JPS6027806A - Measuring device - Google Patents

Measuring device

Info

Publication number
JPS6027806A
JPS6027806A JP13549583A JP13549583A JPS6027806A JP S6027806 A JPS6027806 A JP S6027806A JP 13549583 A JP13549583 A JP 13549583A JP 13549583 A JP13549583 A JP 13549583A JP S6027806 A JPS6027806 A JP S6027806A
Authority
JP
Japan
Prior art keywords
nozzles
nozzle
air
measured
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13549583A
Other languages
Japanese (ja)
Other versions
JPH0574763B2 (en
Inventor
Hirotaka Shibata
寛隆 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP13549583A priority Critical patent/JPS6027806A/en
Publication of JPS6027806A publication Critical patent/JPS6027806A/en
Publication of JPH0574763B2 publication Critical patent/JPH0574763B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/16Measuring arrangements characterised by the use of fluids for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/08Measuring arrangements characterised by the use of fluids for measuring diameters
    • G01B13/10Measuring arrangements characterised by the use of fluids for measuring diameters internal diameters

Abstract

PURPOSE:To make it possible to measure an internal diameter, cylindricity, roundness, and in addition, squareness by one inserting operation of the same measuring head, by changing the combinations of facing air nozzles, which are provided in a plurality of pairs. CONSTITUTION:A plurality of air nozzles 13 are provided at the outer surface of a projection part 12, which is protruded from an end surface 11 of a measuring head 10. Two pairs of the nozzles 13 are provided so that they are opened at the four equally separated positions on a circle on the same plane and the positions in the axial directions of the pairs of the nozzles are different. Four nozzles 14 are provided on the end surface 11. With respect to the nozzles 13 and air feeding paths 20, which communicate the nozzles, the first state, under which a pair of the nozzles that face on the same plane to each other are communicated, and the second state, under which a pair of the nozzles that face on the two planes whose axial directions are different are communicated, are provided. The two states can be switched. Since the connections can be switched in this way, squareness, in addition to an internal diameter, cylindricity, and roundness can be measured by one inserting operation of the same head.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は被測定物の内径、真円度、円筒度、直角度を検
測するエア一式の測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a measuring device for an air set that measures the inner diameter, roundness, cylindricity, and squareness of an object to be measured.

〈従来技術〉 エア一式の測定装置としては、被測定面に近接して配置
されたエアーノズルの背圧がノズルと被測定面との隙間
に応じて変化するのを利用している。かかるエアーノズ
ルとしては、各ノズル単独に圧力検出器を接続して独立
ノズル方式と、一対の対向するノズルを1つの圧力検出
器に接続した対向ノズル方式とがある。前者においては
、ノズル毎に圧力検出器が設けられるため、一対のノズ
ルで直径寸法の測定をする場合には、各ノズルに対応し
た圧力検出器の出力信号を演算回路で演算する必要があ
る。このため各圧力検出器の信号レベルを判定するレベ
ル判定回路の他に2信号を1信号に変換する演算回路を
も必要とするため、構成機器が多くなりコスト高となる
<Prior Art> A complete air measuring device utilizes the fact that the back pressure of an air nozzle placed close to a surface to be measured changes depending on the gap between the nozzle and the surface to be measured. Such air nozzles include an independent nozzle type in which a pressure detector is connected to each nozzle alone, and an opposed nozzle type in which a pair of opposing nozzles are connected to one pressure detector. In the former, a pressure detector is provided for each nozzle, so when measuring the diameter dimension of a pair of nozzles, it is necessary to use a calculation circuit to calculate the output signal of the pressure detector corresponding to each nozzle. Therefore, in addition to a level determination circuit that determines the signal level of each pressure detector, an arithmetic circuit that converts two signals into one signal is also required, which increases the number of components and increases costs.

