JPH0532816B2 - - Google Patents

Info

Publication number
JPH0532816B2
JPH0532816B2 JP59043962A JP4396284A JPH0532816B2 JP H0532816 B2 JPH0532816 B2 JP H0532816B2 JP 59043962 A JP59043962 A JP 59043962A JP 4396284 A JP4396284 A JP 4396284A JP H0532816 B2 JPH0532816 B2 JP H0532816B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
recording
thin film
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59043962A
Other languages
Japanese (ja)
Other versions
JPS60191423A (en
Inventor
Junichiro Kanbe
Kozo Arao
Yoichi Oosato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59043962A priority Critical patent/JPS60191423A/en
Priority to GB08505766A priority patent/GB2158281B/en
Priority to FR858503420A priority patent/FR2561023B1/en
Priority to DE3508476A priority patent/DE3508476C2/en
Publication of JPS60191423A publication Critical patent/JPS60191423A/en
Publication of JPH0532816B2 publication Critical patent/JPH0532816B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁気記録媒体に係り、特に光磁気メモ
リー、磁気記録、表示素子などに用いられ、磁気
カー効果あるいはフアラデー効果などの磁気光学
効果を用いて読み出すことのできる光熱磁気記録
媒体等に用いられる磁気記録媒体における改良に
関する。 従来、例えば光熱磁気記録媒体に用いる磁気記
録媒体としてはMnBi、MnCuBi、などの多結晶
薄膜、GdCo、GdFe、TbFe、DyFe、GdTbFe、
TbDyFe、GdFeCo、GdTbCoなどの非晶質薄
膜、GdIGなどの単結晶薄膜などが知られている。 これらの薄膜のうち、大面積の薄膜を室温近傍
の温度で製作する際の成膜性、信号を小さな光熱
エネルギーで書き込むための書き込み効率、およ
び書き込まれた信号をS/N比よく読み出すための
読み出し効率等を勘案して、最近では前記非晶質
薄膜が光熱磁気記録媒体用として優れていると考
えられている。特に、GdTbFeはカー回転角も大
きく、150℃前後のキユーリー点を持つので、光
熱磁気記録媒体用として最適である。 しかしながら、GdTbFe等の非晶質磁性体をは
じめとして、一般に記録層として用いられる磁性
体は耐腐食性が劣り、湿気を有する雰囲気中では
腐食されて磁気特性の劣化を生じるという欠点が
ある。Si、Cr、Ti等の元素を添加すると耐腐食
性は向上するが、キユーリー点が上昇して記録感
度が低下する欠点がある。 このような欠点を除くために、従来から、非晶
質磁性体の記録磁性層の上に各種の保護層を設け
たり、あるいは不活性ガスによつて記録磁性層を
封じ込めたエアーサンドイツチ構造や貼り合わせ
構造のデイスク状光熱磁気記録媒体が提案されて
いるが、必ずしもその機能を充分に果たしている
とは言い難い。 本発明の目的は記録媒体としての特性にすぐ
れ、且つ、耐腐食性に優れた磁気記録媒体を提供
することにある。 この目的は、基板上に、希土類元素及び遷移金
属元素から成る磁性薄膜記録層と、該記録層に相
接した耐腐食層とを設けて成る磁気記録媒体にお
いて、前記耐腐食層が、30〜1000Åの厚さを有
し、0.1〜20原子%の酸素原子を含有する、希土
類元素及び遷移金属元素から成る磁性薄膜により
形成されていることを特徴とする磁気記録媒体に
より達成される。 本発明に於ける磁性薄膜記録層の抗磁力は、
100〜4000Oeであることが特に好ましい。 更に、Co、Bi、Cr、Ge、Si、Ti、Ni等の元素
の少なくとも1つを含有することが特に好まし
い。 ここで、磁性薄膜記録層は通常Gd、Tb、Dy
等の希土類元素群とFe,Co等の遷移金属元素群
とから成り、それぞれ高周波スパツタ装置を用
い、スパツタにより膜厚0.01〜0.2μmに形成す
る。 本発明における酸素原子を含有する磁性薄膜層
は、例えば次の方法で形成することができる。例
えば、スパツタ装置を用いるならば、ターゲツト
として、磁性体を用いグロー放電をおこすための
Arガス中に、酸素ガスを混入せしめる。或いは、
ターゲツトとして用いる磁性材料の中に、磁性体
の酸化物を加えることによつても達成できる。タ
ーゲツト材料としては、磁性薄膜記録層と同じも
のを用いてもよいし、状況に応じて別種の磁性材
料を用いることも可能である。酸素原子を含有す
る磁性薄膜層中に加える酸化物としては、前記磁
性薄膜記録層と同種の材料で酸素原子を含有する
もの、例えばCrO2、NiO、(MnBi)xO1-x
Fe3O4、Co0.8 Fe2.2O4等を用いることができる。 本発明を光熱磁気記録媒体に適用した場合の構
成例を第1図に示す。 第1図に於て、1は基板ガラス、2は誘電体の
単層あるいは多層構造による反射防止層、3は磁
性薄膜記録層、4は酸素原子を含有する磁性薄膜
層、5は保護層、6は接着層、7は保護用基板で
ある。レーザービームによる記録及び再生は、第
1図に於て矢印で示したように上方の基板面より
なされる。酸素を含有する磁性薄膜層4に於ける
酸素原子の層内における含有率は、磁性薄膜記録
層3が、接着層6を通介して空気中の酸素或いは
水分等によつて劣化するのを防止する上で最も効
果が上がるように設定される。その値は、通常
0.1at%乃至20at%の範囲にある。又、上記酸素
を含有する磁性薄膜層の層厚が薄すぎると、水分
或いは酸素の侵入を防ぐに充分でなく、又、余り
に厚すぎると、磁性記録層の特性に影響をおよぼ
し、例えば光熱磁気記録媒体として用いた場合
に、磁気効果の低減によるS/N比の低下或いは記
録感度の低下を招く。このため、上記層厚は、通
常30Å〜1000Å、好ましくは50Å〜500Åの範囲
