JPS6027740A - Control apparatus for engine capable of changing the number of cylinders to be operated - Google Patents

Control apparatus for engine capable of changing the number of cylinders to be operated

Info

Publication number
JPS6027740A
JPS6027740A JP58136292A JP13629283A JPS6027740A JP S6027740 A JPS6027740 A JP S6027740A JP 58136292 A JP58136292 A JP 58136292A JP 13629283 A JP13629283 A JP 13629283A JP S6027740 A JPS6027740 A JP S6027740A
Authority
JP
Japan
Prior art keywords
cylinders
engine
cylinder
cylinder operation
operated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58136292A
Other languages
Japanese (ja)
Other versions
JPH0156257B2 (en
Inventor
Manabu Arima
学 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP58136292A priority Critical patent/JPS6027740A/en
Publication of JPS6027740A publication Critical patent/JPS6027740A/en
Publication of JPH0156257B2 publication Critical patent/JPH0156257B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/003Electric control of rotation speed controlling air supply for idle speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent fluctuation of torque of an engine designed to be capable of changing the number of cylinders to be operated, by raising the idling speed to the target idling speed at the time of decreasing the number of cylinders to be operated, and then decreasing the number of operated cylinders at the time of decreasing the number of cylinders to be operated. CONSTITUTION:In an engine 1 which is designed to be capable of changing the number of cylinders to be operated and has a cylinder selector 8 for controlling operation of intake and exhaust valves, a throttle valve 12 and a by-pass valve 16 are provided in an intake passage 2, and operation of these valves is controlled by a control circuit 20. The control circuit 20 is furnished with output signals of various sensors 21-23 for detecting the operational conditions of the engine. When a signal for requring to decrease the number of cylinders to be operated in produced, the control circuit 20 at first opens the by-pass valve 16 and raises the engine speed to the target idling speed at the time of cylinder- reduced operation of the engine. Then, the number of operated cylinders is decreased by sending a signal to the clyinder selector 8.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの運転状態を検出する運転状態検出
手段と、作動信号を受けて燃料を供給する気筒数を切換
える切換手段を備え、エンジンの運転状態に応じて燃料
を供給する気筒数が制御される如くされた気筒数制御エ
ンジンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention comprises an operating state detection means for detecting the operating state of an engine, and a switching means for switching the number of cylinders to which fuel is supplied in response to an operating signal. The present invention relates to a cylinder number control engine in which the number of cylinders to which fuel is supplied is controlled according to the operating state of the engine.

(従来技術) 気筒数制御エンジン例えば運転気筒数を2気筒とl気筒
に切換可能とした気筒数制御エンジンにおいては、2%
箇運転の場合には間欠的作動となりトルク変励が大きい
ため、これを改善するために2気筒運転時のアイドル回
転数をq気筒運転時のアイドル回転数よりも高く設定し
たものがある(例えば、本出願人の出願に係る特願昭3
7−/132/φ号公報)。
(Prior art) Cylinder number control engine For example, in a cylinder number control engine in which the number of operating cylinders can be switched between 2 cylinders and 1 cylinder, 2%
In case of multiple operation, the engine operates intermittently and the torque excitation is large, so in order to improve this, some models set the idle speed during 2-cylinder operation higher than the idle speed during q-cylinder operation (for example, , Patent application filed by the applicant in 1939
7-/132/φ publication).

滅ころで、通常2気W1運転時と4!気筒返転時のアイ
ドル回転数は吸気通路においてスロットルバルブをバイ
パスして設けられたパイRス弁でもって吸入空気量(混
合気量)を調整することにより制御されるが、従来の気
筒数制御エンジンにおいては、気筒数の切換信号の出力
タイミングとバイパス弁の作動信号の出力タイミングを
同じにしてVまたため、特に運転気筒数を弘気筒から2
気筒に切換える場合における切換過渡期に後述する如く
トルク変動に起因するエンジン振動が発生するという不
具合があった。即ち、第5図に示す如くエンジンの運転
状態の変化に応じて要求運転気筒数がlI気筒から2気
筒に変わり(IIr!!:1g) 、これ。と同時に切
換信号が出力され運転気筒数が弘気筒から2気筒に切換
えられるとともに(線図b・)、バイパス弁が弘気筒運
転時におけるパルプボジシ菖ンP9から2気筒運転時に
おけるバルブボジシ目ン4に切換わった(線図d)とし
ても、千ンジン回転数は線図Cに示す如く運転気筒数が
l気筒から2気筒に切換わると同時に瞬時にして低−転
数(例えばt j Orpm )から高回転数(例え1
ばr o o rpm )まで上昇するのでなく2気筒
、に切換後、ある時間差をもってA 30 rpmから
toOrpmまで上昇する。従って、l気筒運転からl
気筒運転への運転気筒数切換えの過渡期には2気筒運転
でありがらlr 00 rpm以下のアイドル回転数で
運転されている期間、換言すればトルク変動が大きい運
転期間が存在することになり、その結果、運転気筒数切
換えの過渡期にこのトルク変動に起因するエンジン振動
が発生するものである。
At the end of the day, when driving normally 2 ki W1 and 4! The idle speed during cylinder rotation is controlled by adjusting the amount of intake air (mixture amount) with a pi-R valve installed in the intake passage bypassing the throttle valve, but conventional cylinder number control In the engine, the output timing of the switching signal for the number of cylinders and the output timing of the bypass valve activation signal are set to be the same.
There has been a problem in that engine vibrations due to torque fluctuations occur during the switching transition period when switching to the cylinder, as will be described later. That is, as shown in FIG. 5, the required number of operating cylinders changes from 1 cylinder to 2 cylinders (IIr!!: 1g) in response to changes in the operating state of the engine. At the same time, a switching signal is output and the number of operating cylinders is switched from Hiro cylinder to 2 cylinders (diagram b), and the bypass valve changes from pulp position P9 during Hiro cylinder operation to valve position 4 during 2 cylinder operation. Even if the engine speed is changed (diagram d), the engine rotational speed will instantly change from a low rotational speed (for example, t j Orpm High rotation speed (e.g. 1
After switching to two cylinders, instead of increasing to A30 rpm), the engine speed increases from A30 rpm to A30 rpm with a certain time difference. Therefore, from l cylinder operation to l
During the transition period when the number of operating cylinders is switched to cylinder operation, there is a period in which the engine is operated at an idle speed of less than lr 00 rpm even though it is in two-cylinder operation, in other words, there is an operation period in which torque fluctuations are large. As a result, engine vibrations due to this torque fluctuation occur during the transition period of switching the number of operating cylinders.