後者においては、供給路を共通にする一対のノズルの背
圧を1つの圧力検出器に導くものであるため、直径寸法
に応じた信号が1つの圧力検出器から出力され、圧力検
出器が減らせる上に演算回路を必要としない。
In the latter case, the back pressure of a pair of nozzles sharing a common supply path is guided to one pressure detector, so a signal according to the diameter is output from one pressure detector, reducing the number of pressure detectors. Moreover, it does not require an arithmetic circuit.

このように対向ノズル方式においては、構成機器が低減
できるので内径、真円度、円筒度の測定の場合にはコス
ト的にきわて有利になる。
In this manner, the opposed nozzle method can reduce the number of components, and therefore is extremely advantageous in terms of cost when measuring inner diameter, roundness, and cylindricity.

しかしながら、端面に対する穴内周面の直角度を測定す
る場合に、穴径測定のままの構成では穴径の差は検出で
きても同一径で穴が傾いているような場合は検出不能で
ある。
However, when measuring the perpendicularity of the inner circumferential surface of the hole with respect to the end surface, a difference in hole diameter can be detected with the same configuration as the hole diameter measurement, but it is impossible to detect a case where the holes have the same diameter but are tilted.

このため従来は直角度の測定は、穴径、円筒度、真円度
の測定とは別行程で別個の測定ヘッドを用いて測定が行
われていた。
For this reason, conventionally, the measurement of squareness was performed using a separate measurement head in a separate process from the measurement of hole diameter, cylindricity, and roundness.

このため測定装置のコストアンプを招くばかりでなく、
別々のステーションにて測定しなければならないので測
定時間が長くかかる欠点があった。
This not only increases the cost of measuring equipment, but also
This method has the disadvantage that it takes a long time to measure because it has to be measured at separate stations.

〈発明の目的〉 本発明の目的は、内径、円筒度、真円度等の測定に加え
て直角度の測定も同一測定ヘッドの一同の挿入動作で達
成することであり、併せて測定装置のコストダウンを図
り、測定時間を短縮することである。
<Objective of the Invention> The object of the present invention is to measure not only the inner diameter, cylindricity, roundness, etc., but also the squareness by the same insertion operation of the same measuring head, and also to improve the performance of the measuring device. The goal is to reduce costs and shorten measurement time.

〈発明の構成〉 本発明の特徴とする構成は、測定ヘッドに、被測定物の
穴内周面に対向し少なくとも4位相に配置された複数の
エアーノズルの組を軸方向に離間して少なくとも2組設
けるとともに、被測定物の端面に対向するエアーノズル
の組を設け、端面に対向する各エアーノズルは各別に圧
力検出器に接続し、穴内周面に対向する各エアーノズル
は同一平面内に位置し逆向きの一対のエアーノズルを互
いに接続する第1の接続状態と、軸方向位置を異にする
2平面内に位置し逆向きの一対のエアーノズルを互いに
接続する第2の接続状態に切替え可能な切替弁を介して
それぞれ圧力検出器に接続したものである。
<Configuration of the Invention> The characteristic configuration of the present invention is that the measurement head includes a plurality of air nozzle sets facing the inner circumferential surface of the hole of the object to be measured and arranged in at least four phases, at least two sets spaced apart in the axial direction. At the same time, a set of air nozzles facing the end face of the object to be measured is provided, each air nozzle facing the end face is connected to a pressure detector separately, and each air nozzle facing the inner peripheral surface of the hole is connected to the same plane. A first connection state in which a pair of air nozzles located in opposite directions are connected to each other, and a second connection state in which a pair of air nozzles located in two planes having different axial positions and in opposite directions are connected to each other. Each is connected to a pressure detector via a switchable switching valve.

ここに切替弁を第1の接続状態に切替えれば、穴内周面
に対向するエアーノズルは、対向ノズル方式で内径、円
筒度、真円度等の測定ができることになり、第2の接続
状態に切替えれば、端面に対する穴内周面の直角度の測
定が対向ノズル方式のままでできることになり、被測定
物に対する1回の挿入動作で全ての測定が迅速に行なえ
ることになる。
If the switching valve is switched to the first connection state, the air nozzle facing the inner peripheral surface of the hole can measure the inner diameter, cylindricity, roundness, etc. using the opposed nozzle method, and the second connection state By switching to , the perpendicularity of the inner circumferential surface of the hole with respect to the end surface can be measured using the opposed nozzle method, and all measurements can be quickly performed with one insertion operation into the object to be measured.

