JPS6028049A - Optothermomagnetic recording medium - Google Patents
Optothermomagnetic recording mediumInfo
- Publication number
- JPS6028049A JPS6028049A JP13511383A JP13511383A JPS6028049A JP S6028049 A JPS6028049 A JP S6028049A JP 13511383 A JP13511383 A JP 13511383A JP 13511383 A JP13511383 A JP 13511383A JP S6028049 A JPS6028049 A JP S6028049A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- recording medium
- magnetic
- photothermal
- recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
- G11B11/10582—Record carriers characterised by the selection of the material or by the structure or form
- G11B11/10586—Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
Landscapes
- Paints Or Removers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、光磁気メモリー、磁気記録、表示素子などに
用いられ、磁気カー効果あるいはファラデー効果などの
磁気光学効果を用いて読み出すことのできる光熱磁気記
録媒体における改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in a magneto-optical recording medium that is used in magneto-optical memories, magnetic recording, display elements, etc. and can be read using magneto-optic effects such as the magnetic Kerr effect or the Faraday effect. .
従来、光熱磁気記録媒体としてはMnn1、MnCuB
入などの多結晶薄膜、GdC01GdFe、 TbFe
、 DyFe、 GdTbFq’rbnype1GdF
6CO1TbFeCo、GdTbCQなどの非晶質薄膜
、GdIG などの単結晶薄膜などが知られている。Conventionally, Mnn1, MnCuB have been used as photothermal magnetic recording media.
Polycrystalline thin films such as GdC01GdFe, TbFe
, DyFe, GdTbFq'rbnype1GdF
Amorphous thin films such as 6CO1TbFeCo and GdTbCQ, and single crystal thin films such as GdIG are known.
これらの薄膜のうち、大面積の薄膜を室温近傍の温度で
製作する際の成膜性、信号を小さな光熱エネルギーで書
き込むための書き込み効率、および書き込まれた信号を
S/N比よ(読み出すための読み出し効率等を勘案して
、最近では前記非晶質薄膜が光熱磁気記録媒体用として
優れていると考えられている。特に、GdTbFe は
カー回転角も大きく、/汐0°C前後のキューリ一点を
持つので、光熱磁気記録媒体用として最適である。これ
らの非晶質磁性体にni、 ae、 co 等を加える
とさらに大きな磁気光学効果が得られるが、キューリ一
点が上昇して記録感度が低下する欠点がある。Among these thin films, there are various issues such as film formability when manufacturing large-area thin films at temperatures near room temperature, writing efficiency for writing signals with small photothermal energy, and S/N ratio of written signals (for reading). Recently, the amorphous thin film is considered to be excellent for use in photothermal magnetic recording media, taking into consideration the readout efficiency of GdTbFe.In particular, GdTbFe has a large Kerr rotation angle and is Since it has a single point, it is ideal for photothermal magnetic recording media.If ni, ae, co, etc. are added to these amorphous magnetic materials, an even greater magneto-optical effect can be obtained, but the Curie point increases and the recording sensitivity decreases. There is a disadvantage that the value decreases.
また、GdTbFe をはじめとして、一般に非晶質磁
性体は耐腐食性が劣り、湿気を有する雰囲気中では腐食
されて磁気特性の劣化を生じるという欠点がある。Si
、Cr、Ti 等の元素を添加すると耐腐食性は向上す
るが、やはりキューリ一点が上昇して記録感度が低下す
る欠点がある。In addition, amorphous magnetic materials such as GdTbFe generally have poor corrosion resistance and are corroded in a humid atmosphere, resulting in deterioration of magnetic properties. Si
Although the corrosion resistance is improved by adding elements such as , Cr, and Ti, there is still a drawback that the Curie point increases and the recording sensitivity decreases.
このような欠点を除くためK、従来がら、非晶質磁性体
の記録磁性層の上に保護層を設けたり、あるいは不活性
ガスによって記録磁性層を封じ込めたエアーサンドイン
チ構造や貼り合わせ構造のディスク状光熱磁気記録媒体
が提案されている。In order to eliminate these drawbacks, K has conventionally provided a protective layer on the recording magnetic layer made of an amorphous magnetic material, or created an air sandwich structure or a bonded structure in which the recording magnetic layer is sealed with an inert gas. Disk-shaped photothermal magnetic recording media have been proposed.
