JPS6027170A - Double diffused insulated gate type fet - Google Patents

Double diffused insulated gate type fet

Info

Publication number
JPS6027170A
JPS6027170A JP58134143A JP13414383A JPS6027170A JP S6027170 A JPS6027170 A JP S6027170A JP 58134143 A JP58134143 A JP 58134143A JP 13414383 A JP13414383 A JP 13414383A JP S6027170 A JPS6027170 A JP S6027170A
Authority
JP
Japan
Prior art keywords
layer
electrode wiring
insulating film
dirt
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58134143A
Other languages
Japanese (ja)
Inventor
Yoshihito Nakayama
中山 善仁
Hirohito Tanabe
田辺 博仁
Tamotsu Ohata
大畑 有
Yukinobu Miwa
三輪 行信
Kazuaki Suzuki
鈴木 一昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58134143A priority Critical patent/JPS6027170A/en
Publication of JPS6027170A publication Critical patent/JPS6027170A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To prevent the step cut of wiring at the part of contact by a method wherein polycrystalline Si is buried at the bottom surface of an aperture of the source contact, etc. CONSTITUTION:Source regions 4 and 5 and a channel base region 42 are formed in the surface of a low concentration Si layer 2. The region 42 consists of only a low concentration P layer. A polycrystalline Si layer 41 of low resistance is buried in the aperture of an interlayer insulation film 8. The layer 41 is N type above the regions 4 and 5 and P type above between them. The layer 41 is buried at the entire part in the aperture, the upper surface of the film 8 being even with that of the layer 41 without any stepwise difference, and a source electrode wiring 43 and a gate electrode wiring 44 being then formed thereon.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置、特に二重拡散絶縁ダート型電界効
果トランジスタ(以下、DMO8と略記する)に係シ、
その電極配線コンタクト部に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device, particularly a double diffused insulated dart type field effect transistor (hereinafter abbreviated as DMO8).
The present invention relates to the electrode wiring contact portion.

〔発明の技術的背景〕[Technical background of the invention]

第1図(&)はNチャンネルDMOSチップにおける1
つの単位領域(DMO81個分の形成領域)を取シ出し
てその断面構造を示している。ここで、1および2は高
濃度シリコン層および低濃度シリコン層であってドレイ
ンとなっている0上記低濃度シリコン層2の表面の一部
にはチャンネル部ベース領域3が形成され、このペース
領域3内の表面には2個のソース領域4,5が離間して
形成されている。6は上記低濃度シリコン層2の上面か
ら上記ソース領域4,5の上面の中央部にかけて形成さ
れたf−)絶縁膜(5SO2)であり、その上面に多結
晶シリコンまたは高融点余尺からなるダート埋め込み層
7が形成され、さらに層間絶縁膜8.ソース電極配線9
.ダート電極配線10が形成されている。また、前記ペ
ース領域3において、ソース領域4.5相互間の底面か
ら所定深さの高濃度P+層11が形成されている。
Figure 1 (&) shows 1 in an N-channel DMOS chip.
The cross-sectional structure of one unit area (forming area for 81 DMOs) is shown. Here, 1 and 2 are a high-concentration silicon layer and a low-concentration silicon layer, which serve as a drain. A channel base region 3 is formed in a part of the surface of the low-concentration silicon layer 2, and this space region Two source regions 4 and 5 are formed on the surface of the semiconductor device 3, spaced apart from each other. Reference numeral 6 denotes an f-) insulating film (5SO2) formed from the upper surface of the low concentration silicon layer 2 to the center of the upper surface of the source regions 4 and 5, and a film made of polycrystalline silicon or high melting point extra film is formed on the upper surface. A dirt buried layer 7 is formed, and an interlayer insulating film 8. Source electrode wiring 9
.. Dirt electrode wiring 10 is formed. Further, in the space region 3, a high concentration P+ layer 11 is formed to a predetermined depth from the bottom surface between the source regions 4 and 5.

