JPS6027883B2 - Boiler temperature increase control method - Google Patents

Boiler temperature increase control method

Info

Publication number
JPS6027883B2
JPS6027883B2 JP9872279A JP9872279A JPS6027883B2 JP S6027883 B2 JPS6027883 B2 JP S6027883B2 JP 9872279 A JP9872279 A JP 9872279A JP 9872279 A JP9872279 A JP 9872279A JP S6027883 B2 JPS6027883 B2 JP S6027883B2
Authority
JP
Japan
Prior art keywords
temperature
superheater
steam
pressure
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9872279A
Other languages
Japanese (ja)
Other versions
JPS5623606A (en
Inventor
美雄 佐藤
政英 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9872279A priority Critical patent/JPS6027883B2/en
Publication of JPS5623606A publication Critical patent/JPS5623606A/en
Publication of JPS6027883B2 publication Critical patent/JPS6027883B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、ボィラ昇温制御方式に係り、特に、昇温中に
昇圧が行なわれるような外乱が大きい昇温に適用するに
好適なボィラ昇温制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a boiler temperature increase control method, and particularly to a boiler temperature increase control method suitable for application to temperature increases with large disturbances such as pressure increase during temperature increase.

従来の昇温制御方式としては、主蒸気の温度変化率から
主蒸気の温度変化予測を外挿法で求め、制御する方式が
提案されている。
As a conventional temperature increase control method, a method has been proposed in which a temperature change prediction of main steam is obtained by extrapolation from the temperature change rate of main steam, and control is performed.

ところが、昇温と同時に昇圧を伴ない蒸気流量が大幅に
変化するような場合には、最終段過熱器入口の蒸気温度
の一時的な降下を生じ、主蒸気温度の大きな外乱となる
。このため、変化率のみによる主蒸気の温度変化予測は
、誤差が大きく、良好な制御特性を得るのが難かしかっ
た。本発明の目的は、このような従来技術の欠点をなく
し、蒸気流量、最終段過熱器入口および出口の蒸気温度
、該過熱器管の温度から総合的に判断し、主蒸気温度の
変化化を正確に予測することにより、良好な制御特性を
得るボィラ昇温制御方式を提供するにある。
However, if the steam flow rate changes significantly with a rise in temperature and pressure at the same time, a temporary drop in the steam temperature at the inlet of the final stage superheater occurs, resulting in a large disturbance in the main steam temperature. For this reason, prediction of main steam temperature change based only on the rate of change has a large error, making it difficult to obtain good control characteristics. The purpose of the present invention is to eliminate such drawbacks of the prior art, and to detect changes in the main steam temperature by comprehensively determining the steam flow rate, the steam temperature at the inlet and outlet of the final stage superheater, and the temperature of the superheater tube. An object of the present invention is to provide a boiler temperature increase control method that obtains good control characteristics by accurately predicting the temperature.

本発明は、最終段過熱器における内部流体のェネルギ保
存の法則より、最終段過熱器の入口蒸気温度および、該
過熱器管のメタル温度、主蒸気流量と該過熱器出口蒸気
温度の因果関係を求め、この因果関係を制御システムに
内蔵させ、上記過熱器出口の蒸気温度を予測するように
したものである。
Based on the law of conservation of energy of the internal fluid in the final stage superheater, the present invention establishes the causal relationship between the final stage superheater inlet steam temperature, the metal temperature of the superheater tube, the main steam flow rate, and the superheater outlet steam temperature. This causal relationship is built into the control system to predict the steam temperature at the outlet of the superheater.