本発明の目的は磁気光学効果に優れ、かつ記録感度のよ
い光熱磁気記録媒体を提供するととKある。An object of the present invention is to provide a photothermal magnetic recording medium with excellent magneto-optic effects and good recording sensitivity.
この目的は次の光熱磁気記録媒体により達成される。This objective is achieved by the following photothermal magnetic recording medium.
基板上に磁性薄膜記録層と必要ならば補助層を設けた光
熱磁気記録媒体において、前記磁性薄膜記録層が少なく
とも一種類の添加物を含んだ非晶質磁性材料から成り該
記録層の基板側とその反対側で前記添加物の磁性材料全
体に対する組成比を変え、抗磁力と異ならしめたことを
特徴とする光熱磁気記録媒体。In a photothermal magnetic recording medium in which a magnetic thin film recording layer and, if necessary, an auxiliary layer are provided on a substrate, the magnetic thin film recording layer is made of an amorphous magnetic material containing at least one kind of additive, and the substrate side of the recording layer is and a photothermal magnetic recording medium characterized in that the composition ratio of the additive to the entire magnetic material is changed on the opposite side to make the coercive force different.
磁性薄膜記録層の抗磁力が、基板側でSθ〜10000
θ その反対側で10θ0−+θθ00θであることが
特に好ましい。The coercive force of the magnetic thin film recording layer is Sθ~10000 on the substrate side.
It is particularly preferred that θ is 10θ0−+θθ00θ on the opposite side.
更に、Co、Bi、Cr、ce、Si、Ti、Ni 等
の元素の少なくとも1つを含有することが特に好ましい
。Furthermore, it is particularly preferable to contain at least one of elements such as Co, Bi, Cr, ce, Si, Ti, and Ni.
ここで、非晶質磁性薄膜は通常ca、’rb、Dy等の
希土類元素群とFe、Co等の遷移金属元素群とから成
り、それぞれ高周波スパッタ装置を用い、スパッタによ
り膜厚θθ/〜0.2μmに形成する。Here, the amorphous magnetic thin film is usually composed of a rare earth element group such as ca, 'rb, Dy, etc. and a transition metal element group such as Fe, Co, etc., and each is sputtered to a film thickness θθ/~0 using a high frequency sputtering device. .2 μm thick.
本発明はエアーサンドイッチ構造や貼り合わせ構造の光
熱磁気記録媒体に適用できる。また、書き込み側基板と
光熱磁気記録層の間に、有機樹脂などの断熱層、あるい
は使用光に対して透明で成膜したときの屈折率の大きい
染料または顔料よりなる層を形成したり、Ti、cr、
zn、Al、Si などの金属! ?、、−ハ’rio
、 IAI、 O,、sio、 I cr2o3などの
酸化物よりなる保護層を形成することができる。また、
インデックスマークやトラッキングマークな書き込んだ
層など種々の補助層を設けたり、表面が多孔質@に加工
された書き込み側基板を用いることができる。記録層−
付きの基板と保護用基板を貼り合わせる接着層をダイア
ナ〔菱江化学■〕、コールトップ〔日本加工製紙■〕、
V、P、M (日本化学産業■〕、フェロガード〔米国
ロンコラボラトリーズ社〕、ゼラスト〔大洋液化ガス〕
、キレスガード〔日本化学産業■〕等の気化性防錆剤を
含有する防食層、メタルガード〔モービル石油■〕、ラ
ストン〔東美化学[株]〕、C,R,C、ダイヤレート
〔菱江化学■〕等の油溶性防錆剤を含有する防食層、A
l、Sn、Zn、Ti、Cr 等の金属微粉末を含有す
る金属微粉末含有層、MgO,BaO,CaO,Al、
Q、、CaCl2゜KOH,NaOH,Ca5Q1−
之)% O,Sin、 −xi(、O,P2O,、活性
アルミナ、Mg(CIO,)、 、ZnBr、等の乾燥
剤を含有する乾燥剤含有層、2.’I、乙−トリメチル
ピリジン。The present invention can be applied to a photothermal magnetic recording medium having an air sandwich structure or a bonded structure. In addition, between the writing side substrate and the photothermal magnetic recording layer, a heat insulating layer such as an organic resin, a layer made of a dye or pigment that is transparent to the light used and has a high refractive index when formed, or a layer made of a Ti ,cr,
Metals such as zn, Al, and Si! ? ,,-ha'rio
A protective layer made of an oxide such as , IAI, O, , sio, I cr2o3 can be formed. Also,
It is possible to provide various auxiliary layers such as a layer on which index marks and tracking marks are written, or to use a write-side substrate whose surface is processed to be porous. Recording layer-
The adhesive layer for bonding the protective substrate and the attached substrate is Diana [Ryoe Chemical ■], Coal Top [Nippon Kako Paper ■],
V, P, M (Nihon Kagaku Sangyo ■), Ferroguard [Ronco Laboratories, Inc., USA], Zelasto [Ocean Liquefied Gas]
, Anticorrosion layer containing volatile rust preventive agent such as Killes Guard [Nippon Kagaku Sangyo ■], Metal Guard [Mobil Oil ■], Ruston [Tobi Chemical Co., Ltd.], C, R, C, Dialate [Ryoe Chemical Co., Ltd.] ■An anticorrosion layer containing an oil-soluble rust preventive agent such as A
Metal fine powder containing layer containing metal fine powder such as L, Sn, Zn, Ti, Cr, MgO, BaO, CaO, Al,
Q,, CaCl2゜KOH, NaOH, Ca5Q1-
A desiccant-containing layer containing a desiccant such as % O, Sin, -xi(, O, P2O, activated alumina, Mg(CIO,), ZnBr, etc., 2.'I, O-trimethylpyridine.