上記構成のDMO8において、半導体基板とソース電極
配線9とのコンタクト部(以下、ソースコンタクト部と
言う)およびダート埋め込み層7とr−ト電極配線10
とのコンタクト部(以下、ダートコンタクト部と言う)
にはそれぞれ大きな段差が生じている。即ち、ソースコ
ンタクト部の段差は眉間絶縁膜8によるものであり、f
−)コンタクト部の段差はダート絶縁膜6およびダート
埋め込み層7および層間絶縁膜8によるものである。
In the DMO 8 having the above configuration, the contact portion between the semiconductor substrate and the source electrode wiring 9 (hereinafter referred to as the source contact portion), the dirt buried layer 7 and the r-to electrode wiring 10
contact part (hereinafter referred to as the dirt contact part)
There are large differences between each. That is, the level difference in the source contact portion is due to the glabella insulating film 8, and f
-) The step difference in the contact portion is caused by the dirt insulating film 6, the dirt buried layer 7, and the interlayer insulating film 8.

また、高濃度P+層11は、ソース電極配線9とペース
領域11とのオーミックコンタクトなりはドレイン電極
、Gはダート電極、Sはソース電極であり、Dはソース
・ドレイン間に並列の寄生ダイオードである。
Further, in the high concentration P+ layer 11, the ohmic contact between the source electrode wiring 9 and the space region 11 is a drain electrode, G is a dirt electrode, S is a source electrode, and D is a parallel parasitic diode between the source and drain. be.

〔背景技術の問題点〕[Problems with background technology]

ところで、前述したようにソースコンタクト部およびダ
ートコンタクト部において、ソース電極配線9.ダート
電極配線10に急激な段差が発生すると、第1図中に示
すA部のように各配線9,10は層間絶縁膜8の開口部
端縁の近傍の部分が薄くなシ、この薄い部分で切断(い
わゆる段切れ)が生じ易くなる。この段切れは、電極配
線の電流容量の低下、 DMO8のオン動作時の抵抗増
加などの特性劣化をきだすので、この尺切れを防止する
ために第2図あるいは第3図に示す構造が提案されてい
る。即ち、第2図のDMO8においては、層間絶縁膜8
のコンタクト部開口のだめの写真蝕刻に際して眉間絶縁
膜8の月74厚の深さ方向にエツチングレイトに変化を
つけることによって開口部の内周面に傾斜をつけている
。まだ、第3図9′DMO8においては、層間絶縁膜8
の開口部内周面に2段乃至数段の変化をつけるように写
真蝕刻を行なっている。
By the way, as described above, in the source contact portion and the dirt contact portion, the source electrode wiring 9. When a sudden level difference occurs in the dirt electrode wiring 10, each of the wirings 9 and 10 is thinner in the vicinity of the opening edge of the interlayer insulating film 8, as shown in part A shown in FIG. Cutting (so-called step breakage) is likely to occur. This step breakage causes characteristic deterioration such as a decrease in the current capacity of the electrode wiring and an increase in resistance when the DMO8 is turned on, so in order to prevent this step breakage, the structure shown in Figure 2 or 3 is proposed. has been done. That is, in the DMO 8 in FIG. 2, the interlayer insulating film 8
When photo-etching the contact hole opening, the etching rate is varied in the direction of the depth of the glabellar insulating film 8 by a thickness of 74 mm, so that the inner peripheral surface of the opening is sloped. However, in the DMO 8 shown in FIG. 3, the interlayer insulating film 8
Photo-etching is performed to create two to several steps of variation on the inner peripheral surface of the opening.

このような第2図、第3図のDMO8構造は、ダート埋
め込み層7に形成するDMO8形成用開口部の寸法(第
1図L)を蝕刻精度、傾斜幅、写真蝕刻時の位置合わせ
精度を考慮して大きくする必要がある。しかし、このこ
とは一般にDMO8は基板主面を最大限に有効活用し、
集積度を上げてダート周囲長を大きくすることが特に必
要であるのに対して相反するものとなる。
In the DMO8 structure shown in FIGS. 2 and 3, the dimensions of the DMO8 forming opening formed in the dirt buried layer 7 (L in FIG. 1) are determined by etching accuracy, slope width, and positioning accuracy during photoetching. It is necessary to take this into account and increase the size. However, this generally means that DMO8 makes the most effective use of the main surface of the substrate.
This is contrary to the particular need to increase the density and increase the dart circumference.