〈実施例〉 以下本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図は検測ヘッド10を示ず縦断面図であり、基準端
面11の中央に軸状突出部12が垂直に突設され、その
外周面には複数のエアーノズル13が開口している。こ
のエアーノズル13は同一平面内において円周上4等分
位置に開口するエアーノズルの組が軸線方向位置を異に
して2組、計8個のエアーノズルが設けられている。基
準端面11にも位相を同しくして4個のエアーノズル1
4が開口している。各ノズル13の周囲には、流出流体
の相互干渉をなくすための逃がし溝15が刻設され、各
週がし溝15は軸方向溝16を通じて大気中に連通され
ている。基準端面11に開口するノズル14の周囲には
放射状の逃がし溝17が5− 刻設されている。各ノズル13.14の一端は検測ヘッ
ト10に穿設された給気路20,21とそれぞれ連通し
、基準端面に開口するエアーノズル14は第5図に示ず
ように給気路21を介して圧力検出ユニットPDに連通
されている。
FIG. 1 is a vertical cross-sectional view without showing the inspection head 10, in which a shaft-like projection 12 is vertically protruded from the center of the reference end surface 11, and a plurality of air nozzles 13 are opened on the outer peripheral surface of the shaft-shaped projection 12. . The air nozzles 13 are provided with two sets of air nozzles that open at four equal positions on the circumference within the same plane, and two sets of air nozzles at different positions in the axial direction, for a total of eight air nozzles. Four air nozzles 1 are also installed in the same phase on the reference end face 11.
4 is open. A relief groove 15 is cut around each nozzle 13 to eliminate mutual interference of outflow fluid, and each relief groove 15 is communicated with the atmosphere through an axial groove 16. Five radial relief grooves 17 are carved around the nozzle 14 opening in the reference end face 11. One end of each nozzle 13, 14 communicates with air supply passages 20 and 21 bored in the inspection head 10, respectively, and the air nozzle 14, which opens at the reference end face, communicates with the air supply passage 21 as shown in FIG. The pressure detection unit PD is connected to the pressure detection unit PD via the pressure detection unit PD.

軸状突出部12の外周面に開口する8個のノズル13と
格別に連通された給気路20は、電磁切替弁SVI〜S
V8を介して、同一平面内で対向する一対のノズルどう
しを互いに連通させる第1の状態、又軸方向位置を異に
する2平面内において対向する一対のノズルどうしを互
いに連通させる第2の状態に切替可能に接続されている
。接続切替される一対のノズルの接続点0. P、Q、
Rは連通路22を介して圧力検出ユニッ)PDに接続さ
れている。
The air supply path 20, which is in special communication with the eight nozzles 13 that open on the outer peripheral surface of the shaft-like protrusion 12, is connected to the electromagnetic switching valves SVI to S.
A first state in which a pair of nozzles facing each other in the same plane communicate with each other via V8, and a second state in which a pair of nozzles facing each other in two planes having different axial positions communicate with each other. is switchably connected to. Connection point 0 of a pair of nozzles to be switched. P, Q,
R is connected to a pressure detection unit (PD) via a communication path 22.

第6図、第7図は被測定物Wとノズル位置を示すもので
あり、各ノズル位置を示すアルファ記号は第5図のノズ
ルに付したアルファ記号と対応させである。
6 and 7 show the object W to be measured and the nozzle positions, and the alpha symbol indicating each nozzle position corresponds to the alpha symbol attached to the nozzle in FIG. 5.

前記電磁切替弁SVI〜SV8の切替作用によ6− る各ノズル相互の連通関係を次に説明する。6- by the switching action of the electromagnetic switching valves SVI to SV8. The communication relationship between each nozzle will be explained next.