ジメチルグリシンナトリウム、トリス(ヒドロキ含有層
に代えることもできる。Sodium dimethylglycine, Tris (can also be replaced with a hydroxy-containing layer).
本発明の光熱磁気記録媒体は、記録層を基板側とその反
対側で抗磁力が異なるように形成することにより、磁気
光学効果に優れて記録感度の向上が可能になる。更に、
記録層中の添加物をce、si。The photothermal magnetic recording medium of the present invention has excellent magneto-optic effects and can improve recording sensitivity by forming the recording layer so that the coercive force differs between the substrate side and the opposite side. Furthermore,
Additives in the recording layer are ce and si.
Ti 等の元素に+ると、磁気光学効果が向りする上、
耐腐食性も向上することが可能になる。When added to elements such as Ti, the magneto-optical effect improves, and
Corrosion resistance can also be improved.
以下に実施例を示して本発明を具体的に説明する。EXAMPLES The present invention will be specifically described below with reference to Examples.
実施例/
第1図に示した構造の光熱磁気記録媒体を次のようにし
て製作した。Example/ A photothermal magnetic recording medium having the structure shown in FIG. 1 was manufactured as follows.
直径/20■、厚さl!;tmの平板ガラスを基板/と
しその上に、硬化型シリコーン樹脂(商品名:SR−コ
l110レジン、製造元:トーレ・シリコーン株式会社
)をスピンナー塗布機により乾燥膜厚0.3μmになる
ように塗布し、750℃で2時間乾燥し、断熱層コを形
成した。次に真空蒸着装置を用いてzrot を電子ビ
ーム加熱により膜厚θ/μmで蒸着し反射防止層3を形
成した。次に磁性薄膜記録層の第1層tIaとして高周
波スパッタ装置を用いてスパッタリングによ’) (F
a、6cd、2Tb+2)811 co、を膜厚θ03
μmで成膜した。抗磁力は/ 300eに調整した。磁
性薄膜記録層の第コ層pbとして187層と同様にして
F876Gd、!Tb、2を膜厚θθSμmで成膜した
。抗磁力は3θ000eに調整した。更に保護層Sとし
てsioを真空蒸着装置を用いて電子ビーム加熱により
膜厚θコμmで蒸着した。これを接着層乙にて保護用ガ
ラス基板7と貼り合わせて光熱磁気記録媒体を製作した
。Diameter/20■, thickness l! TM flat glass as a substrate, and on it, a curable silicone resin (product name: SR-Col110 Resin, manufacturer: Toray Silicone Co., Ltd.) was applied using a spinner coating machine to a dry film thickness of 0.3 μm. It was coated and dried at 750°C for 2 hours to form a heat insulating layer. Next, an antireflection layer 3 was formed by depositing ZROT to a thickness of θ/μm by electron beam heating using a vacuum deposition apparatus. Next, the first layer tIa of the magnetic thin film recording layer is formed by sputtering using a high frequency sputtering device.
a, 6cd, 2Tb+2)811co, film thickness θ03
The film was formed in μm. The coercive force was adjusted to /300e. As the co-layer pb of the magnetic thin film recording layer, F876Gd,! A film of Tb,2 was formed to a film thickness of θθS μm. The coercive force was adjusted to 3θ000e. Further, as a protective layer S, sio was deposited to a thickness of θ μm by electron beam heating using a vacuum deposition apparatus. This was bonded to a protective glass substrate 7 using an adhesive layer B to produce a photothermal magnetic recording medium.