で設定される。 本発明による記録媒体の他の構成例として第2
図に示す如く、反射膜9を設けることにより、磁
気効果の増大を計り、S/N比の向上を招くことが
可能である。第2図に於て、酸素を含有する磁性
薄膜層4′および4″は磁性薄膜記録層3′の両側
に設けられている。5′は保護層、6は接着層、
7は保護用基板である。8は中間層であつて、
SiO、SiO2の如き無機透明材料よりなり、光磁気
信号のS/N比が最適となるよう膜厚を設定して設
けられる。9はアルミニユーム、銅、金、銀等の
反射膜である。 本発明はエアーサンドイツチ構造や貼り合わせ
構造の光熱磁気記録媒体に適用できる。また、書
き込み側基板と光熱磁気記録層の間に、有機樹脂
などの断熱層、あるいは使用光に対して透明で成
膜したときの屈折率の大きい染料または顔料より
なる層を形成したり、Ti、Cr、Zn、Al、Siなど
の金属またはTiO2、Al2O3、SiO2、Cr2O3などの
酸化物よりなる保護層を形成することができる。
また、インデツクスマークやトラツキングマーク
を書き込んだ層など種々の補助層を設けたり、表
面が多孔質層に加工された書き込み側基板を用い
ることができる。記録層付きの基板と保護用基板
を貼り合わせる接着層をダイアナ〔菱江化学(株)〕、
コールトツプ〔日本加工製紙(株)〕、V.P.M〔日本
化学産業(株)〕、フエロガード〔米国ロンコラボラ
トリーズ社〕、ゼラスト〔太洋液化ガス〕、キレス
ガード〔日本化学産業(株)〕等の気化性防錆剤を含
有する防食層、メタルガード〔モービル石油(株)〕、
ラストン〔東美化学(株)〕、C.R.C、ダイヤレート
〔菱江化学(株)〕等の油溶性防錆剤を含有する防食
層、Al、Sn、Zn、Ti、Cr等の金属微粉末を含有
する金属微粉末含有層、MgO、BaO、CaO、
Al2O3、CaCl2、KOH、NaOH、CaSO4・1/2
H2O、SiO2・xH2O、P2O5、活性アルミナ、Mg
(ClO42、ZnBr2等の乾燥剤を含有する乾燥剤含
有層、2,4,6−トリメチルピリジン、ジメチ
ルグリシンナトリウム、トリス(ヒドロキシメチ
ル)アミノメタン)、2−アミノ−2−メチル−
1,3−プロパンジオール等の塩基性有機物質を
含有する塩基性有機物質含有層に代えることもで
きる。 以下に実施例を示して本発明を具体的に説明す
る。 実施例 1 第1図に示した構造の光熱磁気記録媒体を次の
ようにして製作した。 直径120mm、厚さ1.5mmの平板ガラスを基板1と
しその上に、真空蒸着装置を用いてZrO2電子ビ
ーム加熱により膜厚0.1μmで蒸着し反射防止層2
を形成した。次に磁性薄膜記録層3として高周波
スパツタ装置を用いてスパツタリングにより
Fe76Gd12Tb12を膜厚0.09μmで成膜した。抗磁力
は2000Oeに調整した。次に基板を別のチヤンバ
ーに移動して酸素ガスを流量20SCCM流し乍ら、
Fe76Gd12Tb12をターゲツトとして、スパツタリ
ングを行い100Åの酸素を含有する磁性薄膜層4
を形成した。更に保護層5としてSiOを真空蒸着
装置を用いて電子ビーム加熱により膜厚0.2μmで
蒸着した。これを接着層6にて保護用ガラス基板
7と貼り合わせて光熱磁気記録媒体を製作した。
この光熱磁気記録媒体の磁気光学効果の評価のた
めにカー回転角の測定を行なつた。また、記録感
度と読み出し効率の評価のために、記録周波数
5MHzにおける記録必要バイアス磁界の測定と、
再生信号の波形の分析からS/N比の品質を求め
た。記録は次のような装置を用いて行なつた。光
学ヘツドは出力15mWの半導体レーザー(820n
m)を光源とし、記録層表面に1.2μmφの微少ス
ポツトとして照射でき、記録層に垂直方向の磁界
を印加できる電磁石を有するものを使用した。光
熱磁気記録媒体を1800rpmで回転し、記録層を一
様に磁化しておいて、レーザーをパルス発振し、
50%デユーテイで周波数を変えてピツト記録を行
なつた。また、電磁力を用いてバイアス磁界を印
加した。読み出し再生は、4mWの半導体レーザ
ーを光源とし、記録時時同様記録層を照射し、反
射光を偏光子を介してデイテクターで検出した。
また、この光熱磁気記録媒体を65℃、相対湿度85
%の恒温恒湿槽に入れて耐腐食性試験を1000時間
行ない、カー回転角の変化を初期値に対する比で
求めた。得られた結果を第1表に示す。 比較例 1 酸素原子を含有する磁性薄膜層を設けない他は
実施例1と同様に製作した2種の光熱磁気記録媒
体について実施例1と同様に試験した。得られた
結果を第1表に示す。
The present invention relates to magnetic recording media, and is particularly used in magneto-optical memories, magnetic recording, display elements, etc., and is used in magneto-optical recording media that can be read using magneto-optic effects such as the magnetic Kerr effect or the Faraday effect. Concerning improvements in magnetic recording media. Conventionally, magnetic recording media used for example in photothermal magnetic recording media include polycrystalline thin films such as MnBi, MnCuBi, GdCo, GdFe, TbFe, DyFe, GdTbFe,
