらにタンタル酸化膜表面近傍に構造のちみつな窒
素含有濃度の高いタンタル酸化膜層があるだめに外部か
らの汚染を防ぎ、タンタル酸化膜のリーク電流を減らす
ことが出来る。Furthermore, since there is an ultra-thin silicon nitride film between the tantalum oxide film and the silicon semiconductor substrate, it is possible to reduce leakage current, which has conventionally been a problem when only a mental oxide film is used. Furthermore, since there is a tantalum oxide film layer with a rich structure and high nitrogen content near the surface of the tantalum oxide film, it is possible to prevent contamination from the outside and reduce leakage current of the tantalum oxide film.
さらにタンタル酸化膜とシリコン半導体基板との間に酸
化雰囲気中で熱処理することによって2酸化シリコン膜
を形成してリーク電流を減少させる公知の方法は、熱処
理時間を増すとそれにともなって2酸化シリコン膜厚が
増加しそのため全体の容量値が時間と共に減少する。さ
らに高温で熱処理すると薄い2酸化シリコン膜ではタン
タルシリサイドの形成を防ぐととが出来ないという欠点
があるが、本発明の方法はちみつな超薄窒化シリコン膜
を使っているので、熱処理時間を長くしても容量値は変
化せず、タンタルシリサイドの形成も防ぐことが出来、
リーク電流の少々いキャノ(シタが得られる。Furthermore, in the known method of reducing leakage current by forming a silicon dioxide film between a tantalum oxide film and a silicon semiconductor substrate by heat treatment in an oxidizing atmosphere, as the heat treatment time increases, the silicon dioxide film The thickness increases so that the overall capacitance value decreases over time. Furthermore, when heat-treated at high temperatures, a thin silicon dioxide film cannot prevent the formation of tantalum silicide. However, the capacitance value does not change and the formation of tantalum silicide can be prevented.
A slight leakage current can be obtained.
以上詳細に説明したように、本発明はシリコン半導体基
板に超薄窒化シリコン膿を形成し、その後窒素含有!5
度の低い、タンタル酸化膜層と窒素含有濃度の高い6タ
ンタル酸什診層とを順次被着形成することによって、タ
ンクル醇化膜の膜厚制御性が良く容量密度が太きくしか
もリーク電流の小さいキャパシタかえられる。As explained in detail above, the present invention forms ultra-thin silicon nitride pus on a silicon semiconductor substrate, and then contains nitrogen! 5
By sequentially depositing a tantalum oxide layer with a low concentration and a 6-tantalum acid inspection layer with a high nitrogen content, the tantalum oxide film has good film thickness controllability, high capacitance density, and low leakage current. Capacitor can be replaced.
第1図(a)〜((i)は各々本発明に係るキャノくシ
タの製造工程を説明する工程順断面図である。
なお1lDKkいて、1・・・・・・シリコン半導体基
板、2・・・・・・超薄り化シリコン欣、3・・・・・
・窒素含有濃度の高いクンクル酸化腰層、5・・・・・
・タンタル酸化膜、6・・・・・・クンタル酸化■゛−
表面、7・・・・−・タンクル酸化膜と超薄値化シリコ
ン膜との界面、8−・・・金属電極、である。FIGS. 1(a) to 1(i) are sequential cross-sectional views illustrating the manufacturing process of a canopy according to the present invention. ...Ultra-thin silicone, 3...
- Kunkle oxidized waist layer with high nitrogen content, 5...
・Tantalum oxide film, 6... Kuntal oxide ■゛-
Surface, 7... Interface between tank oxide film and ultra-thinned silicon film, 8-... Metal electrode.
Claims (1)
窒化シリコン膜主表面上に、タンタル酸化物ターゲット
を用いて高周波スノ(ツタ法テスノ(ツタガス雰囲気中
に一定時間後から窒素を導入してタンタル酸化膜を被着
形成することを特徴とする半導体装置用キャパシタの製
造方法。A silicon nitride film is formed on the main surface of a silicon substrate, and a tantalum oxide target is used on the main surface of the silicon nitride film to form a high-frequency nitride film. A method for manufacturing a capacitor for a semiconductor device, which comprises depositing a tantalum oxide film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13610783A JPS6028259A (en) | 1983-07-26 | 1983-07-26 | Manufacture of capacitor for semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13610783A JPS6028259A (en) | 1983-07-26 | 1983-07-26 | Manufacture of capacitor for semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6028259A true JPS6028259A (en) | 1985-02-13 |
Family
ID=15167444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13610783A Pending JPS6028259A (en) | 1983-07-26 | 1983-07-26 | Manufacture of capacitor for semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6028259A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63291538A (en) * | 1987-05-21 | 1988-11-29 | Binshiyoo:Kk | Edible book for eating while reading |
JPS6432088U (en) * | 1987-08-24 | 1989-02-28 | ||
US5254505A (en) * | 1990-08-31 | 1993-10-19 | Nec Corporation | Process of forming capacitive insulating film |
EP0880167A2 (en) * | 1997-05-23 | 1998-11-25 | Lucent Technologies Inc. | Capacitor comprising improved ta0x-based dielectric |
-
1983
- 1983-07-26 JP JP13610783A patent/JPS6028259A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63291538A (en) * | 1987-05-21 | 1988-11-29 | Binshiyoo:Kk | Edible book for eating while reading |
JPS6432088U (en) * | 1987-08-24 | 1989-02-28 | ||
US5254505A (en) * | 1990-08-31 | 1993-10-19 | Nec Corporation | Process of forming capacitive insulating film |
EP0880167A2 (en) * | 1997-05-23 | 1998-11-25 | Lucent Technologies Inc. | Capacitor comprising improved ta0x-based dielectric |
EP0880167A3 (en) * | 1997-05-23 | 1998-12-02 | Lucent Technologies Inc. | Capacitor comprising improved ta0x-based dielectric |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2722873B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS58220457A (en) | Method of forming dielectric material | |
JPH01225149A (en) | Capacitor and manufacture thereof | |
JPH04279053A (en) | High-valued tantalum oxide capacitor | |
JPH09116104A (en) | Manufacture of capacitor for semiconductor element | |
JPH09246477A (en) | Manufacture of capacitor of semiconductor device | |
JPH0563205A (en) | Semiconductor device | |
JPH0311635A (en) | Manufacture of compound semiconductor device | |
JPH05243487A (en) | Integrated circuit | |
US6740941B2 (en) | Semiconductor device including a gate insulating film made of high-dielectric-constant material | |
JPS6028259A (en) | Manufacture of capacitor for semiconductor device | |
JPH0745475A (en) | Thin film capacitor and fabrication thereof | |
TWI222697B (en) | A capacitor having a TaON dielectric film in a semiconductor device and a method for manufacturing the same | |
JPS5928369A (en) | Manufacture of capacitor for semiconductor device | |
JPS58112360A (en) | Capacitor for semiconductor device and manufacture thereof | |
JPS59215764A (en) | Manufacture of capacitor for semiconductor device | |
GB2179679A (en) | Forming a dielectric film and semiconductor device including said film | |
JPH09260372A (en) | Manufacture of insulating film of semiconductor device | |
JPS60160155A (en) | Method for forming capacitance element | |
JPH021124A (en) | Manufacture of dielectric film | |
JPS5943549A (en) | Method of forming aluminum wiring layer | |
JPS59188957A (en) | Manufacture of capacitor for semiconductor device | |
JPS6242392B2 (en) | ||
JPH0587164B2 (en) | ||
JPS60107838A (en) | Manufacture of semiconductor device |