この光熱磁気記録媒体の磁気光学効果の評価のためにカ
ー回転角の測定を行なった。また、記録感度と読み出し
効率の評価のために、記録周波数SMH2における記録
必要バイアス磁界の測定と、再生信号の波形の分析から
SA比の品質をめた。In order to evaluate the magneto-optic effect of this photothermal magnetic recording medium, the Kerr rotation angle was measured. Furthermore, in order to evaluate the recording sensitivity and read efficiency, the quality of the SA ratio was determined by measuring the bias magnetic field required for recording at the recording frequency SMH2 and by analyzing the waveform of the reproduced signal.
記録は次のような装置を用いて行なった。光学ヘッドは
出力/SmWの半導体レーザー(g20nm)を光源と
し、記録層表面に〜72μmOの微少スポットとして照
射でき、記録層に垂直方向の磁界な印加できる電磁石を
有するものを使用した。光熱磁気記録媒体を/gθθr
pmで回転し、記録層を一様に磁化しておいて、レーザ
ーをパルス発振し、50%デユーティで周波数を変えて
ピット記録を行なった。また、電磁力を用いてバイアス
磁界を印加した。読み出し再生は、lImwの半導体レ
ーザーを光源とし、記録時間様記録層を照射し、反射光
を偏光子を介してディテクターで検出したまた、この光
熱磁気記録媒体を45℃、相対湿度g3%の恒温恒湿槽
に入れて耐腐食性試験をり00時間行ない、カー回転角
の変化を初期値に対する比でめた。比較のため、磁性薄
膜記録層を積層構造とせず、抗磁力30000e・に調
整したFe76G(i、、 Tb1. 、抗磁力/ 左
00b、に調整した(Ff37+1aa、、 ’rb、
)sn ao2゜の記録層を膜厚θ/ ttm に形
成した他は実施例/と同様に製作した2種の光熱磁気記
録媒体についても同時に試験した。結果を第1表に示し
た。Recording was performed using the following device. The optical head used had a semiconductor laser (g20 nm) with an output of /SmW as a light source, could irradiate the surface of the recording layer as a minute spot of ~72 μmO, and had an electromagnet that could apply a magnetic field perpendicular to the recording layer. photothermal magnetic recording medium /gθθr
The recording layer was rotated at pm to uniformly magnetize the recording layer, and a laser was pulsed to perform pit recording by changing the frequency at a duty of 50%. In addition, a bias magnetic field was applied using electromagnetic force. For reading and reproducing, an IMW semiconductor laser was used as a light source, and the recording layer was irradiated for the recording time, and the reflected light was detected by a detector via a polarizer.The photothermal magnetic recording medium was also kept at a constant temperature of 45°C and a relative humidity of 3%. A corrosion resistance test was conducted for 00 hours in a humidity chamber, and the change in Kerr rotation angle was determined as a ratio to the initial value. For comparison, the magnetic thin film recording layer did not have a laminated structure, and Fe76G (i,, Tb1., coercive force/left 00b, adjusted to coercive force 30,000e) was used (Ff37+1aa, 'rb,
) Two types of photothermal magnetic recording media manufactured in the same manner as in Example 1 were also tested at the same time, except that a recording layer of sn ao 2° was formed to a thickness θ/ttm. The results are shown in Table 1.
第1表から明らかなように、抗磁力の異なる希土類−・
遷移金属の非晶質磁性薄膜の積層構造の記録層を形成し
た光熱磁気記録媒体の方が、単層構造の記録層を形成し
た光熱磁気記録媒体よりも、磁気光学効果が大きく、高
い周波数の信号を記録できる。As is clear from Table 1, rare earths with different coercive forces...
A photothermal magnetic recording medium that has a recording layer with a layered structure of amorphous magnetic thin films of transition metals has a larger magneto-optic effect than a photothermal magnetic recording medium that has a single layered recording layer, and can be used at high frequencies. Can record signals.