以下、図面により具体的実施例を示す。第1図は、本発
明の制御対象であるボィラ起動バイパス系統および制御
系の入出力関係を示すブロック線図である。図で、主蒸
気の昇温は、次のようにして行われていた。すなわち、
最初減圧弁503を全閉にし、給水ポンプから供孫舎さ
れた給水400は、節炭器500火炉水冷壁501、1
次過熱器502を経てフラッシュタンク511に注がれ
、蒸気となる。ここで、1次週熱器バイパス弁507お
よび2次過熱器バイパス弁508は、それぞれ、1次過
熱器出口の圧力および温度が所定の値になるように制御
されている。このようにして、フラッシュタンク511
で蒸発した蒸気は、2次過熱器通気弁509を介して2
次過熱器504、加減弁505を経由して高圧タービン
506へ導かれている。高圧タービン排気403は、再
熱器(図示せず)で再熱され、中低圧タービン(図示せ
ず)へ導かれるのが一般的であるが、本発明と直接関係
しないので省略した。又、フラッシュタンクの蒸気のう
ち、2次過熱器へ導びかれない磯りの蒸気およびドレン
404は、給水加熱器や復水器等へ導かれるがこれも本
発明と直接関係しないので省略した。このような状態で
燃料調節弁510で燃料401が加減され、主蒸気40
2がある規定値まで昇温されると、オペレータあるいは
、上位判断機能を持つ計算機から起動指令10が発せら
れ、減圧弁503が開かれ昇温と同時に主蒸気の昇圧が
なされる。一方、この昇温、昇圧時の制御系は、燃料流
量制御器301、減圧弁制御器302、昇温制御装置1
00から構成される。
Specific examples will be shown below with reference to the drawings. FIG. 1 is a block diagram showing the input/output relationship of a boiler startup bypass system and a control system that are controlled by the present invention. In the figure, the temperature of the main steam was raised as follows. That is,
At first, the pressure reducing valve 503 is fully closed, and the water supply 400 supplied from the water supply pump is transferred to the energy saver 500, the furnace water cooling walls 501, 1
Next, it passes through a superheater 502 and is poured into a flash tank 511, where it becomes steam. Here, the primary superheater bypass valve 507 and the secondary superheater bypass valve 508 are each controlled so that the pressure and temperature at the outlet of the primary superheater become predetermined values. In this way, the flash tank 511
The steam evaporated in the secondary superheater vent valve 509
It is led to a high pressure turbine 506 via a secondary superheater 504 and a control valve 505. The high-pressure turbine exhaust 403 is generally reheated in a reheater (not shown) and guided to a medium-low pressure turbine (not shown), but this is omitted because it is not directly related to the present invention. In addition, among the steam in the flash tank, the steam on the shore that is not led to the secondary superheater and the drain 404 are led to the feed water heater, condenser, etc., but this is also omitted because it is not directly related to the present invention. . In this state, the fuel 401 is adjusted by the fuel control valve 510, and the main steam 40
When the temperature of steam 2 is raised to a certain specified value, a start command 10 is issued from an operator or a computer with a higher-level judgment function, the pressure reducing valve 503 is opened, and the pressure of the main steam is raised at the same time as the temperature is raised. On the other hand, the control system at the time of temperature increase and pressure increase includes a fuel flow rate controller 301, a pressure reducing valve controller 302, and a temperature increase control device 1.
Consists of 00.

第2図は、燃料流量制御器301の具体的機能を示すブ
ロック線図である。
FIG. 2 is a block diagram showing specific functions of the fuel flow rate controller 301.

図で、起動指令10が発せられると燃料パタ−ン発生器
3010より、時間関数として燃料設定の先行値信号3
014が出力される。次に、加算器3011で昇溢制御
装置100で桁められた燃料流量バイアス信号201を
付加し、燃料デマンド3015を求め、減算器302で
燃料流量検出器350からの検出値250との偏差を求
め、比例・積分制御器3013でこの偏差が川こなるよ
うに比例・積分制御を実施し、燃料調節弁操作信号20
3を決定する。第3図は、減圧弁制御器302の具体的
機能を示すブロック線図である。
In the figure, when a start command 10 is issued, a fuel pattern generator 3010 generates a fuel setting advance value signal 3 as a function of time.
014 is output. Next, an adder 3011 adds the fuel flow rate bias signal 201 digitized by the overflow control device 100 to obtain a fuel demand 3015, and a subtracter 302 calculates the deviation from the detected value 250 from the fuel flow rate detector 350. Then, the proportional/integral controller 3013 performs proportional/integral control so that this deviation is equalized, and the fuel control valve operation signal 20 is
Decide on 3. FIG. 3 is a block diagram showing specific functions of the pressure reducing valve controller 302.

