JPS6027441B2 - amplitude equalizer - Google Patents

amplitude equalizer

Info

Publication number
JPS6027441B2
JPS6027441B2 JP613977A JP613977A JPS6027441B2 JP S6027441 B2 JPS6027441 B2 JP S6027441B2 JP 613977 A JP613977 A JP 613977A JP 613977 A JP613977 A JP 613977A JP S6027441 B2 JPS6027441 B2 JP S6027441B2
Authority
JP
Japan
Prior art keywords
coaxial
coaxial line
variable
circulator
resonators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP613977A
Other languages
Japanese (ja)
Other versions
JPS5390846A (en
Inventor
和寿 秋永
三城 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP613977A priority Critical patent/JPS6027441B2/en
Publication of JPS5390846A publication Critical patent/JPS5390846A/en
Publication of JPS6027441B2 publication Critical patent/JPS6027441B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/22Attenuating devices
    • H01P1/225Coaxial attenuators

Landscapes

  • Waveguide Connection Structure (AREA)

Description

【発明の詳細な説明】 本発明はマイクロ波帯、準ミリ波帯、ミリ波帯に於いて
、平坦振中特性又は所要の振中特性を得る為にサーキュ
レータ可変減衰器及びその間の同軸線路上の可変Q共振
器により構成した振中等化器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a circulator variable attenuator and a coaxial line between them to obtain flat vibration characteristics or desired vibration characteristics in the microwave band, quasi-millimeter wave band, and millimeter wave band. This invention relates to a vibration equalizer constructed from a variable Q resonator.

従来、振中等化器としては、例えば第1図の成図に示す
ものがある。
As a conventional vibration equalizer, there is one shown in the diagram of FIG. 1, for example.

第1図においてサーキュレータ5を通してキャピティ7
によって反射さることにより、第2図の減衰特性図の特
性を‘る。周波数ナoを変化させることにより、ナ・よ
りナ2の範囲に於いて第3図の特性図の様な正1次符性
イ、負1次特性ハ、負2次特性口を得ることが出来る。
しかし第3図の特性がキャピテイ7のQによって一定と
なる為、所要の振中特性を所要の減衰量の時に得ること
が出来ない。又、正2次特性、3次特性、4次特性更に
高次の特性に対しては等化できないという欠点があった
。本発明の目的は、これらの欠点を除去するため、サー
キュレータ、可変減衰器及び同軸多重同調共振系を使用
し、その減衰量及びQを変化させることによって、高次
の特性についても等化できる振幅等化器を提供すること
にある。
In Fig. 1, the cavity 7 is inserted through the circulator 5.
2, the attenuation characteristic diagram shown in FIG. 2 is obtained. By changing the frequency Na, it is possible to obtain positive linear characteristic A, negative linear characteristic C, and negative quadratic characteristic as shown in the characteristic diagram in Fig. 3 in the range of Na to Na2. I can do it.
However, since the characteristics shown in FIG. 3 become constant depending on the Q of the capacitance 7, the required vibration characteristics cannot be obtained at the required amount of attenuation. Furthermore, there is a drawback that it is not possible to equalize positive quadratic characteristics, third-order characteristics, fourth-order characteristics, and even higher-order characteristics. The purpose of the present invention is to eliminate these drawbacks by using a circulator, a variable attenuator, and a coaxial multiple-tuned resonance system, and by changing the attenuation amount and Q, the amplitude can be equalized even for high-order characteristics. The purpose is to provide an equalizer.

以下図面について詳細に説明する。The drawings will be explained in detail below.

第4図は本発明の実施例の構成図である。FIG. 4 is a block diagram of an embodiment of the present invention.

1は可変減衰器で同軸構造になっており、一端が開放の
中心導体11の開放端側に電波吸収体12を挿入したも
のである。
Reference numeral 1 denotes a variable attenuator having a coaxial structure, in which a radio wave absorber 12 is inserted into the open end side of a central conductor 11 whose one end is open.

電波吸収体12は軸方向に可動できるようになっていて
、12を動かすことによって減衰量が可変できるように
なっている。2と4は同軸共振器で、それぞれ一端開放
で電気的等価長が4分の1波長以下の容量性同軸線路2
1,41及び一端開放で電気的等価長が4分の1波長以
上、2分の1波長以下の譲導性同軸線路22,42より
構成される。
The radio wave absorber 12 is movable in the axial direction, and by moving the radio wave absorber 12, the amount of attenuation can be varied. 2 and 4 are coaxial resonators, each with one end open and a capacitive coaxial line 2 with an electrical equivalent length of 1/4 wavelength or less.
1, 41, and a conductive coaxial line 22, 42 which is open at one end and has an electrical equivalent length of 1/4 wavelength or more and 1/2 wavelength or less.