Amorphous thin films such as TbDyFe, GdFeCo, and GdTbCo, and single crystal thin films such as GdIG are known. Among these thin films, there are various issues such as film formability when manufacturing large-area thin films at temperatures near room temperature, writing efficiency for writing signals with small photothermal energy, and readout of written signals with a good S/N ratio. In consideration of read efficiency and the like, the amorphous thin film has recently been considered to be excellent for use in photothermal magnetic recording media. In particular, GdTbFe has a large Kerr rotation angle and a Curie point of around 150°C, making it ideal for photothermal magnetic recording media. However, magnetic materials commonly used as recording layers, including amorphous magnetic materials such as GdTbFe, have poor corrosion resistance and are corroded in a humid atmosphere, resulting in deterioration of magnetic properties. Addition of elements such as Si, Cr, and Ti improves corrosion resistance, but has the drawback of raising the Curie point and lowering recording sensitivity. In order to eliminate these drawbacks, various protective layers have been conventionally provided on the recording magnetic layer made of amorphous magnetic material, or an air sandwich structure in which the recording magnetic layer is sealed with an inert gas has been used. Although disk-shaped photothermal magnetic recording media having a laminated structure or a laminated structure have been proposed, it is difficult to say that they have always fulfilled their functions satisfactorily. An object of the present invention is to provide a magnetic recording medium that has excellent characteristics as a recording medium and has excellent corrosion resistance. This purpose is to provide a magnetic recording medium comprising a magnetic thin film recording layer made of a rare earth element and a transition metal element on a substrate, and a corrosion-resistant layer in contact with the recording layer, in which the corrosion-resistant layer is This is achieved by a magnetic recording medium characterized in that it is formed of a magnetic thin film made of a rare earth element and a transition metal element, having a thickness of 1000 Å and containing 0.1 to 20 atomic percent oxygen atoms. The coercive force of the magnetic thin film recording layer in the present invention is
Particularly preferred is 100 to 4000 Oe. Furthermore, it is particularly preferable to contain at least one of elements such as Co, Bi, Cr, Ge, Si, Ti, and Ni. Here, the magnetic thin film recording layer is usually Gd, Tb, Dy
It consists of a group of rare earth elements such as , and a group of transition metal elements such as Fe, Co, etc., and is formed by sputtering to a thickness of 0.01 to 0.2 μm using a high frequency sputtering device. The magnetic thin film layer containing oxygen atoms in the present invention can be formed, for example, by the following method. For example, when using a sputtering device, a magnetic material is used as a target to generate a glow discharge.
Oxygen gas is mixed into Ar gas. Or,
This can also be achieved by adding a magnetic oxide to the magnetic material used as the target. As the target material, the same material as the magnetic thin film recording layer may be used, or a different type of magnetic material may be used depending on the situation. The oxide added to the magnetic thin film layer containing oxygen atoms may be the same material as the magnetic thin film recording layer and containing oxygen atoms, such as CrO 2 , NiO, (MnBi)xO 1-x ,