図で、まず起動指令10が発せられると主蒸気圧力設定
器3020より最終的な主蒸気圧力設定値3027が決
められる。次に、減算器3021で瞬時主蒸気圧力設定
値3028と差をとり、偏差制限器3022で制限を加
え、鶏算器3023で昇温制御装置100から出力され
て昇圧率補正信号202を掛け、その値を積分器302
4で積分することにより瞬時主蒸気圧力設定値3028
を決定する。更に、減算器3025で、主蒸気圧力検出
器355からの検出値255との偏差を求め、比例・積
分制御演算を実行し(比例・積分制御器3026)、減
圧弁関度指令204を決定する。第4図は、昇圧制御装
置100の機能を示すブロック線図である。
In the figure, first, when a start command 10 is issued, a final main steam pressure setting value 3027 is determined by a main steam pressure setting device 3020. Next, a subtracter 3021 takes the difference from the instantaneous main steam pressure set value 3028, a deviation limiter 3022 applies a limit, a multiplier 3023 multiplies the pressure increase rate correction signal 202 output from the temperature increase control device 100, The integrator 302
By integrating by 4, the instantaneous main steam pressure set value 3028
Determine. Furthermore, the subtractor 3025 calculates the deviation from the detected value 255 from the main steam pressure detector 355, executes proportional/integral control calculations (proportional/integral controller 3026), and determines the pressure reducing valve related command 204. . FIG. 4 is a block diagram showing the functions of the boost control device 100.

図で、まず機能ブロック110では、起動指令10およ
び主蒸気温度253(主蒸気温度検出器353の出力)
を入力して、n分後の主蒸気温度目標値を決定する。そ
の概略流れ図を第5図aに示す。図で、起動指令の有無
を判定し、無の場合は何もせず、有の場合は、次式に従
ってn分後に目標温度TsP(i,n)を計算する。T
sP(i,n)=TsP(i,0)十Rj*n△ts
・・・‘1’ここに
、TsP(i,n):n分後の目標温度TsP(i,0
):現在の目標温度Ri:目標昇温率 Tj‐.<TsF(i,0)くTj △ts:サンプリング周期 次に、予測目標値TsP(i,n)が次の昇温率の領域
に入ったかどうかの判定(補正計算要かどうかの判定)
をし、次の昇温率の領域に入っていれば次式により予測
目標値を計算し直す。
In the figure, first, in the function block 110, the start command 10 and the main steam temperature 253 (output of the main steam temperature detector 353)
is input to determine the main steam temperature target value after n minutes. A schematic flowchart is shown in FIG. 5a. In the figure, the presence or absence of a startup command is determined, and if there is no start command, nothing is done, and if there is a start command, the target temperature TsP (i, n) is calculated after n minutes according to the following equation. T
sP(i,n)=TsP(i,0)×Rj*n△ts
...'1' where TsP (i, n): target temperature TsP (i, 0
): Current target temperature Ri: Target temperature increase rate Tj-. <TsF (i, 0) Tj △ts: Sampling period Next, determine whether the predicted target value TsP (i, n) has entered the next temperature increase rate region (determine whether correction calculation is required)
If the temperature is within the range of the next temperature increase rate, the predicted target value is recalculated using the following formula.

TSP(i,n) =Tj+,十Rj+,TSP(i,n)−Tj+,……
(2,Riこのようにして、予測目標値の計算をし直す
ことによって、やがて次の昇温率の領域に入らなくなれ
ば、その時の目標温度予測値111として出力する。
TSP(i,n) =Tj+, 10Rj+,TSP(i,n)−Tj+,...
(2, Ri) By recalculating the predicted target value in this way, if the temperature does not fall within the next temperature increase rate region, it is output as the target temperature predicted value 111 at that time.