なお、第2図に示したように層間絶縁膜7の開口部に傾
斜を形成するための別の方法として、眉間絶縁膜8を高
濃度PSG膜あるいはBPSG膜を用いて形成し、これ
に写真蝕刻により開口部を垂直に形成し、次いで高温処
理による溶融により開口部内に傾斜を形成する方法があ
る。しかし、この方法もDMO8形成用開口部の寸法り
の増加を必要とする欠点があり、しかもシリコ・ン基板
露出部に眉間絶縁膜8からN型の不純物が拡散されたシ
、前記高温処理中にシリコン基板が雰囲気N2と反応し
、ペース領域3とソース電極配線9とのコンタクトが充
分とれなくなる欠点がある。
As shown in FIG. 2, another method for forming a slope in the opening of the interlayer insulating film 7 is to form the glabella insulating film 8 using a high concentration PSG film or a BPSG film, and to There is a method in which an opening is formed vertically by etching, and then a slope is formed within the opening by melting by high temperature treatment. However, this method also has the disadvantage of requiring an increase in the size of the opening for forming the DMO 8, and furthermore, the N-type impurity is diffused from the glabella insulating film 8 into the exposed portion of the silicon substrate during the high temperature treatment. Another drawback is that the silicon substrate reacts with the atmosphere N2, making it impossible to make sufficient contact between the space region 3 and the source electrode wiring 9.

また、チャンネル部ペース領域3で必要とされる高濃度
P+層11によって、寄生ダイオードDの順方向電圧降
下(VF)が高くなり、逆回復時間(trr )が長く
なり、DMO8の高周波特性が劣化する欠点がある。
In addition, the high concentration P+ layer 11 required in the channel space region 3 increases the forward voltage drop (VF) of the parasitic diode D, lengthens the reverse recovery time (trr), and deteriorates the high frequency characteristics of the DMO 8. There are drawbacks to doing so.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に鑑みてなされたもので、電極配線
コンタクト部における配線の段切れを防止でき、寄生ダ
イオードの順方向電圧降下の低減によシ高周波特性を改
善し得る二重拡散絶縁ダート型電界効果トランジスタを
提供するものである。
The present invention has been made in view of the above-mentioned circumstances, and is a double diffusion insulating dart that can prevent wiring breaks at electrode wiring contact portions and improve high frequency characteristics by reducing the forward voltage drop of parasitic diodes. A type field effect transistor is provided.

〔発明の概要〕[Summary of the invention]

即ち、本発明は二重拡散絶縁ダート型電界効果トランジ
スタにおいて、ソースコンタクト部およびダートコンタ
クト部の開口部内の少なくとも底面部に多結晶シリコン
層を埋め込み、チャンネル部ソース領域を低濃度不純物
層のみで形成してなることを特徴とするものである。
That is, the present invention provides a double diffused insulated dirt field effect transistor in which a polycrystalline silicon layer is buried at least in the bottom surface of the opening of the source contact part and the dirt contact part, and the channel part source region is formed only with a lightly doped impurity layer. It is characterized by:

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の一実施例を詳細に説明す
る。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第4図に示すDMO8は、第1図(、>を参照して前述
したDMO8に比べて層間絶縁膜8の開口部に低抵抗の
多結晶シリコン層4)が埋め込まれている点、およびチ
ャンネル部ペース領域42は低濃度P層のみからなり高
濃度P+層(第1図11参照)が形成されていない点が
異なシ、その他は同じであるから同一符号を付してその
説明を省略し、以下異なる点について詳述する。
The DMO 8 shown in FIG. 4 differs from the DMO 8 described above in FIG. The difference is that the space area 42 is composed of only a low concentration P layer and does not have a high concentration P+ layer (see FIG. 11), but the other parts are the same, so the same reference numerals are given and the explanation thereof will be omitted. , the different points will be explained in detail below.