Fe 3 O 4 , Co 0.8 Fe 2.2 O 4 and the like can be used. FIG. 1 shows an example of a configuration in which the present invention is applied to a photothermal magnetic recording medium. In FIG. 1, 1 is a substrate glass, 2 is an antireflection layer made of a dielectric single layer or multilayer structure, 3 is a magnetic thin film recording layer, 4 is a magnetic thin film layer containing oxygen atoms, 5 is a protective layer, 6 is an adhesive layer, and 7 is a protective substrate. Recording and reproduction using a laser beam is performed from the upper substrate surface as indicated by the arrow in FIG. The content of oxygen atoms in the oxygen-containing magnetic thin film layer 4 prevents the magnetic thin film recording layer 3 from deteriorating due to oxygen or moisture in the air through the adhesive layer 6. The settings are set in such a way that they are most effective. Its value is usually
It is in the range of 0.1at% to 20at%. Furthermore, if the layer thickness of the oxygen-containing magnetic thin film layer is too thin, it will not be sufficient to prevent moisture or oxygen from entering, and if it is too thick, it will affect the characteristics of the magnetic recording layer, such as photothermal magnetism. When used as a recording medium, a decrease in magnetic effect causes a decrease in the S/N ratio or a decrease in recording sensitivity. Therefore, the layer thickness is usually set in the range of 30 Å to 1000 Å, preferably 50 Å to 500 Å. As another configuration example of the recording medium according to the present invention, the second
As shown in the figure, by providing the reflective film 9, it is possible to increase the magnetic effect and improve the S/N ratio. In FIG. 2, oxygen-containing magnetic thin film layers 4' and 4'' are provided on both sides of the magnetic thin film recording layer 3'. 5' is a protective layer, 6 is an adhesive layer,
7 is a protective substrate. 8 is the middle class,
It is made of an inorganic transparent material such as SiO or SiO 2 , and the film thickness is set to optimize the S/N ratio of the magneto-optical signal. 9 is a reflective film made of aluminum, copper, gold, silver, or the like. The present invention can be applied to a photothermal magnetic recording medium having an air sandwich structure or a laminated structure. In addition, between the writing side substrate and the photothermal magnetic recording layer, a heat insulating layer such as an organic resin, a layer made of a dye or pigment that is transparent to the light used and has a high refractive index when formed, or a layer made of a Ti A protective layer can be formed of a metal such as , Cr, Zn, Al, or Si or an oxide such as TiO 2 , Al 2 O 3 , SiO 2 , or Cr 2 O 3 .
