JPH0574763B2 - - Google Patents

Info

Publication number
JPH0574763B2
JPH0574763B2 JP58135495A JP13549583A JPH0574763B2 JP H0574763 B2 JPH0574763 B2 JP H0574763B2 JP 58135495 A JP58135495 A JP 58135495A JP 13549583 A JP13549583 A JP 13549583A JP H0574763 B2 JPH0574763 B2 JP H0574763B2
Authority
JP
Japan
Prior art keywords
nozzles
air
measured
nozzle
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58135495A
Other languages
Japanese (ja)
Other versions
JPS6027806A (en
Inventor
Hirotaka Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP13549583A priority Critical patent/JPS6027806A/en
Publication of JPS6027806A publication Critical patent/JPS6027806A/en
Publication of JPH0574763B2 publication Critical patent/JPH0574763B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/16Measuring arrangements characterised by the use of fluids for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/08Measuring arrangements characterised by the use of fluids for measuring diameters
    • G01B13/10Measuring arrangements characterised by the use of fluids for measuring diameters internal diameters

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は被測定物の内径、真円度、円筒度、直
角度を検測するエアー式の測定装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an air-type measuring device for measuring the inner diameter, roundness, cylindricity, and squareness of an object to be measured.

<従来技術> エアー式の測定装置としては、被測定面に近接
して配置されたエアーノズルの背圧がノズルと被
測定面との隙間に応じて変化するのを利用してい
る。かかるエアーノズルとしては、各ノズル単独
に圧力検出器を接続して独立ノズル方式と、一対
の対向するノズルを1つの圧力検出器に接続した
対向ノズル方式とがある。前者においては、ノズ
ル毎に圧力検出器が設けられるため、一対のノズ
ルで直径寸法の測定をする場合には、各ノズルに
対応した圧力検出器の出力信号を演算回路で演算
する必要がある。このため各圧力検出器の信号レ
ベルを判定するレベル判定回路の他に2信号を1
信号に変換する演算回路をも必要とするため、構
成機器が多くなりコスト高となる。
<Prior art> Air-type measuring devices utilize the fact that the back pressure of an air nozzle placed close to the surface to be measured changes depending on the gap between the nozzle and the surface to be measured. Such air nozzles include an independent nozzle type in which a pressure detector is connected to each nozzle alone, and an opposed nozzle type in which a pair of opposing nozzles are connected to one pressure detector. In the former, a pressure detector is provided for each nozzle, so when measuring the diameter dimension of a pair of nozzles, it is necessary to use a calculation circuit to calculate the output signal of the pressure detector corresponding to each nozzle. Therefore, in addition to the level judgment circuit that judges the signal level of each pressure detector, two signals are
Since it also requires an arithmetic circuit to convert it into a signal, the number of components increases, resulting in high costs.

後者においては、供給路を共通にする一対のノ
ズルの背圧を1つの圧力検出器に導くものである
ため、直径寸法に応じた信号が1つの圧力検出器
から出力され、圧力検出器が減らせる上に演算回
路を必要としない。
In the latter case, the back pressure of a pair of nozzles sharing a common supply path is guided to one pressure detector, so a signal according to the diameter is output from one pressure detector, reducing the number of pressure detectors. Moreover, it does not require an arithmetic circuit.

このように対向ノズル方式においては、構成機
器が低減できるので内径、真円度、円筒度の測定
の場合にはコスト的にきわめて有利になる。
In this manner, the opposed nozzle method can reduce the number of components, making it extremely advantageous in terms of cost when measuring inner diameter, roundness, and cylindricity.

しかしながら、端面に対する穴内周面の直角度
を測定する場合に、穴径側定のままの構成では穴
径の差は検出できても同一径で穴が傾いているよ
うな場合は検出不能である。
However, when measuring the perpendicularity of the inner circumferential surface of a hole to the end face, if the hole diameter side remains constant, differences in hole diameter can be detected, but if the holes have the same diameter but are tilted, it is impossible to detect the difference. .