(発明の目的) 本発明は、全筒運転から減筒運転への切換え過渡期に発
生するトルク変動に起因するエンジン振動を可及的に肪
止するようにしだ気筒数創部エンジンの制御装置を提供
することを目的としてなされたものである。
(Object of the Invention) The present invention provides a control device for an engine with several cylinders in order to suppress as much as possible engine vibrations caused by torque fluctuations that occur during the transition period from full-cylinder operation to reduced-cylinder operation. It was made for the purpose of providing.

(発明の構成) 本発明の気筒数制御エンジンの制御装置は、第1図に示
す機能ブロック図の如くエンジンの運転状態を検出する
運転状態検出手段Aと、作動信号を受けて燃料を供給す
る気筒数を切換える切換手段りを備え、エンジンの運転
状態に応じて燃料を供給する気筒数が制御される気筒数
制御エンジンlに、減筒運転時のアイドル回転数を全筒
運転時のアイドル回転数より高く設定するアイドル回転
数調整手段Bと、作動信号を受けて吸入空気量を増加さ
せる吸入空気増量手段Eと、アイドJし運転時における
全筒運転から減筒運転への切換時にlよ上記吸入空気増
量手段を作動させる作動信号を出力した後に上記切換手
段りに作動信号を出力して気筒数を減少させるようにし
たタイミング制御手段Cとを付設し、全筒運転から減筒
運転への気筒数切換要求時には全筒運転状態のままで上
記吸入空気増量手段Eを作動させてアイドル回転数を2
気筒運転時の目標アイドル回転数に近い値まで高めたの
ち、減筒運転に切換えるようにし、もりて全筒運転から
減筒運転への運転気筒数切換えの過渡期に発生するトル
ク変動に起因するエンジン振動を可及的に肪止するよう
にしたことを特徴とするものである。
(Structure of the Invention) As shown in the functional block diagram shown in FIG. 1, the engine control device for controlling the number of cylinders of the present invention includes an operating state detection means A that detects the operating state of the engine, and supplies fuel in response to an operating signal. The cylinder number control engine l is equipped with a switching means for switching the number of cylinders, and the number of cylinders to which fuel is supplied is controlled according to the operating state of the engine. an idle speed adjustment means B that sets the idle speed higher than the engine speed; an intake air increase means E that increases the intake air amount in response to an activation signal; A timing control means C is attached, which outputs an operation signal for activating the intake air increasing means and then outputs an operation signal to the switching means to reduce the number of cylinders, thereby changing from full-cylinder operation to reduced-cylinder operation. When a change in the number of cylinders is requested, the above-mentioned intake air increase means E is activated to reduce the idle speed to 2 while all cylinders are in operation.
After raising the idle speed to a value close to the target idle speed during cylinder operation, switch to reduced-cylinder operation, which is caused by torque fluctuations that occur during the transition period when the number of operating cylinders is switched from all-cylinder operation to reduced-cylinder operation. It is characterized by suppressing engine vibration as much as possible.