Furthermore, it is possible to provide various auxiliary layers such as a layer on which index marks or tracking marks are written, or to use a write-side substrate whose surface is processed into a porous layer. Diana (Ryoe Kagaku Co., Ltd.) is the adhesive layer used to bond the substrate with the recording layer and the protective substrate.
Volatile preventive products such as Coaltop [Nippon Kako Paper Co., Ltd.], VPM [Nippon Kagaku Sangyo Co., Ltd.], Ferroguard [Ronco Laboratories, Inc., USA], Zelast [Taiyo Liquefied Gas], Killesguard [Nihon Kagaku Sangyo Co., Ltd.], etc. Anticorrosion layer containing rust agent, Metal Guard [Mobil Oil Co., Ltd.],
Contains an anti-corrosion layer containing oil-soluble rust preventives such as Ruston (Tobi Kagaku Co., Ltd.), CRC, Dialate (Ryoe Kagaku Co., Ltd.), and fine metal powders such as Al, Sn, Zn, Ti, and Cr. layer containing fine metal powder, MgO, BaO, CaO,
Al 2 O 3 , CaCl 2 , KOH, NaOH, CaSO 4・1/2
H2O , SiO2xH2O , P2O5 , activated alumina, Mg
(ClO 4 ) 2 , a desiccant-containing layer containing a desiccant such as ZnBr 2 , 2,4,6-trimethylpyridine, sodium dimethylglycine, tris(hydroxymethyl)aminomethane), 2-amino-2-methyl-
It can also be replaced with a basic organic substance-containing layer containing a basic organic substance such as 1,3-propanediol. EXAMPLES The present invention will be specifically described below with reference to Examples. Example 1 A photothermal magnetic recording medium having the structure shown in FIG. 1 was manufactured as follows. A flat glass plate with a diameter of 120 mm and a thickness of 1.5 mm is used as the substrate 1, and an anti-reflection layer 2 is deposited on it to a thickness of 0.1 μm by heating ZrO 2 with an electron beam using a vacuum evaporation device.
was formed. Next, a magnetic thin film recording layer 3 is formed by sputtering using a high frequency sputtering device.
A film of Fe 76 Gd 12 Tb 12 was formed to a thickness of 0.09 μm. The coercive force was adjusted to 2000Oe. Next, move the substrate to another chamber and flow oxygen gas at a flow rate of 20 SCCM.
A magnetic thin film layer 4 containing 100 Å of oxygen is formed by sputtering using Fe 76 Gd 12 Tb 12 as a target.
was formed. Further, as a protective layer 5, SiO was deposited to a thickness of 0.2 μm by electron beam heating using a vacuum deposition apparatus. This was bonded to a protective glass substrate 7 using an adhesive layer 6 to produce a photothermal magnetic recording medium.
In order to evaluate the magneto-optic effect of this photothermal magnetic recording medium, the Kerr rotation angle was measured. In addition, in order to evaluate the recording sensitivity and readout efficiency, the recording frequency
Measuring the bias magnetic field required for recording at 5MHz,
The quality of the S/N ratio was determined by analyzing the waveform of the reproduced signal. Recording was performed using the following device. The optical head is a semiconductor laser (820n) with an output of 15mW.
m) was used as a light source that could irradiate the surface of the recording layer as a minute spot of 1.2 μmφ and had an electromagnet that could apply a magnetic field perpendicular to the recording layer. The photothermal magnetic recording medium is rotated at 1800 rpm, the recording layer is uniformly magnetized, and the laser is pulsed.