線路21,41,22,42の開放機にはそれぞれ誘電
体23,43,24,44が挿入され、これらの誘電体
を軸万向に動かすことによって21と41の容量及び2
2と42のインダクタンスを可変できるようになってい
る。同軸共振器2と4の間には電気的等価長が4分の1
波長の同軸線路3が挿入されている。1,2,3及び4
は同軸線路6によってサーキュレータ5の一つの端子C
に接続されている。
Dielectrics 23, 43, 24, 44 are inserted into the openers of the lines 21, 41, 22, 42, respectively, and by moving these dielectrics in all directions, the capacitance of 21 and 41 and the capacity of 2
The inductance of 2 and 42 can be varied. The electrical equivalent length between coaxial resonators 2 and 4 is 1/4
A wavelength coaxial line 3 is inserted. 1, 2, 3 and 4
is connected to one terminal C of the circulator 5 by the coaxial line 6.
It is connected to the.

Dは入力端子、Bは出力端子、A,Bはそれぞれ同軸線
路上の同軸共振器2及び4の位置を示す。第5図は、第
4図の等価回路である。A、B、C、D点はそれぞれ第
4図の同一符号の点に対応する。次に本等化器の動作に
ついて説明を行なう。
D indicates an input terminal, B indicates an output terminal, and A and B indicate the positions of the coaxial resonators 2 and 4 on the coaxial line, respectively. FIG. 5 is an equivalent circuit of FIG. 4. Points A, B, C, and D correspond to points with the same symbols in FIG. 4, respectively. Next, the operation of this equalizer will be explained.

A点における1のアドミツタンスは重波吸収体12を挿
入量によって第6図のスミス線図のように変化する。な
お、この場合、図の様に多少の位相変化を伴なうが、こ
れは減衰器に容量性又は誘導性の素子が並列に接続され
たのと等価であるから共振器2によって補正を加えるこ
とができる。次に、第6図の点xに於いて共振器2のア
ドミッタンスを附加すると1と2の総合のアドミツタン
スは周波数によって、第7図のスミス線図の実線のよう
な変化をする。H‘ま最高周波数、×は中心周波数、L
は最低周波数に対応する。ここで23を挿入し、24を
抜いていけば、アドミッタンスの変化範囲を実部一定の
ままで拡大する、すなわち共振器のQを高めることが出
釆ると同時に共振器の中心周波数を変えることも可能で
ある。この逆の操作によって、共振器のQを下げること
が可能なことは勿論でである。更にこの1と2のアドミ
ッタンスをB点から見ると第7図の鎖線の様になる。日
はH′,XはX′,LはL′に対応する。4のアドミツ
タンスはB点において第8図のスミス線図の実線K一L
−Mの様に変化する。
The admittance of 1 at point A changes as shown in the Smith diagram in FIG. 6 depending on the amount of insertion of the heavy wave absorber 12. In this case, there is a slight phase change as shown in the figure, but this is equivalent to connecting a capacitive or inductive element in parallel to the attenuator, so it is corrected by resonator 2. be able to. Next, when the admittance of resonator 2 is added at point x in FIG. 6, the total admittance of 1 and 2 changes depending on the frequency as shown by the solid line in the Smith diagram of FIG. 7. H' is the highest frequency, × is the center frequency, L
corresponds to the lowest frequency. If we insert 23 and subtract 24 here, we can expand the change range of admittance while keeping the real part constant, that is, we can increase the Q of the resonator and at the same time change the center frequency of the resonator. is also possible. Of course, it is possible to lower the Q of the resonator by performing the opposite operation. Furthermore, when the admittance of 1 and 2 is viewed from point B, it looks like the chain line in FIG. Day corresponds to H', X to X', and L to L'. The admittance of 4 is the solid line K-L of the Smith diagram in Figure 8 at point B.
- Changes like M.