(実施例) 第2図には本発明実施例に係る制御装置を備えたlI気
筒自動車用エンジンlが示されている。このエンジンl
は、運転状態に応じてその運転気筒数をl気筒と2気筒
に切換えるようにしだ気筒数制御エンジンであって、該
エンジンlは、l気筒の内、所定の2気筒の吸気弁lと
排気弁Sに夫々 −保合せしめられている四ツカーアー
ム6.6の中間部に−マー制御回路20からの制御信号
を受けて進退変位せしめられる支持部材IOを有し該支
持部材IOの突出状態においてはロッカーアーム乙の作
動を有効とし没入状態においては該ロッカーアーム乙の
作動を無効とする一対のロッカーアーム支持装置ワ、9
よりなる気筒セレクターrを夫々取付け、該多気筒セレ
クターざ、Irの制御によってエンジンlの運転気筒数
をl気筒と2気筒に切換えることができるようKなフて
いる。尚、第2図において符号7は吸、排気弁用のカム
軸である。
(Embodiment) FIG. 2 shows an lI-cylinder automobile engine l equipped with a control device according to an embodiment of the present invention. This engine l
is a cylinder number control engine that switches the number of operating cylinders between 1 cylinder and 2 cylinders according to the operating state, and the engine 1 is configured to control the intake valves 1 and exhaust valves of predetermined 2 cylinders among the 1 cylinders. A support member IO is provided at the intermediate portion of the four-wheeled arm 6.6 which is secured to each valve S, and is moved forward and backward in response to a control signal from the mer control circuit 20, and when the support member IO is in the protruding state. 9 is a pair of rocker arm support devices that enable the operation of the rocker arm O and disable the operation of the rocker arm O in the retracted state;
A cylinder selector r consisting of a plurality of cylinders is installed, and the number of operating cylinders of the engine l can be switched between one cylinder and two cylinders by controlling the multi-cylinder selector Ir. In FIG. 2, reference numeral 7 indicates a camshaft for the intake and exhaust valves.

文、エンジンlは、その吸気通路コに、エアクリーチ/
4/、エアフロメータ13、スロットルバルブ12及び
燃料噴射弁17を吸気上流側から吸気下流側に同って顕
次取付けるとともに、該スロットルバルブ/2をバイパ
スするバイパス通路lSに該バイパス通路l!を介して
吸入されるバイパスエア量をW整することによってエン
ジンのアイドル回転数を制御する如く作用するバイパス
弁16が取付けられている。このバイパス弁l乙は、エ
ンジンの運転状態に応じて制御回路20から出力される
作動信号によってそのパルブボジシ曹ンが制御されるが
、l気筒運転時におけ6基準パルブボジシ■ンP、と2
気筒運転時における基準パルプボジシ冨ンP、ば各運転
時における目標アイドル回転数に応じて予じめ設定され
、制御回路20内に記憶されている。即ち、lI気WJ
逮転時基準パルプボジシ冨ン−は、l気筒運転時の目標
アイドル回転数& !; Otpmに相当するバイパス
エア量を得られバルブボジシiンに、また2気筒運転時
基準パルプボジシ目ンP2は、2気筒運転時の目標アイ
ドル回転数r 00 rpyaに相当するパイパろエア
量を得られるパルブボジシ目ンに夫々設定されている。
The engine l has an air crevice in its intake passage.
4/, the air flow meter 13, the throttle valve 12, and the fuel injection valve 17 are sequentially installed from the intake upstream side to the intake downstream side, and the bypass passage lS is connected to the bypass passage lS that bypasses the throttle valve /2! A bypass valve 16 is installed which acts to control the idle speed of the engine by regulating the amount of bypass air taken in through the engine. The valve position of this bypass valve L is controlled by an operation signal output from the control circuit 20 depending on the operating state of the engine.
The reference pulp body value P during cylinder operation is set in advance according to the target idle rotation speed during each operation, and is stored in the control circuit 20. That is, lIkiWJ
The standard pulp position limit at the time of arrest is the target idle rotation speed during l-cylinder operation &! ; The amount of bypass air corresponding to Otpm can be obtained at the valve position I, and the standard pulp position P2 during two-cylinder operation can obtain the amount of pipe air equivalent to the target idle rotation speed r 00 rpya during two-cylinder operation. They are set in each category.

さらに、本発明の制御装置2の主体をなす制御回路20
には、制御ツブフタ−として回転数センサ21から現在
のエンジン回転数が、変速し/チーが非走行位置にある
ときON信号を出力するギヤスイッチ、22から現在の
変速レノ寸−のレノで一位置が、車速センサ23から現
在の車速が、エンジンlに取付けた水温センサ/qから
エンジン冷却水温が、エアフロメータ13から現在の吸
入空気量が、スロットルバルブ/2がアイドル運転時の
U5度範囲にあるときON信号を出力するアイドルスイ
ッチIIからは現在スロットルバルブ12がアイドル位
置にあるかどうかが、夫々入力されており、これら各入
力信号に基いて燃料噴射弁/7の開弁時期と開弁時間(
燃料制御)、バイノfス弁、/16のボジシ目ン(アイ
ドル回転数の調整)及び気筒セレクターざによる気筒数
切換(運転気筒数制御)が夫々制御される。
Furthermore, a control circuit 20 forming the main body of the control device 2 of the present invention
As a control knob, the current engine speed is detected from a rotation speed sensor 21, and a gear switch 22 outputs an ON signal when the gear shift/chi is in the non-driving position. The current vehicle speed is determined by the vehicle speed sensor 23, the engine cooling water temperature is determined by the water temperature sensor /q attached to the engine L, the current intake air amount is determined by the air flow meter 13, and the throttle valve /2 is in the U5 degree range during idling operation. Whether or not the throttle valve 12 is currently in the idle position is input from the idle switch II which outputs an ON signal when the throttle valve is in the idle position, and based on these input signals, the opening timing and opening of the fuel injection valve 7 are determined. Valve time (
(fuel control), bino f-s valve, /16 position control (adjustment of idle rotation speed), and switching of the number of cylinders by cylinder selector (control of number of operating cylinders), respectively.