次に、機能ブロック120では、1次過熱器出口蒸気温
度251、2次週熱器メタル温度252、主蒸気温度2
53、主蒸気流量254を入力として、主蒸気温度予測
値Ta(i,n)を推定する。
Next, in the function block 120, the primary superheater outlet steam temperature 251, the secondary heater metal temperature 252, the main steam temperature 2
53, the main steam temperature predicted value Ta(i,n) is estimated using the main steam flow rate 254 as input.

予測の概略流れ図を第6図に示す。まず、最初に、起動
指令10が発せられ、最初の計算かどうかのチェックを
する。最初であれば、各検出器の値を初期として記憶す
る。2回目からは、まず、主蒸気温度変化の外乱となる
、1次過熱器出口温度Ts,sH、主蒸気圧力Ps蟹N
、主蒸気流量F3柵・2次週熱器メタル温度Tm2S日
の各値交(i,0)および変化率Y(i)を最小2乗法
で次式により推定する(ブロック:外乱推定)。
A schematic flowchart of prediction is shown in FIG. First, a start command 10 is issued, and a check is made to see if it is the first calculation. If it is the first time, the value of each detector is stored as the initial value. From the second time onwards, first, the primary superheater outlet temperature Ts, sH, the main steam pressure Ps, which becomes a disturbance to the main steam temperature change,
, each value intersection (i, 0) and rate of change Y(i) of main steam flow rate F3 fence/secondary week heater metal temperature Tm2S day are estimated by the following equation using the least squares method (block: disturbance estimation).

〈X(i,。〈X(i,.

)={7災(i)+4災(i−1)十災(i−2)−2
災(i−3)} …
……{3,・〇M(i)={3蚤(i)+X(i−・)
−×(i−の−3×(i−3)}
………■10×△tSここに、滋
(i,0):iサンプル時の0分後の推定値滋(i):
iサンプル時の検出値Y(i):iサンプル時の変化率 △ts:サンプリング周期 次に、kサンプル後の外乱は、求めた糊,‘4}式より
、直線外挿法で予測する。
) = {7 disasters (i) + 4 disasters (i-1) 10 disasters (i-2) - 2
Disaster (i-3)}...
...{3,・〇M(i)={3flea(i)+X(i-・)
−×(i−3×(i−3)}
………■10×△tS Here, Shigeru (i, 0): Estimated value after 0 minutes at i sample Shigeru (i):
Detected value Y(i) at i sample: Rate of change Δts at i sample: Sampling period Next, the disturbance after k samples is predicted by linear extrapolation from the obtained formula '4'.

念(i,k)=X(i,0)十Y(i)Xk.・・.・
・【51また、主蒸気温度Ts$日に関しては、ェネル
ギ保存の法則により次式が成り立つ。
Thought (i, k) = X (i, 0) + Y (i) Xk.・・・.・
・[51 Also, regarding the main steam temperature Ts$day, the following equation holds true according to the law of conservation of energy.