このため従来は直角度の測定は、穴径、円筒
度、真円度の測定とは別行程で別個の測定ヘツド
を用いて測定が行われていた。
For this reason, in the past, the measurement of squareness was performed in a separate process from the measurements of hole diameter, cylindricity, and roundness using a separate measuring head.

このため測定装置のコストアツプを招くばかり
でなく、別々のステーシヨンにて測定しなければ
ならないので測定時間が長くかかる欠点があつ
た。
This not only leads to an increase in the cost of the measuring device, but also has the disadvantage that the measurement time is long because the measurements must be performed at separate stations.

<発明の目的> 本発明の目的は、内径、円筒度、真円度等の測
定に加えて直角度の測定も同一測定ヘツドの一回
の挿入動作で達成することであり、併せて測定装
置のコストダウンを図り、測定時間を短縮するこ
とである。
<Object of the invention> The object of the invention is to measure not only inner diameter, cylindricity, roundness, etc., but also squareness with a single insertion operation of the same measuring head, and also to provide a measuring device. The aim is to reduce costs and shorten measurement time.

<発明の構成> 本発明の特徴とする構成は、被測定物の穴内周
面に対向する複数の第1エアーノズル及び被測定
物の端面に対向する複数の第2エアーノズルを備
えた検測ヘツドを設けるとともに各エアーノズル
の背圧変化を検出する圧力検出器を設けてなる測
定装置において、前記第1エアーノズルは被測定
物の穴内周面に対向し同一平面内において少なく
とも4位相に配置された複数のエアーノズルの組
を軸方向に2組離間して設け、前記第1エアーノ
ズルの同一平面内に位置し逆向きの一対のエアー
ノズルを互いに接続して1つの圧力検出器に両ノ
ズル背圧を導く第1の接続状態と、前記第1エア
ーノズルの軸方向に離間した2平面内に位置し逆
向きの一対のエアーノズルを互いに接続して1つ
の圧力検出器に両ノズル背圧を導く第2の接続状
態とに切替可能な切替手段を設け、前記第1の接
続状態で前記第1エアーノズルの背圧より前記被
測定物の内径、円筒度および真円度の少なくとも
1つを演算し、前記第2の接続状態で前記第1エ
アーノズルの背圧および前記第2エアーノズルの
背圧より前記被測定物の端面に対する穴直角度を
演算するデータ処理装置を有するものである。
<Configuration of the Invention> The characteristic configuration of the present invention is an inspection system including a plurality of first air nozzles facing the inner peripheral surface of the hole of the object to be measured and a plurality of second air nozzles facing the end surface of the object to be measured. In a measuring device provided with a head and a pressure detector for detecting changes in back pressure of each air nozzle, the first air nozzles are arranged in at least four phases in the same plane, facing the inner peripheral surface of the hole of the object to be measured. Two sets of air nozzles are provided spaced apart in the axial direction, and a pair of air nozzles located in the same plane of the first air nozzle and facing oppositely are connected to each other to connect one pressure sensor to both sets of air nozzles. A first connection state in which a nozzle back pressure is introduced, and a pair of air nozzles located in two planes spaced apart in the axial direction of the first air nozzle and facing oppositely are connected to each other to connect both nozzle back pressures to one pressure sensor. A switching means is provided that can switch between a second connected state in which pressure is introduced, and in the first connected state, at least one of the inner diameter, cylindricity, and roundness of the object to be measured is controlled by the back pressure of the first air nozzle. and a data processing device that calculates the perpendicularity of the hole to the end surface of the object to be measured from the back pressure of the first air nozzle and the back pressure of the second air nozzle in the second connected state. be.

ここに切替弁を第1の接続状態に切替えれば、
穴内周面に対向するエアーノズルは、対向ノズル
方式で内径、円筒度、真円度等の測定ができるこ
とになり、第2の接続状態に切替えれば、端面に
対する穴内周面の直角度の測定が対向ノズル方式
のままでできることになり、被測定物に対する1
回の挿入動作で全ての測定が迅速に行なえること
になる。
If the switching valve is switched to the first connection state,
The air nozzle facing the inner circumferential surface of the hole can measure the inner diameter, cylindricity, roundness, etc. using the opposed nozzle method, and by switching to the second connection state, it is possible to measure the perpendicularity of the inner circumferential surface of the hole to the end surface. can be done using the facing nozzle method, and the
All measurements can be performed quickly with just one insertion operation.