この制御装置2は、ダ気筒運転でアイドリング状態にあ
る場合におい゛でニンジンの要求運転気筒数がt気筒か
ら2気筒に変化した場合には、先ず4気筒運転のままで
アイドル回転数を2気筒運転時の目標アイドル回転数近
くまで高め、しかる彼に実際番二運転気筒数を11gg
筒から2気筒に切換え、もってg&箇数切換時における
エンジン振動を可及的に防止しようとするものである。
This control device 2 is configured to first change the idling speed to 2 cylinders while maintaining 4-cylinder operation when the requested number of operating cylinders changes from t cylinders to 2 cylinders when the engine is in an idling state in 2-cylinder operation. I raised it to near the target idle speed when driving, and when he scolded me, I increased the actual number of operating cylinders to 11gg.
The purpose is to switch from one cylinder to two cylinders, thereby preventing engine vibrations as much as possible when switching between g and number.

以下、この制御装置2による制御方法を第3図に示す制
御フロチャートに基いて説明する。
The control method by this control device 2 will be explained below based on the control flowchart shown in FIG.

先ず、エンジン始動時には始動性の点からt気筒運転と
される。このため先ず、ステップsIにおいて補正フラ
グを/に設定して制御信号の初期化を図る。尚、この補
正フラグは、φ気筒運転時にセットされ、運転気筒数の
l気筒から2気筒への切換時に使用され且つ運転気筒数
が完全に2気筒に切換わりだ時点でリセットされる。
First, when starting the engine, t-cylinder operation is performed from the viewpoint of startability. For this reason, first, in step sI, the correction flag is set to / to initialize the control signal. This correction flag is set during φ cylinder operation, is used when the number of operating cylinders is changed from 1 cylinder to 2 cylinders, and is reset when the number of operating cylinders is completely switched to 2 cylinders.

次に、ステップS2において現在のエンジンlの運転状
態を示す各種データ(例えば、エンジン回転数、アイド
ルスイッチの状態、ギヤスイッチの状態、エンジン温度
(冷却水温)、車速等)を入力し、これらの入力信号に
基いてステップS1、ステップS5、ステップS(にお
いて現在エンジン/がアイドル運転状態にあるのか非ア
イドル運転状態(車両走行状態)にあるのかを判定する
。即ち、アイドル運転状態の判定基準を、現在のエンジ
ン回転数nが予じめ設定した所定回転数n、以下であり
、アイドルスイッチ/lrがON状態でありしかもギヤ
スイッチ22がONにュ÷トラル位置)状態にある場合
とし、これら各条件を淘足するときにはアイドル運転状
態であると判定、これら各条件の内ひとつでも濶足でき
ないものがある場合には非アイドル運転状態であると判
定する。
Next, in step S2, various data indicating the current operating state of the engine l (e.g., engine speed, idle switch state, gear switch state, engine temperature (cooling water temperature), vehicle speed, etc.) are input, and these data are input. Based on the input signal, it is determined in step S1, step S5, and step S whether the engine is currently in an idling operating state or a non-idling operating state (vehicle running state).In other words, the criteria for determining the idling operating state are determined. , the current engine speed n is less than or equal to a preset predetermined speed n, the idle switch/lr is in the ON state, and the gear switch 22 is in the ON state (in the neutral position). When each condition is satisfied, it is determined that the vehicle is in an idling operating state, and if even one of these conditions cannot be satisfied, it is determined that the vehicle is in a non-idling operating state.

今、現在エンジンlはアイドル運転中であると判定され
たとすると、次にステップSfからステップS7に進み
、該ステップS&において現在の運転状態においては1
気筒運転とするのが適当かそれとも2気筒運転とするの
が適当かを判定する。即ち、アイドル運転時において2
気筒運転する条件として冷却水温が所定値以上(エンジ
ンの暖機完了状態)であり且つ変速ギヤが走行位置にな
い状態であるとし、この条件を澗足する場合には2気筒
運転を行ないその他の場合には全てグ気fiB運転を行
なうものとする。エンジン始動直後は一般にエンジン温
度が低いためl気筒運転としなければならず、従って#
御ステップはステップs6からステップS7を経てステ
ップS、に進む。
Now, if it is determined that the engine l is currently in idle operation, the process proceeds from step Sf to step S7, and in step S&, in the current operating state, 1
It is determined whether cylinder operation or two-cylinder operation is appropriate. In other words, during idling, 2
The conditions for cylinder operation are that the cooling water temperature is above a predetermined value (engine warm-up complete state) and the transmission gear is not in the running position.If these conditions are not met, two-cylinder operation is performed and other In all cases, full-speed fiB operation shall be performed. Immediately after starting the engine, the engine temperature is generally low, so it must be operated on one cylinder, so #
The control steps proceed from step s6 to step S via step S7.