空器三=(HS$H−HS数H)FS波日十As2sH
Qms(Tm2sH−Ts2sH)……【61ここに、
Hs器H:主蒸気ェンタルピ=f(Ts2sH,Ps2
sH) Hs,3H:1次過熱器出口ェンタルピ =f(TS,SH,PS,SH) As群一:2次過熱器伝熱面積 Qms:熱伝達率 これをオィラ積分で近似すると、 比2sH(i,k)−Hs2sH(i,k−1)△t=
{Hs,SH(i,k−1)一日S2SH(i,k−・
)}FS28日(i,k−1)十AS23MQmS {
Tm2SH(i,k−1)一T離日(i,k一・)} .・.H聡日(i,k)ニHS2SH(i,k−・)十
〔(Hs,sH(i,k−1)一日S多H(i,k−・
)} F3あけ(i,k一・) 十AS2SHQm3{Tm凶日(i,k ・ 一1) −T職日(i,k−・)}〕△t .・・.・…‐‐‐‐‐‐‐‐‐‐(71となるので、
k=0〜n−1について、【6’,‘7’式を繰り返し
計算することによって、ェンタルピのnサンプル周期後
の予測値H聡日(i,n)が求まる。
Empty device three = (HS $ H - HS number H) FS wave day ten As2sH
Qms(Tm2sH-Ts2sH)...[61 Here,
Hs unit H: Main steam enthalpy = f (Ts2sH, Ps2
sH) Hs, 3H: Primary superheater outlet enthalpy = f (TS, SH, PS, SH) As group 1: Secondary superheater heat transfer area Qms: Heat transfer coefficient If this is approximated by the Oler integral, the ratio 2sH ( i,k)-Hs2sH(i,k-1)△t=
{Hs, SH (i, k-1) one day S2SH (i, k-・
)}FS28th (i, k-1) 10AS23MQmS {
Tm2SH(i,k-1)1T departure(i,k1・)} .・.. H Satoshi (i, k) NiHS2SH (i, k-・) ten [(Hs, sH (i, k-1) one day S many H (i, k-
)} F3 open (i, k 1・) 10AS2SHQm3 {Tm bad day (i, k ・11) −T working day (i, k−・)}] △t .・・・.・…‐‐‐‐‐‐‐‐‐‐‐(It will be 71, so
For k=0 to n-1, the predicted value H (i, n) of enthalpy after n sample periods is found by repeatedly calculating the formulas [6' and '7'.

従って、主蒸気温度のnサンプル周期後の予測値Ts蟹
日(i,n)は、蒸気表により、次式のように表わされ
る。T籾日(i,n)ニg(日滋日(i,n),PS偽
日(i,n)).・・.・….・・.・・・・・・‘8
1次に機能ブロック130にて、求められた主蒸気温度
の目標値の予測値111とモデルによる予測値121よ
り比例・積分演算を実行する。
Therefore, the predicted value Ts (i, n) of the main steam temperature after n sampling periods is expressed by the steam table as follows. T rice day (i, n) nig (Japanese day (i, n), PS fake day (i, n)).・・・.・….・・・.・・・・・・'8
First, in a functional block 130, a proportional/integral calculation is performed using the predicted value 111 of the target value of the main steam temperature obtained and the predicted value 121 based on the model.

△P=K,j≧,(E(i,n))+KP(E(i,n
)−E(i−1,n).・・.・・.・・.・・・・・
‘9) ここに、△P:比例・積分出力 K,:積分ゲイン KP:比例ゲイン E(i,n)=TsP(i,n)−Ts2sM(i,n
)次に機能ブロック140‘こて、1次過熱器出口温度
の変化率により、比例・積分演算結果△P:131に補
正を加える。
△P=K, j≧, (E(i,n))+KP(E(i,n
)-E(i-1,n).・・・.・・・.・・・.・・・・・・
'9) Here, △P: Proportional/integral output K,: Integral gain KP: Proportional gain E (i, n) = TsP (i, n) - Ts2sM (i, n
) Next, the proportional/integral calculation result ΔP:131 is corrected based on the rate of change in the temperature at the outlet of the primary superheater in the function block 140'.

1次過熱器出口温度の変化率は、すでに■式で求まって
いるので、‘10式により、燃料バイアスを決定する。
Since the rate of change in the primary superheater outlet temperature has already been determined using equation (2), the fuel bias is determined using equation '10.

△Ff=△P+Kd・rs,sH ……{1
■ここに、△Ff:燃料バイアス△Fd:微分ゲイン −d虹1班 rsISH− dt 次に機能ブロック15川こて、昇圧率肥d/dtの補正
をする。
△Ff=△P+Kd・rs,sH ……{1
■Here, △Ff: Fuel bias △Fd: Differential gain -d Rainbow 1 group rsISH-dt Next, in function block 15, correct the pressure increase rate d/dt.