Pit recording was performed by changing the frequency at 50% duty. In addition, a bias magnetic field was applied using electromagnetic force. For reading and reproducing, a 4 mW semiconductor laser was used as a light source, and the recording layer was irradiated in the same manner as during recording, and the reflected light was detected by a detector via a polarizer.
In addition, this photothermal magnetic recording medium was heated at 65°C and a relative humidity of 85°C.
A corrosion resistance test was conducted for 1,000 hours by placing the sample in a constant temperature and humidity chamber at a constant temperature of 100%, and the change in Kerr rotation angle was determined as a ratio to the initial value. The results obtained are shown in Table 1. Comparative Example 1 Two types of photothermal magnetic recording media manufactured in the same manner as in Example 1 were tested in the same manner as in Example 1, except that the magnetic thin film layer containing oxygen atoms was not provided. The results obtained are shown in Table 1.

【表】 以上説明したように本願発明は、記録層に相接
する耐腐食層を、記録層と同じく希土類元素及び
遷移金属元素から成る磁性薄膜より形成すること
によつて記録層との密着性を保ちながら、この耐
腐食層に0.1〜20原子%の酸素原子を含有させ、
厚さを30〜1000Åとすることによつて、、磁気記
録媒体の耐腐食性を向上させる顕著な効果を奏す
る。ここで、耐腐食層に希土類元素及び遷移金属
元素から成る磁性薄膜を用いる際に、酸素原子の
含有量は非常に重要であり、0.1原子%より少な
いと耐腐食層自身が腐食し、この腐食が記録層に
進行する恐れが生ずる。酸素原子が20原子%より
多いと、耐腐食層の含有する酸素の影響で記録層
が腐食してしまう。また、耐腐食層の厚さが30Å
より薄いと記録層への酸素或は水分の侵入を防ぐ
ごとができず、1000Åより厚いと記録媒体の磁気
特性を低下させてしまう。
[Table] As explained above, the present invention improves the adhesion with the recording layer by forming the corrosion-resistant layer adjacent to the recording layer from a magnetic thin film made of rare earth elements and transition metal elements like the recording layer. This corrosion-resistant layer contains 0.1 to 20 at% of oxygen atoms while maintaining
By setting the thickness to 30 to 1000 Å, there is a remarkable effect of improving the corrosion resistance of the magnetic recording medium. Here, when using a magnetic thin film made of rare earth elements and transition metal elements for the corrosion-resistant layer, the content of oxygen atoms is very important; if it is less than 0.1 at%, the corrosion-resistant layer itself will corrode, and this corrosion There is a possibility that this will progress to the recording layer. If the content of oxygen atoms is more than 20 at %, the recording layer will corrode due to the influence of oxygen contained in the corrosion-resistant layer. In addition, the thickness of the corrosion-resistant layer is 30Å
If it is thinner, it will not be possible to prevent oxygen or moisture from entering the recording layer, and if it is thicker than 1000 Å, the magnetic properties of the recording medium will deteriorate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気記録媒体の1つの実施態
様における構造を説明するための模式図であり、
第2図は本発明の磁気記録媒体の他の実施態様に
おける構造を説明するための模式図である。 1……基板、2……反反射防止層、3,3′…
…磁性薄膜記録層、4,4′,4″……酸素原子を
含有する磁性薄膜層、5,5′……保護層、6…
…接着層、7……保護用期基板、8……中間層、
9……反射膜。
FIG. 1 is a schematic diagram for explaining the structure of one embodiment of the magnetic recording medium of the present invention,
FIG. 2 is a schematic diagram for explaining the structure of another embodiment of the magnetic recording medium of the present invention. 1...Substrate, 2...Anti-reflection layer, 3, 3'...
...Magnetic thin film recording layer, 4,4',4''...Magnetic thin film layer containing oxygen atoms, 5,5'...Protective layer, 6...