<実施例> 以下本発明の実施例を図面に基づいて説明す
る。第1図は検測ヘツド10を示す縦断面図であ
り、基準端面11の中央に軸状突出部12が垂直
に突設され、その外周面には複数のエアーノズル
13(第1エアーノズル)が開口している。この
エアーノズル13は同一平面内において円周上4
等分位置に開口するエアーノズルの組が軸線方向
位置を異にして2組、計8個のエアーノズルが設
けられている。基準端面11にも位相を同じくし
て4個のエアーノズル14(第2エアーノズル)
が開口している。各ノズル13の周囲には、流出
流体の相互干渉をなくすための逃がし溝15が刻
設され、各逃がし溝15は軸方向溝16を通じて
大気中に連通されている。基準端面11に開口す
るノズル14の周囲には放射状の逃がし溝17が
刻設されている。各ノズル13,14の一端は検
測ヘツド10に穿設された給気路20,21とそ
れぞれ連通し、基準端面に開口するエアーノズル
14は第5図に示すように給気路21を介して圧
力検出ユニツトPDに連通されている。
<Examples> Examples of the present invention will be described below based on the drawings. FIG. 1 is a longitudinal cross-sectional view showing the inspection head 10, in which a shaft-like protrusion 12 is vertically protruded from the center of the reference end face 11, and a plurality of air nozzles 13 (first air nozzles) are provided on the outer peripheral surface of the shaft-shaped protrusion 12. is open. This air nozzle 13 has 4 points on the circumference within the same plane.
A total of eight air nozzles, two sets of air nozzles opening at equal positions and at different axial positions, are provided. Four air nozzles 14 (second air nozzles) are also arranged in the same phase on the reference end face 11.
is open. A relief groove 15 is formed around each nozzle 13 to eliminate mutual interference of outflow fluid, and each relief groove 15 communicates with the atmosphere through an axial groove 16. A radial relief groove 17 is carved around the nozzle 14 that opens into the reference end surface 11 . One end of each nozzle 13, 14 communicates with air supply passages 20, 21 bored in the inspection head 10, respectively, and the air nozzle 14, which opens at the reference end face, communicates with the air supply passage 21, as shown in FIG. It is connected to the pressure detection unit PD.

軸状突出部12の外周面に開口する8個のノズ
ル13と格別に連通された給気路20は、電磁切
替弁SV1〜SV8(切替手段)を介して、同一平
面内で対向する一対のノズルどうしを互いに連通
させる第1の状態、又軸方向位置を異にする2平
面内において対向する一対のノズルどうしを互い
に連通させる第2の状態に切替可能に接続されて
いる。接続切替される一対のノズルの接続点O,
P,Q,Rは連通路22を介して圧力検出ユニツ
トPDに接続されている。
The air supply path 20, which is in special communication with the eight nozzles 13 that open on the outer circumferential surface of the shaft-like protrusion 12, is connected to a pair of opposing nozzles in the same plane via electromagnetic switching valves SV1 to SV8 (switching means). The nozzles are connected so as to be switchable between a first state in which the nozzles communicate with each other, and a second state in which a pair of nozzles facing each other in two planes having different axial positions communicate with each other. Connection point O of a pair of nozzles to be switched,
P, Q, and R are connected to a pressure detection unit PD via a communication path 22.

第6図,第7図は被測定物Wとノズル位置を示
すものであり、各ノズル位置を示すアルフア記号
は第5図のノズルに付したアルフア記号と対応さ
せてある。
6 and 7 show the object to be measured W and the nozzle positions, and the alpha symbols indicating each nozzle position correspond to the alpha symbols attached to the nozzles in FIG. 5.

前記電磁切替弁SV1〜SV8の切替作用による
各ノズル相互の連通関係を次に説明する。
The communication relationship between the nozzles due to the switching action of the electromagnetic switching valves SV1 to SV8 will be explained next.