1次週熱器出口温度の変化は、主蒸気流量の変化すなわ
ち昇圧率dPd/dtに依存するので昇圧率肥d/dt
は、1次週熱器出口温度変化率rs,sH=dTs,s
H/dtの関数で補正するのが適している。
The change in the first week heater outlet temperature depends on the change in the main steam flow rate, that is, the pressure increase rate dPd/dt, so the pressure increase rate d/dt
is the first weekly heater outlet temperature change rate rs,sH=dTs,s
It is suitable to correct using a function of H/dt.

すなわち、{等}m={等}十8・K・rSISH.・
・‐‐‐(11) ここで1、6= K:補正係数 の形で補正すると、1次過熱器出口温度が上昇中は規定
値{肥d/dt}で昇圧し、降下中は、昇圧率にブレー
キがかかることになる。
That is, {etc}m={etc}18·K·rSISH.・
・--(11) Here, 1, 6 = K: When corrected in the form of a correction coefficient, when the primary superheater outlet temperature is rising, the pressure is increased by the specified value {fertilization d/dt}, and when it is falling, the pressure is increased. This will put a brake on the rate.

本発明の実施例では、主蒸気圧力により減圧弁を制御す
る例について述べたが、負荷により減圧弁を制御する例
もある。
In the embodiment of the present invention, an example has been described in which the pressure reducing valve is controlled by the main steam pressure, but there is also an example in which the pressure reducing valve is controlled by the load.