...Adhesive layer, 7...Protective use board, 8...Intermediate layer,
9... Reflective film.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に、希土類元素及び遷移金属元素か成
る磁性薄膜記録層と、該記録層に相接した耐腐食
層とを設けて成る磁気記録媒体において、前記耐
腐食層が、30〜1000Åの厚さを有し、0.1〜20原
子%の酸素原子を含有する、希土類元素及び遷移
金属元素から成る磁性薄膜により形成されている
ことを特徴とする磁気記録媒体。
1. A magnetic recording medium comprising, on a substrate, a magnetic thin film recording layer made of a rare earth element and a transition metal element, and a corrosion-resistant layer in contact with the recording layer, wherein the corrosion-resistant layer has a thickness of 30 to 1000 Å. 1. A magnetic recording medium comprising a magnetic thin film made of a rare earth element and a transition metal element, and containing 0.1 to 20 at.% of oxygen atoms.
JP59043962A 1984-03-09 1984-03-09 Magnetic recording medium Granted JPS60191423A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59043962A JPS60191423A (en) 1984-03-09 1984-03-09 Magnetic recording medium
GB08505766A GB2158281B (en) 1984-03-09 1985-03-06 Optical recording medium
FR858503420A FR2561023B1 (en) 1984-03-09 1985-03-08 OPTICAL RECORDING MEDIUM
DE3508476A DE3508476C2 (en) 1984-03-09 1985-03-09 Optical recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59043962A JPS60191423A (en) 1984-03-09 1984-03-09 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS60191423A JPS60191423A (en) 1985-09-28
JPH0532816B2 true JPH0532816B2 (en) 1993-05-18

Family

ID=12678331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59043962A Granted JPS60191423A (en) 1984-03-09 1984-03-09 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60191423A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102259174A (en) * 2011-07-07 2011-11-30 安徽精诚铜业股份有限公司 Coverage lubricant for vertical type semi-continuous casting of brass and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189702A (en) * 1975-02-05 1976-08-06 JIKIKIOKUTAI
JPS5285802A (en) * 1976-01-12 1977-07-16 Hitachi Ltd Production of magnetic recording medium
JPS60127528A (en) * 1983-12-13 1985-07-08 Matsushita Electric Ind Co Ltd Magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5189702A (en) * 1975-02-05 1976-08-06 JIKIKIOKUTAI
JPS5285802A (en) * 1976-01-12 1977-07-16 Hitachi Ltd Production of magnetic recording medium
JPS60127528A (en) * 1983-12-13 1985-07-08 Matsushita Electric Ind Co Ltd Magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102259174A (en) * 2011-07-07 2011-11-30 安徽精诚铜业股份有限公司 Coverage lubricant for vertical type semi-continuous casting of brass and preparation method thereof

Also Published As

Publication number Publication date
JPS60191423A (en) 1985-09-28

Similar Documents

Publication Publication Date Title
US4579777A (en) Opto-magnetic recording medium
US4664977A (en) Opto-magnetic recording medium
US5738950A (en) Magnetooptical recording medium
EP0698881A1 (en) Magnetooptical recording medium and method for reproducing information from the medium
EP0233062B1 (en) Magneto-optic memory medium
US4777082A (en) Optical magnetic recording medium
GB2158281A (en) Optical recording medium
JPH0532816B2 (en)
US4999260A (en) Magneto-optical recording medium comprising a rare-earth-transition metal dispersed in a dielectric
JPS6028049A (en) Optothermomagnetic recording medium
EP0350010A2 (en) Magneto-optical recording medium
US4939023A (en) Opto-magnetic recording medium
JPS60197966A (en) Optical recording medium
KR890004262B1 (en) Optical magnetic disk
JPS6122455A (en) Magnetooptic recording medium
JPS60246041A (en) Photo thermomagnetic recording medium
JPS6132242A (en) Optothermomagnetic recording medium
JPS60205846A (en) Optical recording medium
JPS61278061A (en) Photomagnetic recording medium
JP2770027B2 (en) Magneto-optical recording medium and magneto-optical recording method
JPH04335231A (en) Single plate optical disk for magneto-optical recording
JPS6332748A (en) Information recording medium
JP2918889B2 (en) Magneto-optical recording medium and magneto-optical recording method
JP2550698B2 (en) Magneto-optical recording medium
JPS60262410A (en) Thermomagnetic recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term