電磁切替弁SV1〜SV8のソレノイドが全て無
勢された図示状態においては、ノズルK,G,
F,Jに通ずる給気路は閉止され、同一平面内に
おいて互いに対向する一対のノズルどうし、例え
ばHとFとかLとJの連通はされていないし、又
異なる平面内において対応する一対のノズル、例
えばHとJとかFとLの連通もされていない。
In the illustrated state in which all the solenoids of the electromagnetic switching valves SV1 to SV8 are deenergized, nozzles K, G,
The air supply passages leading to F and J are closed, and there is no communication between a pair of nozzles that face each other in the same plane, for example, H and F or L and J, and a pair of corresponding nozzles in different planes. For example, H and J or F and L are not connected.

(1) 同一平面内対向ノズルの連通 内径、円筒度、真円度の測定は、同一平面内に
位置する4個のノズルの互いに対向するものどう
しを連通させ、両ノズルの合成背圧を1つの圧力
検出器に導き計測が行われる。かかる連通切替え
は第5図の状態より電磁切替弁SV1,SV4,
SV6,SV7のソレノイドを付勢することによ
り、ノズルIとK,EとG,FとH,LとJがそ
れぞれ連通され、互いに連通された一対のノズル
の背圧変化が圧力検出ユニツトの圧力センサに導
かれて計測される。
(1) Communication of opposing nozzles in the same plane To measure the inner diameter, cylindricity, and roundness, four nozzles located in the same plane that face each other are communicated, and the combined back pressure of both nozzles is The pressure is measured by two pressure detectors. Such communication switching is performed using the electromagnetic switching valves SV1, SV4,
By energizing the solenoids SV6 and SV7, nozzles I and K, E and G, F and H, and L and J are communicated with each other, and changes in the back pressure of the pair of mutually communicated nozzles are detected as the pressure of the pressure detection unit. It is guided by a sensor and measured.

内径測定としては、一対のノズルの組が4組
(E+G),(F+H),(I+K),(J+L)ある
ので各組の最小値を内径測定値とする。
For inner diameter measurement, since there are four pairs of nozzles (E+G), (F+H), (I+K), and (J+L), the minimum value of each pair is taken as the inner diameter measurement value.

真円度測定としては、4組の計測値より、直交
するノズル相互の差より|(E+G)−(F+H)|
又は|(I+K)−(J+L)|の最大値とする。
To measure roundness, use the difference between orthogonal nozzles from four sets of measured values |(E+G)-(F+H)|
Or, it is the maximum value of |(I+K)-(J+L)|.

円筒度測定としては、4組の計測値より、同一
位相ノズル相互の差より|(E+G)−(I+K)|
又は|(F+H)−(J+L)|の最大値とする。
For cylindricity measurement, from the four sets of measured values, from the difference between the same phase nozzles | (E + G) - (I + K) |
Or the maximum value of |(F+H)-(J+L)|.

(2) 異なる平面内対向ノズルの連通 被測定物Wのフランジ端面に対する穴内周面の
直角度の測定は、異なる平面内に位置しかつ対向
するものどうしを連通させて計測が行われる。か
かる連通路切替えは、第5図の状態より電磁切替
弁SV2,SV3,SV5,SV8のソレノイドを付
勢することにより、ノズルEとK、IとG、Lと
F、JとHがそれぞれれ連通され、互いに連通さ
れた一対のノズルの背圧変化が圧力検出ユニツト
PDのセンサに導かれて計測される。
(2) Communication of opposing nozzles in different planes The perpendicularity of the inner circumferential surface of the hole with respect to the flange end face of the object W to be measured is measured by communicating the nozzles located in different planes and facing each other. Such communication path switching is performed by energizing the solenoids of the electromagnetic switching valves SV2, SV3, SV5, and SV8 from the state shown in FIG. The change in back pressure of a pair of nozzles communicated with each other is detected by the pressure detection unit.
It is guided and measured by the PD sensor.