ここでも2の場合と同じように43と44の操作によっ
て、共振器のQの可変及び中心周波数の可変が可能であ
る。B点における1と2の総合のアドミツタンスは、第
8図鎖線のようになっているので、1,2及び4の総合
のアドミッタンスは第8図実線F−X′−Gのようにな
る。これを減衰量に換算すれば、第9図の特性図のよう
になる。可変減衰器1、同軸共振器2,4をそれぞれ動
かすと第10図、第11図、第12図のそれぞれのスミ
ス線図の様に変化させることができる。第4図サーキュ
レータの端子、D−E間に於ける減衰特性はスミス線図
上の中心からの距離に反比例するので第13図の様にそ
れぞれ変化する。この様な構造になっているので、この
効果を利用して共振器2及び、共振器4の誘導側、容量
側を動かすことによって、第14図の様に、1次、2次
、3次、4次の各減衰特性を得ることが出来る。以上説
明した様にサーキュレータ、1/4皮長間隔の可変Q共
振器2ケ及び可変減衰器を使用することによって、1次
、2次、3次、4次の特性を持つ振中特性を等化し、き
わめて容易に平坦振中特性を得、又は所要の振中特性を
得ることができるものである。
Here, as in case 2, by operating 43 and 44, it is possible to vary the Q and the center frequency of the resonator. Since the total admittance of 1 and 2 at point B is as shown by the chain line in FIG. 8, the total admittance of 1, 2 and 4 is as shown by the solid line FX'-G in FIG. If this is converted into an attenuation amount, the characteristic diagram shown in FIG. 9 will be obtained. By moving the variable attenuator 1 and the coaxial resonators 2 and 4, they can be changed as shown in the respective Smith diagrams of FIGS. 10, 11, and 12. The attenuation characteristics between the terminals D and E of the circulator shown in FIG. 4 are inversely proportional to the distance from the center on the Smith diagram, so they change as shown in FIG. 13. With this structure, by utilizing this effect and moving the inductive side and capacitive side of resonator 2 and resonator 4, the primary, secondary, and tertiary order can be adjusted as shown in Figure 14. , fourth-order attenuation characteristics can be obtained. As explained above, by using a circulator, two variable Q resonators with 1/4 skin length spacing, and a variable attenuator, the vibration characteristics having first, second, third, and fourth order characteristics can be equalized. , and can very easily obtain flat or desired characteristics during vibration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の振中等化器の構成図、第2図は従来の振
中等化器のキャビティの反射特性図、第3図は中心周波
数〆oを変化させた場合に於ける所要帯域〆,〜ナ2
で減衰特性図、第4図は本発明の実施例の振中等化器の
断面図、第5図は第4図の等価回路、第6図より第8図
及び第10図より第12図は振中等化器の動作を示すス
ミス線図、第9図、第13図、第14図はそれぞれ減衰
特性図である。 図において1……可変減衰器、2,4……同軸共振器、
3,6・・・・・・同軸線路、5・・・・・・サーキュ
レ−夕、7..・..・キヤビテイ、11・・・・・・
中心導体、12・…・・電波吸収体、21,41・・・
・・・容量性同軸線路、22,42……誘導性同軸線路
、23,24,43,44・・・・・・誘電体である。 菊ぐ図 多’図 弟Z図 慕う図 名4図 繁る図 第7図 豹8図 豹?図 豹′o図 豹〃図 劣〆図 繁る図 繁′4図
Figure 1 is a configuration diagram of a conventional vibration equalizer, Figure 2 is a reflection characteristic diagram of the cavity of a conventional vibration equalizer, and Figure 3 is the required band limit when changing the center frequency. ,~Na2
Fig. 4 is a cross-sectional view of the vibration equalizer according to the embodiment of the present invention, Fig. 5 is an equivalent circuit of Fig. 4, Fig. 8 is from Fig. 6, and Fig. 12 is from Fig. 10. A Smith diagram showing the operation of the vibration equalizer, and FIGS. 9, 13, and 14 are attenuation characteristic diagrams, respectively. In the figure, 1... variable attenuator, 2, 4... coaxial resonator,
3, 6... Coaxial line, 5... Circulation line, 7. ..・.. ..・Cavity, 11...
Center conductor, 12... Radio wave absorber, 21, 41...
...capacitive coaxial line, 22, 42... inductive coaxial line, 23, 24, 43, 44... dielectric. Chrysanthemum drawing number' drawing younger brother Z drawing favorite drawing name 4 drawing many drawings 7th leopard 8th leopard? Illustration Leopard 'o Illustration Leopard

Claims (1)