起流例コ
磁性薄膜記録層の第1層paとして、抗磁力/ !;
00e に調整した( Fe1. Ga、、 Tb、、
)so Bi、を形成し、第2層lIbとして300
00e に調整したFB、、 Gd、、 Tb、、を形
成した他は実施例/と同様にして光熱磁気記録媒体を製
作した。この光熱磁気記録媒体の磁気光学効果、記録感
度、読み出し効率の評価を実施例/と同様にして行なっ
た。比較のため、磁性薄膜記録層を積層構造とせず、抗
磁力3000oeに調整したF 876 ca、、 ’
rb129抗磁力/!;00eに調整した( F’e7
a act、、 ’rb、、 )ao B12Qの記録
層を膜厚θ/μmに形成した他は実施例/と同様に製作
したコ種の光熱磁気記録媒体についても同時に試験した
。結果を第1表に示した。As the first layer pa of the magnetic thin film recording layer, the coercive force/! ;
Adjusted to 00e (Fe1. Ga,, Tb,,
) so Bi, and 300 as the second layer lIb.
A photothermal magnetic recording medium was manufactured in the same manner as in Example except that FB, Gd, Tb, adjusted to 00e were formed. The magneto-optic effect, recording sensitivity, and read efficiency of this photothermal magnetic recording medium were evaluated in the same manner as in Example. For comparison, F 876 ca, whose magnetic thin film recording layer did not have a laminated structure and whose coercive force was adjusted to 3000 oe.
rb129 coercive force/! ; Adjusted to 00e ( F'e7
A photothermal magnetic recording medium of the same type as in Example 1 was also tested at the same time, except that the recording layer of a act, 'rb, )ao B12Q was formed to a thickness of θ/μm. The results are shown in Table 1.
第1表から明らかなように、抗磁力の異なる希土類−遷
移金属の非晶質磁性薄膜の積層構造の記録層を形成した
光熱磁気記録媒体の方が、単層構造の記録層を形成した
光熱磁気記録媒体よりも、磁気光学効果が大きく、高い
周波数の信号を記録できる。As is clear from Table 1, photothermal magnetic recording media that have a recording layer with a laminated structure of amorphous magnetic thin films made of rare earth-transition metals with different coercive forces are better than photothermal magnetic recording media that have a recording layer with a single layer structure. It has a greater magneto-optical effect than magnetic recording media, and can record higher frequency signals.
×・・・・・記録の為にバイアス磁界を印加していくと
記録ビットが形成される前にノイズパターンが現われた
場合を示す。x... This shows a case where a noise pattern appears before recording bits are formed when a bias magnetic field is applied for recording.
カー回転角の測定は透光性基板(ガラス)からで測定波
長はg 20 nm である。The Kerr rotation angle was measured from a transparent substrate (glass) and the measurement wavelength was g 20 nm.
カー回転角の変化・・・・・・初期値に対する比実雄側
3
第2表に示した積層構造の磁性薄膜記録層を形成した光
熱磁気記録媒体を実施例/と同様にして製作した。これ
らの光熱磁気記録媒体の磁気光学効果、記録感度、読み
出し効率の評価を実施例/と同様にして行なった。また
、これらの光熱磁気記録媒体を45’C1相対湿度口〕
の恒温恒湿槽に入れて耐腐食性試験を500時間行ない
、カー回転角の変化を測定した。比較のため、磁性薄膜
記録層を積層構造とせず、抗磁力300ooeに調整し
たFe76Gd1□Tb12、抗磁力/!;Ooe に
調整した( Fe76 Gd12 Tb12 )8o
G”2o+抗磁カフ300eに調整した( Fe76
Gd12 ’rb1□)8n S12゜、抗磁力/、!
;00eに調整した( Fe7. Gd、2’rb、2
)so T12Qの記録層を膜厚θ/μmに形成した他
は実施例/と同様に製作した7種の光熱磁気記録媒体に
ついても同時に試験した。結果を第2表に示した。Change in Kerr rotation angle...Himio side 3 relative to initial value A photothermal magnetic recording medium having a magnetic thin film recording layer having the laminated structure shown in Table 2 was manufactured in the same manner as in Example. The magneto-optical effect, recording sensitivity, and read efficiency of these photothermal magnetic recording media were evaluated in the same manner as in Examples. In addition, these photothermal magnetic recording media are 45'C1 relative humidity port]
A corrosion resistance test was conducted for 500 hours in a constant temperature and humidity chamber, and changes in the Kerr rotation angle were measured. For comparison, the magnetic thin film recording layer did not have a laminated structure and the coercive force of Fe76Gd1□Tb12 was adjusted to 300 oooe, coercive force/! ;Adjusted to Ooe (Fe76 Gd12 Tb12)8o
Adjusted to G”2o + anti-magnetic cuff 300e (Fe76
Gd12 'rb1□)8n S12゜, coercive force/,!