ステップS1においてはI1%1気筒運転おける目標ア
イドル回転数mv(=f 00 rp重)を算出し、さ
らにステップs1において現在の回転数カと目標アイド
ル回転数n−偏差からバイパス弁l乙の一次補正量へ咋
を算出する。この−次補正量Δ−と前記弘気筒運転時基
準パルブボジシ目ン〜とからバイパス弁/≦の最終補正
量Pvoを算出しくステップ5Ho)、さらにこの最終
補正量P、。k基いてバイパス弁16を制御して(ステ
ップS// )エンジンlをl気筒運転させる(ステッ
プ5th )。≠気筒運転制御後は再びステップS、に
戻り、以後、運転状態が非アイドル運転に移行するかま
たはアイドル運転において2気筒運転を行なう条件が成
立するまでは上記制御動作を繰り返えして行なう。
In step S1, the target idle rotation speed mv (= f 00 rp weight) in I1% 1 cylinder operation is calculated, and further in step s1, from the current rotation speed and the target idle rotation speed n - deviation, the bypass valve l Calculate the correction amount. A final correction amount Pvo for the bypass valve/≦ is calculated from this second correction amount Δ- and the reference valve position value for the Hiro cylinder operation (step 5Ho), and further this final correction amount P. The bypass valve 16 is controlled based on k (step S//), and the engine l is operated for one cylinder (step 5th). ≠ After controlling the cylinder operation, the process returns to step S again, and the above control operation is repeated until the operating state shifts to non-idling operation or the conditions for performing two-cylinder operation in idling operation are satisfied. .

この場合における回転数等の変4t、状態を第1I図に
おいて制御形態Iでボした。
Changes in the rotational speed, etc., and the state in this case are shown in control mode I in FIG. 1I.

l気筒運転でアイドリングしている途中においてエンジ
ン温度が上昇し、2気筒運転を行なう条件が成立した場
合には、ステップSjからステップStSに進み、さら
に現在はまだl気筒運転が続行されており補正フラグ=
lであるためステップSIJからステップS/〆側に進
む。以下、ステップS〆!までの間において、l気筒運
転のままで現在のアイドル回転数(=gs o rp履
)を2気笥遣転時の目標アイドル回転数(=r 00 
rpm )に近い値fis’くここでは目標アイドル回
転数に設定)まで上昇させる場合のバイパス弁/gのバ
ルブボジシ目ンを算出し、バイパス弁/6に所定の制御
信号を出力する。即ち、先ず、ステップS2グにおいて
t気筒から2気筒へ運転気筒数を切換える場合における
暫定的な目標アイドル回転数n9′を算出し、さらにス
テップSσにおいてこの目、標アイドル回転数n−′と
現在のアイドル回転数nの偏差より現在のアイドル回転
数nle目標アイドル回転数nq′まで高めるに必要な
バイパス弁/≦の一次補正量△&を算出して、該−次補
正IIkA〜′と前記ll気笥逼転時基準バルブボジシ
曹ンPチとからバイパス弁/乙の最終補正jlP、、を
算出しくステップs/6)、この最終補正量P/17に
基いてバイパス弁/≦に髄部信号を出力する(ステップ
s/2)。制御信号出方後は、ステップSatを経てス
テップS、2に戻り、以下、現在のアイドル回転数nが
目標アイドル回転数nノに達するまで上記制御動作を繰
り返えす。
If the engine temperature rises while idling in 1-cylinder operation and the conditions for 2-cylinder operation are met, the process advances from step Sj to step StS, and furthermore, 1-cylinder operation is still being continued and correction is required. Flag =
Since it is l, the process advances from step SIJ to step S/final side. Below is Step S〆! Until then, change the current idle speed (=GS ORP) while maintaining the 1-cylinder operation to the target idle speed (=r 00
The valve position value of the bypass valve/g is calculated when the bypass valve/g is increased to a value close to the rpm fis' (here, the target idle speed is set), and a predetermined control signal is output to the bypass valve/6. That is, first, in step S2, a provisional target idle speed n9' is calculated when switching the number of operating cylinders from t cylinder to 2 cylinders, and then in step Sσ, this target, target idle speed n-', and current The bypass valve/≦primary correction amount △& necessary to raise the current idle rotation speed nle to the target idle rotation speed nq' from the deviation of the idle rotation speed n of Calculate the final correction jlP of the bypass valve/B from the reference valve position P and the reference valve body position P at the time of air pressure (step s/6). Based on this final correction amount P/17, calculate the spinal signal to the bypass valve/≦. is output (step s/2). After the control signal is output, the process returns to step S and 2 via step Sat, and the above control operation is repeated until the current idle speed n reaches the target idle speed n.