【特許請求の範囲】 1 3端子サーキユレータの2端子を入出力端子とし、
前記サーキユレーターの他の1端子に接続された同軸線
路上に1/4波長間隔あるいは1/4波長の奇数倍の間
隔で2ケの可変Q共振器を設け、更に前記同軸線路の先
端部に終端器としての同軸可変減衰器を設けることによ
つて構成した振幅等化器。 2 前記同軸可変減衰器を軸方向に可動できる電波吸収
体を開放器に挿入した一端開放の同軸線路で構成し、更
に前記可変Q共振器のうちすくなくとも1ケを軸方向に
可動できる誘電体を開放端に挿入した両端開放の同軸線
路で構成したところの特許請求の範囲第1項記載の振幅
等化器。
[Claims] 1. Two terminals of a three-terminal circulator are input/output terminals,
Two variable Q resonators are provided on the coaxial line connected to the other terminal of the circulator at 1/4 wavelength intervals or at odd multiples of 1/4 wavelength, and further, the tip of the coaxial line An amplitude equalizer constructed by providing a coaxial variable attenuator as a terminator. 2. The coaxial variable attenuator is constructed of a coaxial line with one end open, in which a radio wave absorber that can be moved in the axial direction is inserted into an opener, and at least one of the variable Q resonators is further provided with a dielectric that can be moved in the axial direction. The amplitude equalizer according to claim 1, which comprises a coaxial line with both ends open inserted into the open end.
JP613977A 1977-01-21 1977-01-21 amplitude equalizer Expired JPS6027441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP613977A JPS6027441B2 (en) 1977-01-21 1977-01-21 amplitude equalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP613977A JPS6027441B2 (en) 1977-01-21 1977-01-21 amplitude equalizer

Publications (2)

Publication Number Publication Date
JPS5390846A JPS5390846A (en) 1978-08-10
JPS6027441B2 true JPS6027441B2 (en) 1985-06-28

Family

ID=11630166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP613977A Expired JPS6027441B2 (en) 1977-01-21 1977-01-21 amplitude equalizer

Country Status (1)

Country Link
JP (1) JPS6027441B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201348U (en) * 1985-06-06 1986-12-17
JPS63112368U (en) * 1987-01-12 1988-07-19
JPH028077U (en) * 1988-06-24 1990-01-18

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250237A (en) * 2006-03-14 2007-09-27 Omron Corp Electromagnetic relay with operation indicating function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201348U (en) * 1985-06-06 1986-12-17
JPS63112368U (en) * 1987-01-12 1988-07-19
JPH028077U (en) * 1988-06-24 1990-01-18

Also Published As

Publication number Publication date
JPS5390846A (en) 1978-08-10

Similar Documents

Publication Publication Date Title
Psychogiou et al. Reflectionless adaptive RF filters: Bandpass, bandstop, and cascade designs
US4216448A (en) Microwave distributed-constant band-pass filter comprising projections adjacent on capacitively coupled resonator rods to open ends thereof
Hickle et al. Theory and design of frequency-tunable absorptive bandstop filters
US8305164B1 (en) Frequency-agile frequency-selective variable attenuator
Gómez-García et al. Fully-reconfigurable bandpass filter with static couplings and intrinsic-switching capabilities
Musonda et al. Microwave bandpass filters using re-entrant resonators
Lee et al. Reconfigurable dual-stopband filters with reduced number of couplings between a transmission line and resonators
Cai et al. Electrically varactor‐tuned bandpass filter with constant bandwidth and self‐adaptive transmission zeros
US3693115A (en) Mechanical tunable bandpass filter
IE45925B1 (en) Improvements in or relating to micro-wave filters
WO1995017023A1 (en) Microwave filter
Biswal et al. Re-configurable band-stop and all-pass filter using fractional-order topology
JPS6027441B2 (en) amplitude equalizer
US3602848A (en) High frequency coaxial filter
Psychogiou et al. High-order coaxial bandpass filters with multiple levels of transfer function tunability
CN201387928Y (en) Hairpin microstrip bandpass filter
Chrisostomidis et al. On the theory of chained-function filters
US4849724A (en) Waveguide band-pass filter
Nam et al. Theory for pseudo-butterworth filter response and its application to bandwidth tuning
Sandhu et al. Inline waveguide filter with transmission zeros using a modified-T-shaped-post coupling inverter
US3440572A (en) Mechanical filter section with envelope delay compensation characteristic
Kim et al. Combined Left-and Right-Handed Tunable Transmission Lines With Tunable Passband and 0$^{\circ} $ Phase Shift
US3027525A (en) Microwave frequency selective apparatus
US7479856B2 (en) High-frequency filter using coplanar line resonator
Psychogiou et al. Continuously-tunable-bandwidth acoustic-wave resonator-based bandstop filters and their multi-mode modeling