;Adjusted to 00e (Fe7. Gd, 2'rb, 2
) Seven types of photothermal magnetic recording media manufactured in the same manner as in Example 1 were also tested at the same time, except that the recording layer of so T12Q was formed to a thickness of θ/μm. The results are shown in Table 2.
第2表から明らかなように、抗磁力の異なる希土類−遷
移金属の非晶質磁性薄膜の積層構造の記録層を形成した
光熱磁気記録媒体の方が、単層構造の記録層を形成した
光熱磁気記録媒体よりも、磁気光学効果が大きく、高い
周波数の信号を記録できる。その上、Ni、Cr、ce
、Si、Ti 等の元素の添加により耐腐食性が向上す
る。As is clear from Table 2, photothermal magnetic recording media with a recording layer of a laminated structure of amorphous magnetic thin films of rare earth-transition metals with different coercive forces are better than photothermal magnetic recording media with a recording layer of a single layer structure. It has a greater magneto-optical effect than magnetic recording media, and can record higher frequency signals. Besides, Ni, Cr, ce
Corrosion resistance is improved by adding elements such as , Si, and Ti.
×・・・・・・記録の為にバイアス磁界を印加してし・
くと記録ピットが形成される前にノイズパターンが現わ
れた場合
カー回転角の変化・・・・・・初期値に対する比前述の
実施例では、記録層を抗磁力の異なる2層の積層構境と
したが、これらの層は添加物の混入を制御するだけで、
同一装置内で連続して形成することかでき、生産性に優
れている。また本発明では積層構造に限らず、記録層の
磁性材料の組成が、基板側からその反対側まで連続的に
変化する光熱磁気記録媒体を形成することもできる。こ
の例を以下に示す。×...A bias magnetic field is applied for recording.
If a noise pattern appears before recording pits are formed, the Kerr rotation angle changes... Ratio to the initial value In the above embodiment, the recording layer is a laminated structure of two layers with different coercive forces. However, these layers only control the incorporation of additives;
It can be formed continuously in the same device, resulting in excellent productivity. Further, the present invention is not limited to a laminated structure, and it is also possible to form a photothermal magnetic recording medium in which the composition of the magnetic material of the recording layer changes continuously from the substrate side to the opposite side. An example of this is shown below.
実施例q
第一回に示した構造の光熱磁気記録媒体を以下の様にし
て作成した。Example q A photothermal magnetic recording medium having the structure shown in the first article was produced as follows.
直径/、20■、厚さ15■の平板ガラスを基板/とし
てその上に、硬化型シリコーン樹脂(商品名:5R−2
り10レジン、製造元:トーン・シリコーン株式会社)
をスピンナー塗布機により乾燥膜厚O8μmになるよう
に塗布し、/kO℃で2時間乾燥し、断熱層λを形成し
た。次VC真空蒸着装置を用いてZrO2を電子ビーム
加熱により膜厚θ/μmで蒸着し反射間+h層3を形成
l−だ。次に高周波スパッタ装置を用いて磁性薄膜記録
層りを成膜した。スノ(ツタリングのターゲットには鉄
(Fe)を用い、あらかじめ真空蒸着法により面積比で
20%を占める様にコバルト(co)を4tpmの厚さ
にマスク蒸着を行なった。次にこのターゲット上にガド
リニウム(ad)とテルビウム(Tb)のチップラ面積
比テ(Fe76ca12’rb12)8゜cQ2oにな
る様にターゲット上にセットした。m背圧がターゲット
と基板の距離は約10cmである。次に背圧が/θ T
Orr になるまで排気後、アルゴンガスをフローして
k X / OTorr になる様に調整後スパッタリ
ングを行った。最初はシャッターを閉じたままで300
wのパワーを投入し2e分間プレスバッターを行った。A flat glass plate with a diameter of 20 cm and a thickness of 15 cm was used as a substrate, and a curable silicone resin (product name: 5R-2
10 resin, Manufacturer: Tone Silicone Co., Ltd.)
was applied using a spinner coater to a dry film thickness of O8 μm, and dried at /kO°C for 2 hours to form a heat insulating layer λ. Next, using a VC vacuum evaporation apparatus, ZrO2 is deposited to a film thickness of θ/μm by electron beam heating to form a reflective layer 3. Next, a magnetic thin film recording layer was formed using a high frequency sputtering device. Iron (Fe) was used as the target for Suno (Tsutaring), and cobalt (Co) was mask-deposited using a vacuum evaporation method to a thickness of 4 tpm so as to occupy 20% of the area.Next, on this target The chip area ratio of gadolinium (ad) and terbium (Tb) was set on the target so that the area ratio (Te(Fe76ca12'rb12)) was 8°cQ2o. Pressure is /θ T
After evacuation to a value of Orr, argon gas was flowed to adjust the value to kX/OTorr, and sputtering was performed. At first, leave the shutter closed for 300 seconds.