電磁切替弁SVI〜SV8のソレノイドが全て無勢され
た図示状態においては、ノズルに、 G。
In the illustrated state in which all the solenoids of the electromagnetic switching valves SVI to SV8 are deenergized, G is applied to the nozzle.

F、Jに通ずる給気路は閉止され、同一平面内において
互いに対向する一対のノズルどうし、例えばHとFとか
LとJの連通はされていないし、又異なる平面内におい
て対応する一対のノズル、例えばHとJとかFとLの連
通もされていない。
The air supply passages leading to F and J are closed, and there is no communication between a pair of nozzles that face each other in the same plane, for example, H and F or L and J, and a pair of corresponding nozzles in different planes. For example, H and J or F and L are not connected.

(1)同一平面内対向ノズルの連通 内径、円筒度、真円度の測定は、同一平面内に位置する
41[1のノズルの互いに対向するものどうしを連通さ
せ、両ノズルの合成背圧を1つの圧力検出器に導き計測
が行われる。かかる連通切替えは第5図の状態より電磁
切替弁SVI、SV4゜SV6.SV7のソレノイドを
付勢することにより、ノズルIとに、EとG、FとH,
LとJがそれぞれ連通され、互いに連通された一対のノ
ズルの背圧変化が圧力検出ユニットの圧力センサに導か
れて計測される。
(1) Communication of opposing nozzles in the same plane To measure the inner diameter, cylindricity, and roundness, the mutually opposing nozzles of 41[1] located in the same plane are communicated with each other, and the combined back pressure of both nozzles is measured. The pressure is guided to one pressure detector and the measurement is performed. Such communication switching is performed using the electromagnetic switching valves SVI, SV4°, SV6. By energizing the solenoid of SV7, nozzle I is connected to E and G, F and H,
L and J are communicated with each other, and changes in back pressure of the pair of nozzles communicated with each other are guided to a pressure sensor of a pressure detection unit and measured.

内径測定としては、一対のノズルの組が4組(E十G)
、(F十H)、、(J十K)、(J十L)あるので各組
の最小値を内径測定値とする。
For inner diameter measurement, 4 pairs of nozzles (E1G) are used.
, (F1H), , (J1K), and (J1L), the minimum value of each set is taken as the inner diameter measurement value.

真円度測定としては、4組の計測値より、直交するノズ
ル相互の差よりl (E十G)−(F十H)1又はl 
(I+K)−(J+L)lの最大値とする。
To measure roundness, from the four sets of measured values, the difference between orthogonal nozzles is determined by l (E0G) - (F0H)1 or l
Let it be the maximum value of (I+K)-(J+L)l.

円筒度測定としては、4組の計測値より、同一位相ノズ
ル相互の差よりl (E+G)−(1+K)1又はl 
(F+H)−(J+L)lの最大値とする。
For cylindricity measurement, from the four sets of measured values, the difference between the same phase nozzles is l (E + G) - (1 + K) 1 or l
Let it be the maximum value of (F+H)-(J+L)l.

(2)異なる平面内対向ノズルの連通 被測定物Wのフランジ端面に対する穴内周面の直角度の
測定は、異なる平面内に位置しかつ対向するものどうし
を連通させて計測が行われる。かかる連通路切替えは、
第5図の状態より電磁切替弁SV2.SV3.SV5.
SV8のソレノイドを付勢することにより、ノズルEと
に、IとGlLとF、JとHがそれぞれ連通され、互い
に連通された一対のノズルの背圧変化が圧力検出ユニッ
トPDのセンサに導かれて計測される。
(2) Communication of opposing nozzles in different planes The perpendicularity of the inner circumferential surface of the hole with respect to the flange end face of the object W to be measured is measured by communicating the nozzles located in different planes and facing each other. Such communication path switching is
From the state shown in FIG. 5, the solenoid switching valve SV2. SV3. SV5.
By energizing the solenoid of SV8, I, GlL, F, and J and H are communicated with nozzle E, and the back pressure change of the pair of nozzles communicated with each other is guided to the sensor of pressure detection unit PD. It is measured by

直角度の測定としては、基準端面11に開口するノズル
A、Cを基準にしてこれを含む内面での穴直角度の測定
と、ノズルB、Dを基準にしてこれを含む面内での穴直
角度の測定とがある。
To measure the squareness, measure the hole squareness on the inner surface that includes nozzles A and C that open on the reference end face 11, and measure the hole squareness on the inner surface that includes nozzles B and D as a reference. There is a measurement of squareness.