即ち、層間絶縁膜8の開口部のうち、?−ト埋め込み層
7上の開口部に埋め込まれている多結晶シリコン41は
N型であり、シリコン基板上の開口部に埋め込まれてい
る多結晶シリコン層41社ソース領域4,5の上方部分
がN型で17、上記ソース領域4,5相互間部の上方部
分がP型である。本例では、上記多結晶シリコン層41
は上記各開口部内のほぼ全部分に埋め込まれており、し
たがって層間絶縁膜8の上面と上記多結晶シリコン層4
1の上面とは段差のない平坦面になっており、この平坦
面上にソース電極配線43およびダート電極配線44が
形成されている。
That is, among the openings of the interlayer insulating film 8? - The polycrystalline silicon 41 buried in the opening on the substrate buried layer 7 is of N type, and the upper part of the source regions 4 and 5 of the polycrystalline silicon layer 41 buried in the opening on the silicon substrate is The upper portion between the source regions 4 and 5 is of P type. In this example, the polycrystalline silicon layer 41
is buried in almost the entire part of each of the openings, so that the upper surface of the interlayer insulating film 8 and the polycrystalline silicon layer 4
1 is a flat surface with no step, and a source electrode wiring 43 and a dirt electrode wiring 44 are formed on this flat surface.

次に、上記DMO8の製造工程の一例を第5図(、)乃
至第5図(、)を参照して説明する。先ず、第5図(、
)に示すようにシリコン基板上にダート酸化膜6を形成
し、その上にダート埋め込み層7を形成したのちDMO
8形成領域をパターニングにより開口する。次に、・母
ターニング開口部からシリコン基板内にチャンネル部ペ
ース領域42およびソース領域4,5を高温熱拡散によ
シ形成する。つまり、自己読合による二重拡散を行なっ
てDMO8eff造を形成する。次に、CvD(化学気
相成長)法により層間絶縁膜8を形成し、コンタクト部
に相当する部分を写真蝕刻法によ多開口する。次に、第
5図(b)に示すようにドープされない多結晶シリコン
層41をCVD法により表面に堆梼させる。次に、第5
図(c)に示すように写真蝕刻用レジスト51を表面に
塗布する。この場合、前記多結晶シリコン層410表面
の段差の谷部には厚く、山部には薄く付着する。次に、
反応性イオンエツチング装置により上記レジスト51と
共に多結晶シリコン層41を層間絶縁膜8の表面まで蝕
刻する。これによって、眉間絶縁膜8の開口部のみに多
結晶シリコン層41が埋め込まれたことになり、層間絶
縁膜8の表面は段差がなくなり平坦化される。次に、第
5図(d)に示すように表面に写真蝕刻用レジスト52
を塗布し、ダートコンタクト部に相当する部分およびソ
ースコンタクト部のソース領域上方部に相当する部分を
開口する。そして、この開口部からたとえばヒ素のイオ
ン注入を行なう。次に、第5図(、)に示すように表面
に写真蝕刻用レジスト53を塗布し、ソースコンタクト
部のソース領域相互間の上方部に相当する部分を開口し
、この開口部分にたとえばボロンのイオン注入を行なう
。そして、アニール処理を行ない、前記イオン注入され
た多結晶シリコン層41の電極化を行なう。これによっ
て、多結晶シリコン層41はヒ素イオン注入部分がNm
となシ、?ロンイオン注入部分がP型となる。次に、レ
ジスト53を除去し、金属膜(たとえばアルミニウム)
を蒸着し、写真蝕刻によって第4図に示すようにソース
電極配線43およびダート電極配線44を形成する。
Next, an example of the manufacturing process of the DMO 8 will be described with reference to FIGS. First, Figure 5 (,
), a dirt oxide film 6 is formed on a silicon substrate, a dirt buried layer 7 is formed thereon, and then a DMO
8 formation area is opened by patterning. Next, a channel space region 42 and source regions 4 and 5 are formed in the silicon substrate from the mother turning opening by high-temperature thermal diffusion. That is, double diffusion by self-reading is performed to form a DMO8eff structure. Next, an interlayer insulating film 8 is formed by a CvD (chemical vapor deposition) method, and multiple openings are formed in portions corresponding to contact portions by a photolithography method. Next, as shown in FIG. 5(b), an undoped polycrystalline silicon layer 41 is deposited on the surface by CVD. Next, the fifth
As shown in Figure (c), a photo-etching resist 51 is applied to the surface. In this case, it adheres thickly to the valleys of the steps on the surface of the polycrystalline silicon layer 410 and thinly adheres to the peaks. next,
The resist 51 and the polycrystalline silicon layer 41 are etched down to the surface of the interlayer insulating film 8 using a reactive ion etching device. As a result, the polycrystalline silicon layer 41 is buried only in the opening of the glabella insulating film 8, and the surface of the interlayer insulating film 8 is flattened without any steps. Next, as shown in FIG. 5(d), a photo-etching resist 52 is applied to the surface.
A portion corresponding to the dirt contact portion and a portion corresponding to the upper portion of the source region of the source contact portion are opened. Then, ions of arsenic, for example, are implanted through this opening. Next, as shown in FIG. 5(,), a photo-etching resist 53 is applied to the surface, and an opening is formed in a portion corresponding to the upper part between the source regions of the source contact portion. Perform ion implantation. Then, an annealing process is performed to convert the ion-implanted polycrystalline silicon layer 41 into an electrode. As a result, the arsenic ion-implanted portion of the polycrystalline silicon layer 41 is Nm
Tonashi,? The portion into which the ions are implanted becomes P type. Next, the resist 53 is removed and the metal film (for example, aluminum) is removed.
is deposited, and by photolithography, source electrode wiring 43 and dirt electrode wiring 44 are formed as shown in FIG.