直角度の測定としては、基準端面11に開口す
るノズルA,Cを基準にしてこれを含む内面での
穴直角度の測定と、ノズルB,Dを基準にしてこ
れを含む面内での穴直角度の測定とがある。
To measure the perpendicularity, measure the perpendicularity of the hole on the inner surface that includes nozzles A and C that open on the reference end face 11 as a reference, and measure the perpendicularity of the hole within the surface that includes nozzles B and D as a reference. There is a measurement of squareness.

ここにL1,L2を内径測定ノズルの軸方向間隔
(L1=ノズルFとJの軸方向間隔、L2=ノズルE
とIの軸方向間隔)とし、L3を端面測定用ノズ
ルの対角方向の間隔とする。
Here, L 1 and L 2 are the axial distance between the inner diameter measurement nozzles (L 1 = axial distance between nozzles F and J, L 2 = nozzle E
and I), and L3 is the diagonal distance between the end face measurement nozzles.

ノズルA,C基準の場合の直角度は次式 PARl=|L1/L2 (E+K)−(I+G)/2+L1
L3(A−C)| で求められる。
The squareness for nozzles A and C is calculated using the following formula: PARl=|L 1 /L 2 (E+K)-(I+G)/2+L 1 /
It is determined by L 3 (A-C) |

ノズルB,D基準の場合の直角度は次式 PAR2=|L1/L2 (F+L)−(H+J)/2+L1
L3(B−D)| で求められる。
The squareness for nozzles B and D is determined by the following formula: PAR2=|L 1 /L 2 (F+L)-(H+J)/2+L 1 /
It is determined by L 3 (B-D) |

PAR1,RAR2の最大値を直角度の計測値とす
る。
The maximum value of PAR1 and RAR2 is the measured value of squareness.

尚、第5図における圧力検出ユニツトPDには
給気ライン23よりレギユレータバルブ24を介
して定圧エアーが供給されている。
Note that constant pressure air is supplied to the pressure detection unit PD in FIG. 5 from an air supply line 23 via a regulator valve 24.

圧力検出ユニツトPDのそれぞれは第8図に示
すように、前記給気ライン23からの分岐路25
と第1オリフイス26を介して各ノズル給気路は
連通され、このノズル給気路にはノズル給気路2
0又は21の圧力、即ちノズル背圧を検出する圧
力センサ30が設けられている。圧力センサ30
からの出力信号はAD変換器31を介してデータ
処理装置32に与えられ、各圧力センサ30の出
力より前記内径、円筒度、真円度、直角度の計測
値が算出されれる。
As shown in FIG. 8, each of the pressure detection units PD is connected to a branch path 25 from the air supply line 23.
Each nozzle air supply path communicates with the nozzle air supply path 2 through the first orifice 26.
A pressure sensor 30 is provided to detect a pressure of 0 or 21, ie, nozzle back pressure. Pressure sensor 30
The output signal from the pressure sensor 30 is given to the data processing device 32 via the AD converter 31, and the measured values of the inner diameter, cylindricity, roundness, and squareness are calculated from the output of each pressure sensor 30.

<発明の効果> 以上述べたように検測ヘツドを被測定物Wに挿
入した状態において、電磁切替弁SV1〜SV8を
適宜切替えることにより、同一平面内に位置する
一対の対向ノズル、例えばHとFを互いに連通さ
せて、両ノズルの合成された背圧が圧力センサに
て計測され、前記のように他の組のノズル背圧計
測値とに応じて内径、円筒度、真円度の測定がな
される。
<Effects of the Invention> As described above, when the inspection head is inserted into the object to be measured W, by appropriately switching the electromagnetic switching valves SV1 to SV8, a pair of opposing nozzles located in the same plane, for example H and F are communicated with each other, the combined back pressure of both nozzles is measured by a pressure sensor, and the inner diameter, cylindricity, and roundness are measured according to the back pressure measurement values of other sets of nozzles as described above. will be done.