Power was applied to press batter for 2e minutes.
次にシャッターを開1すてスパッターを10分間続けた
。抗磁力は基板側の表面で/300e 、その反対側テ
30000e Kjll整した。更に保護層SとしてS
iOを真空蒸着装置を用いて電子ビーム加熱により膜厚
θコμmで蒸着した。これを接着層乙にて保護用ガラス
基板7と貼り合わせて光熱磁気記録媒体を製作した。作
製した媒体の組成について、次の様な分析を行った。実
施例の条件で成膜した磁性薄膜をケイ光X線分析及び化
学分析により調べたところコバルト(CO)元素の存在
が確認された。また保護層左との界面ψを形成する磁性
薄膜表面を電子分光分析で調べたところコバルト(CO
)元素は検出されなかった。以上の結果よりコバルト元
素は断熱層コとの界面グ附近に分布し成膜終了時にはす
でに無くなっていることが分った。この光磁気記録媒体
を実施例/と同様の方法で評価した。また実施例1と同
様に6%℃、相対湿度ざ5%の耐腐食試験も行なった。Next, the shutter was opened once and sputtering was continued for 10 minutes. The coercive force was set to /300e on the surface of the substrate and 30,000e on the opposite side. Furthermore, as a protective layer S
iO was deposited to a film thickness of θ μm by electron beam heating using a vacuum evaporation apparatus. This was bonded to a protective glass substrate 7 using an adhesive layer B to produce a photothermal magnetic recording medium. The composition of the prepared medium was analyzed as follows. When the magnetic thin film formed under the conditions of the example was examined by fluorescent X-ray analysis and chemical analysis, the presence of cobalt (CO) element was confirmed. Furthermore, when the surface of the magnetic thin film forming the interface ψ with the left side of the protective layer was examined by electron spectroscopy, it was found that cobalt (CO
) elements were not detected. From the above results, it was found that the cobalt element was distributed near the interface with the heat insulating layer and had already disappeared by the time the film formation was completed. This magneto-optical recording medium was evaluated in the same manner as in Example. Further, similar to Example 1, a corrosion resistance test was conducted at 6%° C. and 5% relative humidity.
これらの結果を第3表に示す。These results are shown in Table 3.
以上の実施例では、添加物としてce 、 si等を用
いたが、その他N1.Cr等を用いることもできる。In the above examples, ce, si, etc. were used as additives, but other additives such as N1. Cr or the like can also be used.
第1図および第2図はそれぞれ本発明の光熱磁気記録媒
体の構造を示した模式図である。
/、7・・・・・・ガラス基板
コ・・・・・・断熱層
3・・・・・・反射防止層
+、+a、グb・・・磁性薄膜記録層
9′・・・・・・磁性薄膜記録層と保護層と′の界面q
′・・・・・・磁性薄膜記録層と断熱層との界面S・・
・・・・保護層
6・・・・・・接着層
特許出願人 キャノン株式会社
第 1 図
第2図FIGS. 1 and 2 are schematic diagrams showing the structure of the photothermal magnetic recording medium of the present invention, respectively. /, 7...Glass substrate...Insulating layer 3...Antireflection layer +, +a, gb...Magnetic thin film recording layer 9'...・Interface q between magnetic thin film recording layer, protective layer and ′
'...Interface S between the magnetic thin film recording layer and the heat insulating layer...