ここにLl、L2を内径測定ノズルの軸方向間隔(Ll
−ノズルFとJの軸方向間隔、L2−ノズルEとIの軸
方向間隔)とし、L3を端面測定用ノズルの対角方向の
間隔とする。
Here, Ll and L2 are the axial distance of the inner diameter measuring nozzle (Ll
- the axial distance between nozzles F and J, L2 - the axial distance between nozzles E and I), and L3 is the diagonal distance between the end face measurement nozzles.

ノズルA、C基準の場合の直角度は次式%式% ノズルB、D基準の場合の直角度は次式9− PARI、PAR2の最大値を直角度の計測値とする。The perpendicularity in the case of nozzle A and C standards is the following formula % formula % The squareness in the case of nozzle B and D standards is the following formula 9- The maximum value of PARI and PAR2 is taken as the measured value of the squareness.

尚、第5図における圧力検出ユニットPDには給気ライ
ン23よりレギュレータバルブ24を介して定圧エアー
が供給されている。
Note that constant pressure air is supplied to the pressure detection unit PD in FIG. 5 from an air supply line 23 via a regulator valve 24.

圧力検出ユニッ)PDのそれぞれは第8図に示すように
、前記給気ライン23からの分岐路25と第1オリフイ
ス26を介して各ノズル給気路は連通され、このノズル
給気路にはノズル給気路20又は21の圧力、即ちノズ
ル背圧を検出する圧力センサ30が設けられている。圧
力センサ3゜からの出力信号はAD変換器31を介して
データ処理装置32に与えられ、各圧力センサ3oの出
力より前記内径、円筒度、真円度、直角度の計測値が算
出される。
As shown in FIG. 8, each nozzle air supply path of each of the pressure detection units (PD) is communicated via a branch path 25 from the air supply line 23 and a first orifice 26. A pressure sensor 30 is provided to detect the pressure in the nozzle air supply path 20 or 21, that is, the nozzle back pressure. The output signal from the pressure sensor 3° is given to the data processing device 32 via the AD converter 31, and the measured values of the inner diameter, cylindricity, roundness, and squareness are calculated from the output of each pressure sensor 3o. .

〈発明の効果〉 以上述べたように検測ヘッドを被測定物Wに挿入した状
態において、電磁切替弁SVI〜SV8を適宜切替える
ことにより、同一平面内に位置する一対の対向ノズル、
例えばH,!:Fを互いに連通10− させて、両ノズルの合成された背圧が圧力センサにて計
測され、前記のように他の組のノズル背圧計測値とに応
じて内径、円筒度、真円度の測定がなされる。
<Effects of the Invention> As described above, by appropriately switching the electromagnetic switching valves SVI to SV8 with the inspection head inserted into the object W to be measured, a pair of opposing nozzles located in the same plane,
For example, H! : F are communicated with each other, the combined back pressure of both nozzles is measured by a pressure sensor, and the inner diameter, cylindricity, and roundness are determined according to the back pressure measurement values of other sets of nozzles as described above. measurements are taken.

又測定ヘッドの挿入状態において電磁切替弁を切替える
と、異なる平面内に位置する一対の対向ノズル、例えば
F(!:Lを互いに連通させ、両ノズルの合成された背
圧が圧力センサにて計測され、端面に開口するノズル、
例えばBとDの計測値を基準に穴の直角度の測定がなさ
れる。
In addition, when the electromagnetic switching valve is switched while the measurement head is inserted, a pair of opposing nozzles located in different planes, for example F(!:L), are communicated with each other, and the combined back pressure of both nozzles is measured by a pressure sensor. and a nozzle opening on the end face,
For example, the perpendicularity of the hole is measured based on the measured values of B and D.