又測定ヘツドの挿入状態において電磁切替弁を
切替えると、異なる平面内に位置する一対の対向
ノズル、例えばFとLを互いに連通させ、両ノズ
ルの合成された背圧が圧力センサにて計測され、
端面に開口するノズル、例えばBとDの計測値を
基準に穴の直角度の測定がなされる。
Furthermore, when the electromagnetic switching valve is switched while the measurement head is inserted, a pair of opposing nozzles located in different planes, for example F and L, are communicated with each other, and the combined back pressure of both nozzles is measured by a pressure sensor.
The perpendicularity of the hole is measured based on the measured values of the nozzles, for example B and D, which open at the end face.

このように1つの測定スーシヨンにおける1回
の測定ヘツドの挿入動作で第1の接続状態と第2
の接続状態とを切替手段によつて切り替えること
により、被測定物の内径、円筒度、真円度のいず
れかの測定に加えて、被測定物の端面に対する穴
直角度を測定できるため、測定ステーシヨンの削
減を図ることができるばかりでなく、測定時間も
大幅に短縮できる利点がある。
In this way, one measurement head insertion operation in one measurement session changes the first connection state and the second connection state.
By switching the connection status of This has the advantage that not only can the number of stations be reduced, but also the measurement time can be significantly shortened.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は
検測ヘツドの縦断面図、第2図はその要部外観
図、第3図は第2図における−線矢視断面
図、第4図は第2図における−線矢視断面
図、第5図はノズル接続状態を切替える回路線
図、第6図、第7図は各ノズル位置と被測定物と
の関係を示す図、第8図は圧力検出ユニツトの構
成を示す図である。 10……検測ヘツド、13,14……エアーノ
ズル、20,21……給気路、22……連通路、
23……供給ライン、24……レギユレータバル
ブ、PD……圧力検出ユニツト、25……分岐路、
26……オリフイス、30……圧力センサ、31
……AD変換器。
The drawings show an embodiment of the present invention, and FIG. 1 is a longitudinal sectional view of the inspection head, FIG. 2 is an external view of the main part thereof, and FIG. Figure 4 is a sectional view taken along the - line in Figure 2, Figure 5 is a circuit diagram for switching the nozzle connection state, Figures 6 and 7 are diagrams showing the relationship between each nozzle position and the object to be measured. FIG. 8 is a diagram showing the configuration of the pressure detection unit. 10... Testing head, 13, 14... Air nozzle, 20, 21... Air supply path, 22... Communication path,
23... Supply line, 24... Regulator valve, PD... Pressure detection unit, 25... Branch path,
26... Orifice, 30... Pressure sensor, 31
...AD converter.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定物の穴内周面に対向する複数の第1エ
アーノズル及び被測定物の端面に対向する複数の
第2エアーノズルを備えた検測ヘツドを設けると
ともに各エアーノズルの背圧変化を検出する圧力
検出器を設けてなる測定装置において、前記第1
エアーノズルは被測定物の穴内周面に対向し同一
平面内において少なくとも4位相に配置された複
数のエアーノズルの組を軸方向に2組離間して設
け、前記第1エアーノズルの同一平面内に位置し
逆向きの一対のエアーノズルを互いに接続して1
つの圧力検出器に両ノズル背圧を導く第1の接続
状態と、前記第1エアーノズルの軸方向に離間し
た2平面内に位置し逆向きの一対のエアーノズル
を互いに接続して1つの圧力検出器に両ノズル背
圧を導く第2の接続状態とに切替可能な切替手段
を設け、前記第1の接続状態で前記第1エアーノ
ズルの背圧より前記被測定物の内径、円筒度およ
び真円度の少なくとも1つを演算し、前記第2の
接続状態で前記第1エアーノズルの背圧および前
記第2エアーノズルの背圧より前記被測定物の端
面に対する穴直角度を演算するデータ処理装置を
有することを特徴とする測定装置。
1. An inspection head equipped with a plurality of first air nozzles facing the inner peripheral surface of the hole of the object to be measured and a plurality of second air nozzles facing the end surface of the object to be measured is provided, and changes in back pressure of each air nozzle are detected. In the measuring device comprising a pressure detector that
The air nozzle is provided with two sets of air nozzles arranged in at least four phases in the same plane facing the inner circumferential surface of the hole of the object to be measured, and two sets of air nozzles are spaced apart in the axial direction. A pair of air nozzles located in opposite directions are connected to each other.
a first connection state in which back pressure of both nozzles is introduced to one pressure detector; and a pair of air nozzles located in two planes spaced apart in the axial direction of the first air nozzle and facing oppositely connected to each other to obtain one pressure sensor. A switching means is provided that can switch to a second connected state in which the back pressure of both nozzles is introduced to the detector, and in the first connected state, the inner diameter, cylindricity, and data for calculating at least one of roundness and calculating a hole perpendicularity to an end surface of the object to be measured from the back pressure of the first air nozzle and the back pressure of the second air nozzle in the second connected state; A measuring device comprising a processing device.
JP13549583A 1983-07-25 1983-07-25 Measuring device Granted JPS6027806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13549583A JPS6027806A (en) 1983-07-25 1983-07-25 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13549583A JPS6027806A (en) 1983-07-25 1983-07-25 Measuring device