何回かの制御動作繰り返えし後、n≧nJとなった場合
には、l気筒運転から2餐筒運転への運転気筒数切換え
条件が整ったわけであるからステップS/gからステッ
プS/Fを経てステップSzo側に進み、エンジンlを
2気筒運転とする。即ち、先ず、ステップ5xrにおい
て2気笥遣転時の目標アイドル回転数n2(=1r00
 rpm)を算出し、この目標アイドル回転数Titと
現在のアイドル回転数nとから2気笥遣転においてアイ
ドル回転数を目標アイドル回転数nχにするに必要なバ
イパス弁l乙の一次補正量へP2を算出(ステップSi
t )するとともに、この−次補正量ΔP2と前記2気
11運耘時基皐バルブボジシ覆ンPgとからバイパス弁
/6の最終補正量pxoを算出しくステップ5z2)、
この最終補正量P2σに基いてバイパス弁/乙の制御信
号を出力して(ステップ523)エンジン/を2気筒運
転させる(ステップS2グ)。これでl気筒運転から2
気筒運転への切換えが完了する。このl気筒運転から2
気筒運転への切換時における回転数等の変化状態を第グ
図において制御形Mlとして示しているが、との運転気
筒数の切換過渡期には、アイドル回転数がA !; O
rpmからr 00 rpmに高められた後に運転気筒
数がt気筒からλ気筒に切換わるため、2気箭運転でl
r 00 rpm以下のアイドル回転をする領域(換言
すれば、トルク低下の発生する領域)がなく、従ってト
ルク変動が少なく該トルク変動に起因するエンジン振動
の発生を可及的に防止することができる。
If n≧nJ after repeating the control operation several times, the conditions for switching the number of operating cylinders from 1-cylinder operation to 2-cylinder operation have been met, so step S/g to Step S Proceed to step Szo through /F and set the engine l to two-cylinder operation. That is, first, in step 5xr, the target idle rotation speed n2 (=1r00
rpm), and from this target idle rotation speed Tit and the current idle rotation speed n, calculate the primary correction amount of the bypass valve lB necessary to bring the idle rotation speed to the target idle rotation speed nχ in a two-stroke rotation. Calculate P2 (step Si
t), and calculate the final correction amount pxo of the bypass valve /6 from this -order correction amount ΔP2 and the above-mentioned 2-11 operation base valve position change Pg.Step 5z2)
Based on this final correction amount P2σ, a control signal for bypass valve B is output (step 523), and the engine is operated with two cylinders (step S2g). Now from 1 cylinder operation to 2
Switching to cylinder operation is completed. 2 from this l cylinder operation
The state of change in the rotational speed, etc. at the time of switching to cylinder operation is shown as control type Ml in Fig. ; O
Since the number of operating cylinders changes from t cylinders to λ cylinders after increasing the rpm from r 00 rpm, the number of operating cylinders changes from t cylinders to λ cylinders.
There is no region where the engine rotates at idle below r 00 rpm (in other words, a region where torque decrease occurs), so there is little torque fluctuation, and it is possible to prevent the occurrence of engine vibration caused by the torque fluctuation as much as possible. .

−気筒運@切換191T後は、ステップ5r−1からス
テップ32 K戻り、さらにステップSl及びステップ
Sηを経てステップShoと進み、以後エンジン/の要
求運転気筒数が2気箇からグ気筒に変わるか、あるいは
這Wi状態がアイドルM転から非アイドル運転に啓行す
るまで上記の制御動作を繰り返えす。この場合における
回転数等の変化状態を第1図において制御形IIIII
Nとしてパしている。
- After cylinder operation @ switching 191T, return from step 5r-1 to step 32K, then proceed to step Sho via step Sl and step Sη, and from then on, the required number of operating cylinders of the engine changes from 2 cylinders to 5 cylinders. Alternatively, the above control operation can be repeated until the state changes from idle M rotation to non-idle operation. In this case, the state of change in the rotational speed, etc., is shown in Fig. 1.
I'm playing as N.

2気筒運転でアイドリンクを行なっている途中において
エンジン/の要求運転%筒数が2気箇からダ気筒に切換
わつたような場合には(例えば発進性を良くする要求か
ら、クラッチを踏み込んで、ギアを走行位置にシフトし
た時など)、2気筒運転条件が不成立となったのである
からステップS7からステップS?側に進み、以下前述
したIl気筒運転時における制御動作と同じ制御動作が
行なわれる。この2気筒運転からt気筒運転への運転態
様の切換時には、気筒数切換信号とバイパス弁l乙の作
動信号が同一タイミングで出力されるが、この居合には
気筒数切換信号とバイパス弁/乙の作動信号を同一タイ
ミングで出力しても2気筒運転でtr o o rpm
以下のアイドル回転を行なうような運転領域は存在せず
、従ってトルク変動はほとんど発生しない。尚、この場
合における回転数等の変化状態を第7図において制御形
態■で示している。
If the required operating percentage of the engine changes from 2 cylinders to 2 cylinders while performing idle link in 2-cylinder operation (for example, due to a request for better starting performance, the clutch should be depressed. , when the gear is shifted to the driving position, etc.), the two-cylinder operating condition is not satisfied, so from step S7 to step S? Then, the same control operation as that during operation of the Il cylinder described above is performed. When switching the operating mode from 2-cylinder operation to t-cylinder operation, the cylinder number switching signal and the bypass valve l O operation signal are output at the same timing. Even if the activation signals are output at the same timing, the t r o o rpm is
There is no operating region in which idle rotation occurs below that level, and therefore torque fluctuations hardly occur. Incidentally, the state of change in the number of revolutions and the like in this case is shown by control mode (2) in FIG.