この場合は圧力の代りに負荷が用いられるだけで本質的
差異はない。以上説明したごとく、本発明では、主蒸気
温度の外乱となる1次過熱器出口温度、2次過熱器メタ
ル温度、主蒸気流量、圧力等の諸変数を用いているので
主蒸気温度変化を正確に予測でき、安定な昇温が可能で
ある。
In this case, there is no essential difference except that load is used instead of pressure. As explained above, in the present invention, various variables such as the primary superheater outlet temperature, the secondary superheater metal temperature, the main steam flow rate, and the pressure, which are disturbances to the main steam temperature, are used, so changes in the main steam temperature can be accurately detected. temperature can be predicted and stable temperature rise is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、制御対象と制御装置間の関係を示す図、第2
図は、燃料流量制御器の具体例、第3図は、減圧弁制御
器の具体例、第4図は、昇縞制御装置の機能ブロック線
図、第5図は、主蒸気温度目標決定のための流れ図、第
6図は、主蒸気温度予測方法を示す流れ図、第7図は、
主蒸気の昇圧率補正方法を示す流れ図である。 10・・・起動指令、100・・・昇温制御装置、11
0・・・目標温度の予測、111…目標温度予測値、1
20・・・主蒸気温度の予測、121・・・主蒸気温度
の予測値、130比例積分制御、131…比例積分制御
出力、140・・・入口温度変化による先行補正、20
1・・・燃料流量バイアス信号、202・・・昇庄率補
正信号、203・・・燃料調節弁操作信号、204・・
・減圧弁操作信号、250・・・燃料流量検出値、25
1・・・1次過熱器出口蒸気温度検出値、252・・・
2次過熱器メタル温度検出値、253・・・主蒸気温度
検出値、254・・・主蒸気流量検出値、255・・・
主蒸気圧力検出値、301・・・燃料流量制御器、30
2…減圧弁制御器、350・・・燃料流量検出器、35
1・・・1次過熱器出口蒸気温度検出器、352…2次
週熱器メタル温度検出器、353・・・主蒸気温度検出
器、354・・・主蒸気流量検出器、355主蒸気圧力
検出器、400・・・給水、401・・・燃料、402
・・・主蒸気、403・・・高圧夕−ビン排気、404
…フラッシュタンク蒸気&ドレン、500・・・節炭器
、501・・・火炉水袷壁、502・・・1次過熱器、
503・・・減圧弁、504・・・2次過熱器、505
・・・加減弁、506・・・高圧タービン、507…1
次週熱器バイパス弁、508…2次過熱器バイパス弁、
509・・・2次過熱器通気弁、510・・・燃料調節
弁、511・・・フラッシュタンク。 第2図図 船 第3図 第4図 第5図O 第5図b 第6図 第7図
Figure 1 is a diagram showing the relationship between the controlled object and the control device;
The figure shows a specific example of a fuel flow rate controller, FIG. 3 shows a specific example of a pressure reducing valve controller, FIG. 4 shows a functional block diagram of a riser control device, and FIG. 5 shows a main steam temperature target determination Figure 6 is a flowchart showing the main steam temperature prediction method, and Figure 7 is a flowchart showing the main steam temperature prediction method.
It is a flowchart which shows the pressure increase rate correction method of main steam. 10... Start-up command, 100... Temperature increase control device, 11
0...Target temperature prediction, 111...Target temperature prediction value, 1
20... Prediction of main steam temperature, 121... Predicted value of main steam temperature, 130 proportional integral control, 131... proportional integral control output, 140... advance correction due to inlet temperature change, 20
1...Fuel flow rate bias signal, 202...Elevation rate correction signal, 203...Fuel control valve operation signal, 204...
・Reducing valve operation signal, 250...Fuel flow rate detection value, 25
1... Primary superheater outlet steam temperature detection value, 252...
Secondary superheater metal temperature detection value, 253... Main steam temperature detection value, 254... Main steam flow rate detection value, 255...
Main steam pressure detection value, 301...Fuel flow rate controller, 30
2...Pressure reducing valve controller, 350...Fuel flow rate detector, 35
1... Primary superheater outlet steam temperature detector, 352... Secondary heater metal temperature detector, 353... Main steam temperature detector, 354... Main steam flow rate detector, 355 Main steam pressure detection Container, 400...Water supply, 401...Fuel, 402
... Main steam, 403 ... High pressure evening bin exhaust, 404
...Flash tank steam & drain, 500...Cost saving device, 501...Furnace water wall, 502...Primary superheater,
503...Pressure reducing valve, 504...Secondary superheater, 505
...Adjustment valve, 506...High pressure turbine, 507...1
Next week's heater bypass valve, 508...Secondary superheater bypass valve,
509... Secondary superheater vent valve, 510... Fuel control valve, 511... Flash tank. Figure 2 Ship Figure 3 Figure 4 Figure 5 O Figure 5 b Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1 ボイラの水冷壁から少なくとも1次過熱器、減圧弁
及び最終段過熱器を介して蒸気を得、かつ前記1次過熱
器及び最終段過熱器をそれぞれバイパスさせる系を有し
、前記ボイラへの燃料流量と前記減圧弁の開度制御によ
り前記蒸気の温度及び圧力をそれぞれ所定の変化率にし
たがつて上昇させるものにおいて、前記最終段過熱器を
流れる蒸気流気と圧力、該過熱器の出口及び入口の蒸気
温度、並びに該過熱器管の温度を検出し、これらの検出
値を用いて該過熱器出口の蒸気温度の将来の時系列的な
変化を予測し、所定の変化率より求めた蒸気温度目標の
予測値との偏差を求め、該偏差がゼロになるように前記
燃料流量を制御することを特徴とするボイラ昇温制御方
式。 2 特許請求の範囲第1項に記載した過熱器出口の蒸気
温度の将来の時系列的な変化の予測は、第1段階で最終
段過熱器を流れる蒸気流量と圧力、該過熱器入口及び出
口蒸気温度、並びに該過熱器管の温度の現在までの検出
値よりそれぞれ最小2乗法で現在の推定値及び変化率を
求め、第2段階でこれらの推定値及び変化率から該過熱
器出口の蒸気エンタルピの変化を予測し、第3段階で該
エンタルピの予測値と前記圧力の推定値及び変化率から
求めた圧力予測値とから蒸気温度の予測値を求めること
を特徴とするボイラ昇温制御方式。
[Claims] 1. A system that obtains steam from the water-cooled wall of the boiler through at least a primary superheater, a pressure reducing valve, and a final stage superheater, and bypasses each of the primary superheater and final stage superheater. and in which the temperature and pressure of the steam are increased at predetermined rates of change by controlling the fuel flow rate to the boiler and the opening degree of the pressure reducing valve, respectively, the steam flow and pressure flowing through the final stage superheater. , detect the steam temperature at the outlet and inlet of the superheater, and the temperature of the superheater tube, use these detected values to predict future chronological changes in the steam temperature at the outlet of the superheater, and A boiler temperature increase control method, characterized in that a deviation from a predicted value of a steam temperature target obtained from a rate of change of is determined, and the fuel flow rate is controlled so that the deviation becomes zero. 2. The prediction of future chronological changes in the steam temperature at the superheater outlet described in claim 1 is based on the steam flow rate and pressure flowing through the final stage superheater in the first stage, the superheater inlet and outlet The current estimated values and rate of change of the steam temperature and the temperature of the superheater tube are determined by the least squares method from the detected values up to now, respectively, and in the second step, the steam temperature at the outlet of the superheater is determined from these estimated values and rate of change. A boiler temperature increase control method characterized in that a change in enthalpy is predicted, and in a third step, a predicted value of steam temperature is obtained from the predicted value of the enthalpy, the estimated value of the pressure, and the predicted pressure value obtained from the rate of change. .
JP9872279A 1979-08-03 1979-08-03 Boiler temperature increase control method Expired JPS6027883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9872279A JPS6027883B2 (en) 1979-08-03 1979-08-03 Boiler temperature increase control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9872279A JPS6027883B2 (en) 1979-08-03 1979-08-03 Boiler temperature increase control method