なお、第5図(d)に示したイオン注入工程と第5図(
、)に示しだイオン注入工程の順序を入れ替えてもよい
Note that the ion implantation process shown in FIG. 5(d) and the ion implantation process shown in FIG.
The order of the ion implantation steps shown in , ) may be changed.

上述したような構成のDMO8においては、電極配線コ
ンタクト部は平坦化されているのでその段切れが生じな
い。これによって、配線の電流容量が増加すると共にD
MOSチッゾチップ内が有効に働らくことになり 、D
MO8のオン動作時の抵抗の増大とか電流の集中が生じ
なくなる。さらに、上記した平坦化により 、DMOS
チッゾチップ内O8動作部上でデバイス外囲器との間の
ワイヤーツソンディング接続が可能となシ、従来のチッ
プでDMO8動作部動作部類外に作られていた?ンディ
ングパッド領域は不要になる。これによって、チップ内
のDMO8動作領域が拡大するので、DMO8の集積度
を向上させ、全体としてダート周囲長(ダートチャンネ
ル幅)を大きくシ、DMO8のオン抵抗の低減化および
大電力化の実現が可能となる。
In the DMO 8 having the above-described structure, the electrode wiring contact portion is flattened, so that no breakage occurs. As a result, the current capacity of the wiring increases and D
The inside of the MOS Chizzo chip will work effectively, D
No increase in resistance or concentration of current occurs when MO8 is turned on. Furthermore, due to the flattening described above, DMOS
Is it possible to make a wire connection between the O8 operating section in the chip and the device envelope, which was made outside the DMO8 operating section in conventional chips? The landing pad area becomes unnecessary. This expands the DMO8 operating area within the chip, improving the degree of integration of the DMO8, increasing the overall dirt perimeter (dart channel width), reducing the on-resistance of the DMO8, and realizing higher power. It becomes possible.