一方、非アイドル時(車両走行時)にはステップSI、
ステップSP、ステップS5のいずれかからステップS
arに進み、エンジンlの要求運転気筒数がλ気筒であ
る場合にはバイパス弁l乙のバルブボジシミンを前記2
気筒運転時基準バルブボジシ冒ンP2に固定したまま、
また要求運転気筒数がψ気筒である場合にはバイパス弁
l乙のパルプボジシ目ンを前記グ気筒運転時基準パルプ
ボジシ百ンP、に固定したままそれぞれ運転される。
On the other hand, when the vehicle is not idling (when the vehicle is running), step SI,
Step S from either step SP or step S5
Proceed to step ar, and if the required number of operating cylinders of engine l is λ cylinders, the valve body of bypass valve l is set to 2 above.
While the reference valve position is fixed at P2 during cylinder operation,
In addition, when the required number of operating cylinders is ψ cylinders, each operation is performed with the pulp position of the bypass valve L being fixed at the reference pulp position P during operation of the G cylinder.

(発明の効果) 本発明の気m数制部エンジンのftR御装置は、エンジ
ンの運転状態に応じて運転気筒数をψ気筒と2気筒に切
換えるようにし且つ2気筒運転時のアイドル回転数をt
気筒運転時のアイドル回転数よりも高く設定するように
した気筒数制御エンジンにおいて、エンジンの要求運転
気筒数が≠気筒から2気筒に変わった場合には、先ずψ
気筒運転のままでアイドル回転数を2気筒運転時の目標
アイドル回転数近くまで高めておき、その後に実際に運
転気筒数を≠気筒から2気筒に切換えるようにしている
ため、2気筒運転でありながら、!気筒運転時の目標ア
イドル回転数以下の回転数で運転されるような運転領域
がなく、従って、グ気筒運転から、2気筒運転への切換
過渡期におけるトルク変動が抑制され、該トルク変動に
起因するエンジン振動の発生を可及的に防止し得るとい
う効果を奏するものである。
(Effects of the Invention) The ftR control device for the air pressure control engine of the present invention switches the number of operating cylinders between the ψ cylinder and the 2-cylinder according to the engine operating state, and also controls the idle speed during the 2-cylinder operation. t
In an engine that controls the number of cylinders so that the engine speed is set higher than the idle speed during cylinder operation, if the number of cylinders required to operate the engine changes from ≠ cylinders to 2 cylinders, first ψ
The idle speed is raised to near the target idle speed for two-cylinder operation while cylinder operation is continued, and then the number of operating cylinders is actually switched from ≠ cylinders to two cylinders, so it is two-cylinder operation. While! There is no operating region in which the engine is operated at a rotational speed lower than the target idle rotational speed during cylinder operation, and therefore, torque fluctuations during the transition period when switching from single-cylinder operation to two-cylinder operation are suppressed. This has the effect of preventing the occurrence of engine vibration as much as possible.

外 図面のfl!ff車な説朗 第1図は本発明の気筒数制御エンジンの制御装置の機能
ブロック図、第2図は気筒数制御エンジンに装置された
本発明実施例に係る制御装置のシステム図、第3図は第
2図の制御装置の制御フローチャート、第1I図は第2
図の制御装置による制御特性図、第5図は従来の制御装
置による制御特性図である。
Outside drawing fl! Fig. 1 is a functional block diagram of a control device for an engine with controlled number of cylinders according to the present invention, Fig. 2 is a system diagram of a control device according to an embodiment of the present invention installed in an engine with controlled number of cylinders, and Fig. 3 is a control flowchart of the control device in Fig. 2, and Fig. 1I is a control flow chart of the control device in Fig. 2.
FIG. 5 is a control characteristic diagram of the conventional control device.

/・・・・・・エンジン コ・・・・・・吸気通路 l・・・・・・吸気弁 夕・・・・・・排気弁 乙・・・・・・ロッカーアーム r・・・・・・気筒セレクター ヲ・・・・・・ロッカーアーム支持装置10・・・・・
支持部材 /2・e・・ゆスロットルバルブ 13・・・・・エアフロメータ /l・・・・・エアクリーナ 13・・・・・バイパス通路 16・・・・・バイパス弁 17・・・・・燃料繍射弁 /r・・・・・アイドルスイッチ /q・・・・・水温センサ 20・・・・・制御回路 21・・・・・回転数センサ 、2.2・・・・・ギヤスイッチ 23・・・・・車速センサ A・・・・・・エンジン回転数検出手段B−−・・・・
制御信号出力手段 C・・・・・・吸入空気ffl調整手段D・・・・・・
負荷作動時期補正手段
/...Engine...Intake passage L...Intake valve 2...Exhaust valve 2...Rocker arm R...・Cylinder selector...Rocker arm support device 10...
Support member/2・e...Throttle valve 13...Air flow meter/l...Air cleaner 13...Bypass passage 16...Bypass valve 17...Fuel Embroidery injection valve/r...Idle switch/q...Water temperature sensor 20...Control circuit 21...Rotation speed sensor, 2.2...Gear switch 23 ...Vehicle speed sensor A...Engine rotation speed detection means B--...
Control signal output means C...Intake air ffl adjustment means D...
Load operation timing correction means

Claims (1)