...Protective layer 6...Adhesive layer Patent applicant Canon Co., Ltd. Figure 1 Figure 2
Claims (1)
けた光熱磁気記録媒体において、前記磁性薄膜記録層が
少な(とも一種類の添加物を含んだ非晶質磁性材料から
成り、該記録層の基板側とその反対側で前記添加物の磁
性材料全体に対する組成比を変え、抗磁力を異ならしめ
たことを特徴とする光熱磁気記録媒体。 (2) 前記磁性薄膜記録層の抗磁力が、基板側で30
〜/ 0000e その反対側で1000〜11000
0θ である特許請求の範囲第1項記載の光熱磁気記録
媒体。 (3)@記添加物が、Ge、Sj−、Ti−、Co、B
i、Cr、Ni の内の少なくとも7つを含む特許請求
の範囲第1項記載の光熱磁気記録媒体。[Scope of Claims] (]) A photothermal magnetic recording medium in which a magnetic thin film recording layer and, if necessary, an auxiliary layer are provided on a substrate, wherein the magnetic thin film recording layer is amorphous (containing at least one type of additive). A photothermal magnetic recording medium characterized in that the recording layer is made of a highly magnetic material, and has a different composition ratio of the additive to the entire magnetic material on the substrate side and the opposite side of the recording layer, thereby making the coercive force different. The coercive force of the magnetic thin film recording layer is 30 on the substrate side.
~/0000e 1000~11000 on the other side
0θ. The photothermal magnetic recording medium according to claim 1. (3) The @ additive is Ge, Sj-, Ti-, Co, B
2. The photothermal magnetic recording medium according to claim 1, comprising at least seven of i, Cr, and Ni.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13511383A JPS6028049A (en) | 1983-07-26 | 1983-07-26 | Optothermomagnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13511383A JPS6028049A (en) | 1983-07-26 | 1983-07-26 | Optothermomagnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6028049A true JPS6028049A (en) | 1985-02-13 |
Family
ID=15144132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13511383A Pending JPS6028049A (en) | 1983-07-26 | 1983-07-26 | Optothermomagnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6028049A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61292246A (en) * | 1985-06-19 | 1986-12-23 | Canon Inc | Magnetooptic recording medium |
JPS62132254A (en) * | 1985-12-05 | 1987-06-15 | Hitachi Maxell Ltd | Photomagnetic recording medium |
JPS62154346A (en) * | 1985-12-27 | 1987-07-09 | Hitachi Maxell Ltd | Photomagnetic recording medium |
US6139949A (en) * | 1989-02-10 | 2000-10-31 | Mitsubishi Denki Kabushiki Kaisha | Magneto optical recording medium |
-
1983
- 1983-07-26 JP JP13511383A patent/JPS6028049A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61292246A (en) * | 1985-06-19 | 1986-12-23 | Canon Inc | Magnetooptic recording medium |
JPS62132254A (en) * | 1985-12-05 | 1987-06-15 | Hitachi Maxell Ltd | Photomagnetic recording medium |
JPS62154346A (en) * | 1985-12-27 | 1987-07-09 | Hitachi Maxell Ltd | Photomagnetic recording medium |
JP2587408B2 (en) * | 1985-12-27 | 1997-03-05 | 日立マクセル株式会社 | Magneto-optical recording medium |
US6139949A (en) * | 1989-02-10 | 2000-10-31 | Mitsubishi Denki Kabushiki Kaisha | Magneto optical recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4664977A (en) | Opto-magnetic recording medium | |
JPS63200331A (en) | Recording medium and recording and reproducing method | |
US5476713A (en) | Magneto-optical recording medium | |
JPS6148148A (en) | Thermooptical magnetic recording medium | |
JPS6028049A (en) | Optothermomagnetic recording medium | |
JPH09231631A (en) | Magneto-optical recording medium | |
JPS61196445A (en) | Photomagnetic disk | |
US4777082A (en) | Optical magnetic recording medium | |
GB2158281A (en) | Optical recording medium | |
Kirino et al. | Study on high reliability TbFeCoNb magneto‐optical recording disk | |
JPS60197966A (en) | Optical recording medium | |
US4939023A (en) | Opto-magnetic recording medium | |
JPS6132242A (en) | Optothermomagnetic recording medium | |
KR890004262B1 (en) | Optical magnetic disk | |
JPS60205846A (en) | Optical recording medium | |
JPS60246041A (en) | Photo thermomagnetic recording medium | |
JPH04335231A (en) | Single plate optical disk for magneto-optical recording | |
JPS61196444A (en) | Photomagnetic disk | |
JPS61278061A (en) | Photomagnetic recording medium | |
JPH0532816B2 (en) | ||
JPS60262410A (en) | Thermomagnetic recording medium | |
JPS607631A (en) | Optical recording medium | |
JPS6332748A (en) | Information recording medium | |
JPH04356742A (en) | Optical recording disk | |
JPH039544B2 (en) |