このように−回の挿入動作で切替弁の切替作用のみで、
内径、円筒度、真円度のいずれかの測定に加えて端面に
対する大面角度の測定もできることとなり、測定ステー
ションの削減を図ることができるばかりでなく、測定時
間も大幅に短縮できる利点がある。
In this way, with only the switching action of the switching valve with − times of insertion operation,
In addition to measuring the inner diameter, cylindricity, and roundness, it is also possible to measure the large surface angle relative to the end face, which has the advantage of not only reducing the number of measuring stations but also significantly shortening the measuring time. .

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は検測ヘッ
ドの縦断面図、第2図はその要部外観図、第3図は第2
図におけるm−m線矢視断面図、第4図は第2図におけ
るrV−IV線矢視断面図、第5図はノズル接続状態を
切替える回路線図、第6図。 第7図は各ノズル位置と被測定物との関係を示す図、第
8図は圧力検出ユニットの構成を示す図である。 10・・・検測ヘッド、13.14・・・エアーノズル
、20.21・・・給気路、22・・・連通路、23・
・・供給ライン、24・・・レギュレータバルブ、PD
・・・圧力検出ユニット、25・・・分岐路、26・・
・オリフィス、30・・・圧力センサ、31・・・AD
変換器。 特許出願人 豊田工機株式会社
The drawings show an embodiment of the present invention, in which Fig. 1 is a longitudinal sectional view of the inspection head, Fig. 2 is an external view of its main parts, and Fig.
FIG. 4 is a sectional view taken along the line rV-IV in FIG. 2, FIG. 5 is a circuit diagram for switching the nozzle connection state, and FIG. FIG. 7 is a diagram showing the relationship between each nozzle position and the object to be measured, and FIG. 8 is a diagram showing the configuration of the pressure detection unit. DESCRIPTION OF SYMBOLS 10... Inspection head, 13.14... Air nozzle, 20.21... Air supply path, 22... Communication path, 23.
... Supply line, 24 ... Regulator valve, PD
...Pressure detection unit, 25... Branch path, 26...
・Orifice, 30...pressure sensor, 31...AD
converter. Patent applicant Toyota Machinery Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)被測定物の穴内周面に対向する複数の第1エアー
ノズル及び被測定物の端面に対向する複数の第2エアー
ノズルを備えた検測ヘッドを設けるとともに各エアーノ
ズルの背圧変化を検出する圧力検出器を設けてなる測定
装置において、前記第1エアーノズルは被測定物の穴内
周面に対向し同一平面内において少なくとも4位相に配
置された複数のエアーノズルの組を軸方向に2組離間し
て設け、同一平面内に位置し逆向きの一対のエアーノズ
ルを互いに接続して1つの圧力検出器に両ノズル背圧を
導く第1の接続状態と、軸方向に離間した2平面内に位
置し逆向きの一対のエアーノズルを互いに接続して1つ
の圧力検出器に両ノズル背圧を導く第2の接続状態とに
切替可能な切替手段を設けたことを特徴とする測定装置
(1) An inspection head equipped with a plurality of first air nozzles facing the inner peripheral surface of the hole of the object to be measured and a plurality of second air nozzles facing the end surface of the object to be measured is provided, and the back pressure of each air nozzle changes. In the measurement device equipped with a pressure detector for detecting the A first connection state in which a pair of air nozzles located in the same plane and facing oppositely is connected to each other to guide back pressure from both nozzles to one pressure detector; The present invention is characterized by being provided with a switching means capable of switching to a second connection state in which a pair of air nozzles located in two planes and facing oppositely are connected to each other and the back pressure of both nozzles is guided to one pressure detector. measuring device.
JP13549583A 1983-07-25 1983-07-25 Measuring device Granted JPS6027806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13549583A JPS6027806A (en) 1983-07-25 1983-07-25 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13549583A JPS6027806A (en) 1983-07-25 1983-07-25 Measuring device