【特許請求の範囲】[Claims] l・ エンジンの運転状態を検出する運転状態検出手段
と、作動信号を受けて燃料を供給する気筒数を切換える
切換手段を備え、エンジンの運転状態に応じて燃料を供
給する気筒数が制御される気筒数制御エンジンにおり1
で、減筒運転時のアイドル回転数を全筒運転時のアイド
ル回転数より高く設定するアイドル回転数iim手段と
、作動信号を受けて吸入空気量を増加させる吸入空気増
量手段と、アイドル運転時における全筒運転から減筒運
転への切換時には上記吸入空気増量手段を作動させる作
動信号を出力した径に、上記切換手段に作動信号を出力
して気筒数を減少させるようにしたタイミング制御手段
とを設けたことを特徴とする気筒数制御エンジンの制御
装置。
l- Equipped with operating state detection means for detecting the operating state of the engine and switching means for switching the number of cylinders to which fuel is supplied in response to an operating signal, and the number of cylinders to which fuel is supplied is controlled according to the operating state of the engine. The number of cylinders is controlled by the engine.
an idle rotation speed iim means for setting the idle rotation speed during reduced cylinder operation to be higher than the idle rotation speed during full cylinder operation; an intake air increase means for increasing the amount of intake air in response to an activation signal; timing control means configured to reduce the number of cylinders by outputting an actuation signal to the switching means at the same time that the actuation signal for actuating the intake air increasing means is outputted when switching from all-cylinder operation to reduced-cylinder operation; A control device for an engine that controls the number of cylinders.
JP58136292A 1983-07-25 1983-07-25 Control apparatus for engine capable of changing the number of cylinders to be operated Granted JPS6027740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58136292A JPS6027740A (en) 1983-07-25 1983-07-25 Control apparatus for engine capable of changing the number of cylinders to be operated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58136292A JPS6027740A (en) 1983-07-25 1983-07-25 Control apparatus for engine capable of changing the number of cylinders to be operated

Publications (2)

Publication Number Publication Date
JPS6027740A true JPS6027740A (en) 1985-02-12
JPH0156257B2 JPH0156257B2 (en) 1989-11-29

Family

ID=15171760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58136292A Granted JPS6027740A (en) 1983-07-25 1983-07-25 Control apparatus for engine capable of changing the number of cylinders to be operated

Country Status (1)

Country Link
JP (1) JPS6027740A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381542A (en) * 1989-08-24 1991-04-05 Mazda Motor Corp Control device for engine
US5415143A (en) * 1992-02-12 1995-05-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Idle control system and method for modulated displacement type engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410485U (en) * 1977-06-21 1979-01-23
JPS5432551U (en) * 1977-08-09 1979-03-03
JPS5777455A (en) * 1980-08-26 1982-05-14 Tetra Pak Dev Cap
JPS57110055U (en) * 1980-12-27 1982-07-07
JPS59186254U (en) * 1983-05-31 1984-12-11 三笠産業株式会社 bottle lid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410485U (en) * 1977-06-21 1979-01-23
JPS5432551U (en) * 1977-08-09 1979-03-03
JPS5777455A (en) * 1980-08-26 1982-05-14 Tetra Pak Dev Cap
JPS57110055U (en) * 1980-12-27 1982-07-07
JPS59186254U (en) * 1983-05-31 1984-12-11 三笠産業株式会社 bottle lid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381542A (en) * 1989-08-24 1991-04-05 Mazda Motor Corp Control device for engine
US5415143A (en) * 1992-02-12 1995-05-16 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Idle control system and method for modulated displacement type engine

Also Published As

Publication number Publication date
JPH0156257B2 (en) 1989-11-29

Similar Documents

Publication Publication Date Title
JP3876609B2 (en) Idle rotation control device for internal combustion engine
JPH07208212A (en) Intake air control system for variable displacement internal combustion engine
KR930700314A (en) Control devices of internal combustion engines and continuously variable transmissions
JPH05222990A (en) Idling control device for engine with suction and exhaust valve stop mechanism
JPH1182090A (en) Internal combustion engine control system
JP3543337B2 (en) Signal processing device
JPS6027740A (en) Control apparatus for engine capable of changing the number of cylinders to be operated
JP4282151B2 (en) Engine control device
JP2759957B2 (en) Engine control method
JP2004100528A (en) Ignition timing control apparatus for internal combustion engine
JPS593135A (en) Control of idle revolution number of internal- combustion engine
JPH0330707B2 (en)
JPH06249015A (en) Control device for vehicle
JP2976563B2 (en) Air-fuel ratio control device for internal combustion engine
JP3733624B2 (en) Engine control device with variable valve timing device
JP4049851B2 (en) Control device for internal combustion engine
JP2987269B2 (en) Vehicle control device
JP3355679B2 (en) Rotation speed control device for internal combustion engine for vehicle
JP2004211601A (en) Fuel cut control device of internal combustion engine for vehicle
JP2005282394A (en) Fuel supply control device for internal combustion engine
JPH0765526B2 (en) Air-fuel ratio controller for internal combustion engine
JPH03130548A (en) Idle speed control device of internal combustion engine
JPH03107556A (en) Idling engine speed control device for engine
JP2878880B2 (en) Fuel injection control device for internal combustion engine
JP2571158Y2 (en) Engine control device