Publications (2)

Publication Number Publication Date
JPS6027806A JPS6027806A (en) 1985-02-12
JPH0574763B2 true JPH0574763B2 (en) 1993-10-19

Family

ID=15153070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13549583A Granted JPS6027806A (en) 1983-07-25 1983-07-25 Measuring device

Country Status (1)

Country Link
JP (1) JPS6027806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107133A (en) * 2000-09-28 2002-04-10 Honda Motor Co Ltd Air micro device for measuring axial deviation, and measurement method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19746966C1 (en) * 1997-10-24 1999-06-17 Theysohn Friedrich Fa Testing device for extruded long profiles in particular
US6708566B1 (en) 2003-02-21 2004-03-23 Robert Bosch Gmbh Air gauge for measuring the geometry of precision machined fluid passages
JP2009150780A (en) * 2007-12-20 2009-07-09 Honda Motor Co Ltd Back pressure type gas micrometer, and internal diameter simultaneous inspection system and internal diameter simultaneous inspection method of plurality of hole parts to be inspected

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137206A (en) * 1980-03-31 1981-10-27 Toshiba Corp Gauging nozzle for air micrometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56137206A (en) * 1980-03-31 1981-10-27 Toshiba Corp Gauging nozzle for air micrometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107133A (en) * 2000-09-28 2002-04-10 Honda Motor Co Ltd Air micro device for measuring axial deviation, and measurement method therefor
JP4565725B2 (en) * 2000-09-28 2010-10-20 本田技研工業株式会社 Air micro apparatus for measuring axis deviation and measuring method

Also Published As

Publication number Publication date
JPS6027806A (en) 1985-02-12

Similar Documents

Publication Publication Date Title
US2614423A (en) Fluid flow orifice structure
US2636379A (en) Radial-play gauge
JPH0574763B2 (en)
JP2000110836A (en) Static pressure bearing device
US4924181A (en) Device having electromagnet for providing a magnetic field inclined with respect to the transportation direction of a ferromagnetic body for non-destructive, magnetic testing of the body
CN105157536B (en) A kind of detecting tool of major diameter outer conical surface
US2925659A (en) Ring gage
JPH07209336A (en) Current sensor
JPH04120456A (en) Nondestructive inspecting apparatus by skid
US3365711A (en) Hydrostatic bearing load signaling device
US5422555A (en) Apparatus and method for establishing a reference signal with an LVDT
US3541839A (en) Fluidic position sensor
JPH0336897Y2 (en)
JP2002277227A (en) Air type measuring instrument
US20080202256A1 (en) Dynamic Pressure Probe
JP2855064B2 (en) Inner sphere diameter measuring method and apparatus
US5109699A (en) Sonic casting tester
KR0126035Y1 (en) Vacuum gauge
JP2557280B2 (en) Groove detection device for parts such as camshafts
JPS56137206A (en) Gauging nozzle for air micrometer
JP3542449B2 (en) Leak measuring machine
JPH0311691Y2 (en)
JPH0449528Y2 (en)
JPH03274455A (en) Method for diagnosing corrosion of pipe
JPH04120409A (en) Detecting apparatus for groove of component such as cam shaft