Publications (2)

Publication Number Publication Date
JPS6027806A true JPS6027806A (en) 1985-02-12
JPH0574763B2 JPH0574763B2 (en) 1993-10-19

Family

ID=15153070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13549583A Granted JPS6027806A (en) 1983-07-25 1983-07-25 Measuring device

Country Status (1)

Country Link
JP (1) JPS6027806A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911604A3 (en) * 1997-10-24 2000-10-11 THEYSOHN GmbH Measuring device for oblong profiles, in particular extruded ones
US6708566B1 (en) 2003-02-21 2004-03-23 Robert Bosch Gmbh Air gauge for measuring the geometry of precision machined fluid passages
JP2009150780A (en) * 2007-12-20 2009-07-09 Honda Motor Co Ltd Back pressure type gas micrometer, and internal diameter simultaneous inspection system and internal diameter simultaneous inspection method of plurality of hole parts to be inspected

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565725B2 (en) * 2000-09-28 2010-10-20 本田技研工業株式会社 Air micro apparatus for measuring axis deviation and measuring method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137206A (en) * 1980-03-31 1981-10-27 Toshiba Corp Gauging nozzle for air micrometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137206A (en) * 1980-03-31 1981-10-27 Toshiba Corp Gauging nozzle for air micrometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911604A3 (en) * 1997-10-24 2000-10-11 THEYSOHN GmbH Measuring device for oblong profiles, in particular extruded ones
US6708566B1 (en) 2003-02-21 2004-03-23 Robert Bosch Gmbh Air gauge for measuring the geometry of precision machined fluid passages
JP2009150780A (en) * 2007-12-20 2009-07-09 Honda Motor Co Ltd Back pressure type gas micrometer, and internal diameter simultaneous inspection system and internal diameter simultaneous inspection method of plurality of hole parts to be inspected

Also Published As

Publication number Publication date
JPH0574763B2 (en) 1993-10-19

Similar Documents

Publication Publication Date Title
US4495465A (en) Method and apparatus for non-destructive testing of magnetically permeable bodies using a first flux to saturate the body and a second flux opposing the first flux to produce a measurable flux
GB1414184A (en) Coin testing apparatus
US2614423A (en) Fluid flow orifice structure
US20030107366A1 (en) Sensor with off-axis magnet calibration
JPS6027806A (en) Measuring device
US2779188A (en) Fluid gage apparatus
GB2071331A (en) Non-destructive Testing of Ferromagnetic Articles
US4016747A (en) Method of and apparatus for checking the cylindricity of a test surface
US5198765A (en) Method of and apparatus for simultaneously testing a wire rope for multiple defects
US2572368A (en) Pneumatic gauge for plain and tapered bores
EP1079212A3 (en) Method for the magnetic-inductive measurement of fluid flow
US7073654B2 (en) Coin selector for bimetal coins
JP2848081B2 (en) Magnetic flaw detector
US20230114605A1 (en) System for torque measurement and method
CN105157536B (en) A kind of detecting tool of major diameter outer conical surface
CN110360965A (en) A kind of device and detection method based on air-gauge detection flatness air-tightness
JPH04120456A (en) Nondestructive inspecting apparatus by skid
JPH03274455A (en) Method for diagnosing corrosion of pipe
JP5158644B2 (en) Eddy current flaw detection system
US5109699A (en) Sonic casting tester
SU1067351A1 (en) Touch-free pneumatic device for measuring deviation from alignment
US20130119979A1 (en) Leakage flux probe for non-destructive leakage flux-testing of bodies consisting of magnetizable material
CN219328757U (en) Double-ring detector based on Hall effect
JP3542449B2 (en) Leak measuring machine
JPH04120409A (en) Detecting apparatus for groove of component such as cam shaft