Publications (2)

Publication Number Publication Date
JPS5623606A JPS5623606A (en) 1981-03-06
JPS6027883B2 true JPS6027883B2 (en) 1985-07-02

Family

ID=14227403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9872279A Expired JPS6027883B2 (en) 1979-08-03 1979-08-03 Boiler temperature increase control method

Country Status (1)

Country Link
JP (1) JPS6027883B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184810A (en) * 1981-05-08 1982-11-13 Kawasaki Heavy Ind Ltd Method of controlling steam pressure and steam temperature
JPS5815703A (en) * 1981-07-22 1983-01-29 Hitachi Ltd Method of controlling plant
JPS58136903A (en) * 1982-02-08 1983-08-15 株式会社日立製作所 Optimum control system of heat power plant
JPH0665921B2 (en) * 1984-07-16 1994-08-24 バブコツク日立株式会社 Boiler start control device
JPH0799245B2 (en) * 1985-12-17 1995-10-25 バブコツク日立株式会社 Boiler start control device

Also Published As

Publication number Publication date
JPS5623606A (en) 1981-03-06

Similar Documents

Publication Publication Date Title
JPH0561502A (en) Plant control system
JP2007071416A (en) Reheat steam system of boiler, and control method of reheat steam temperature
EP0170145B1 (en) Apparatus for controlling starting operation of boiler
JPS6027883B2 (en) Boiler temperature increase control method
JPS6410722B2 (en)
JP7114808B2 (en) Water supply control of forced once-through heat recovery boiler
JP2758245B2 (en) Drain water level control device for feed water heater
JPH08121704A (en) Steam temperature control apparatus for boiler
JPH04148101A (en) Controlling method for steam drum water level at time of switching of feed water control valve
JPS6235573B2 (en)
JPS608437B2 (en) Condenser vacuum control device
JPH09145004A (en) Emergency shutdown control of device pressurized fluidized bed boiler
JPH11270805A (en) Feed water heater water level control device
JPS6225921B2 (en)
JP2504939Y2 (en) Boiler level controller
JPH0330761B2 (en)
JPH04194502A (en) Generating plant and method and device for controlling water level
JPS6228362B2 (en)
JPS6132403Y2 (en)
JPS6410721B2 (en)
JPS59158901A (en) Method of controlling temperature of boiler steam
JPH03199892A (en) Control of amount of supply gas for waste heat boiler
JPS5888505A (en) Temperature dropping controller for turbine bypass system
JPS60206912A (en) Flush preventive method for condensate in rankin cycle system
JPS6149483B2 (en)