また、ソースコンタクト部において、ソース電極配線4
3は低抵抗の多結晶シリコン層41を介してシリコン基
板に接触している。したがって、チャンネル部ペース領
域42が低濃度P層であっても上記ソース電極配線43
とのオーミックコンタクトが可能であり、従来必要とさ
れた高濃度P層は不要となる。これによって、シリコン
基板中のN一層(低濃度シリコン層2)から低濃度P層
(ペース領域42)を経てソース電極配線43に抜ける
キャリアに対する電位障壁が低くなり、寄生ダイオード
における順方向電圧降下特性が改善され、少数キャリア
の蓄積が軽減されるので逆回復時間が短かくなり、高周
波特性が改善されて高速動作が可能にたる。
In addition, in the source contact portion, the source electrode wiring 4
3 is in contact with the silicon substrate via a low resistance polycrystalline silicon layer 41. Therefore, even if the channel space region 42 is a low concentration P layer, the source electrode wiring 43
It is possible to make ohmic contact with the conventionally required high-concentration P layer. As a result, the potential barrier for carriers passing from the N layer (low concentration silicon layer 2) in the silicon substrate to the source electrode wiring 43 via the low concentration P layer (space region 42) is lowered, and the forward voltage drop characteristics in the parasitic diode are reduced. Since the accumulation of minority carriers is reduced, the reverse recovery time is shortened, and the high frequency characteristics are improved, making high-speed operation possible.

なお、第6図はDMOSチッゾに形成された多数のDM
O8(その1単位の構造を第4図を参照して前述した)
611〜61n の等価回路を示しておシ、各DMO8
611〜61nにおける抵抗rは前記ソースコンタクト
部の眉間絶縁膜開口部に埋め込まれた多結晶シリコン層
41の低抵抗である。通常、同一チップ内の中央部と周
辺部とでは各DMO8の閾値電圧にばらつきが発生し、
一部のDMO8およびその寄生ダイオードの電流集中を
生じ易いが、前記抵抗rの値を適正に設定する( DM
O8のオン抵抗および寄生ダイオードの順方向電圧降下
特性との兼ね合いがある)ことによって、安定化抵抗と
しての作用を持たせることが可能となり、DMO8の安
全動作領域を拡大することが可能となる。
Furthermore, Figure 6 shows a large number of DMs formed in the DMOS chip.
O8 (the structure of one unit of which was described above with reference to Figure 4)
The equivalent circuit of 611 to 61n is shown below, and each DMO8
The resistance r at 611 to 61n is the low resistance of the polycrystalline silicon layer 41 buried in the opening of the glabellar insulating film of the source contact portion. Normally, there are variations in the threshold voltage of each DMO8 between the center and the periphery within the same chip.
Although it is easy to cause current concentration in some DMO8 and its parasitic diodes, set the value of the resistor r appropriately (DM
(There is a balance between the on-resistance of O8 and the forward voltage drop characteristic of the parasitic diode), it becomes possible to provide an effect as a stabilizing resistor, and it becomes possible to expand the safe operation area of DMO8.

また、本発明は上記実施例に限られるものではなく、低
抵抗の多結晶シリコン層を層間絶縁膜の開口部の底面か
ら開口面まで全て埋め込むことに代えて、上記開口部の
少なくとも底面部に埋め込むだけで電極配線の段差が少
なくなると共にシリコン基板と電極配線とのオーミック
 4コンタクトが得られる。
Furthermore, the present invention is not limited to the above-mentioned embodiments, but instead of burying a low-resistance polycrystalline silicon layer from the bottom of the opening of the interlayer insulating film to the opening surface, Just by embedding, the level difference in the electrode wiring can be reduced and 4-ohmic contact between the silicon substrate and the electrode wiring can be obtained.

まだ、上記実施例はNチャンネル型を示したが、Pチャ
ンネル型のDMO8にも本発明を適用し得ることは勿論
である。
Although the above embodiment shows an N-channel type DMO 8, it goes without saying that the present invention can also be applied to a P-channel type DMO8.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明の二重拡散絶縁ダート型電界効果
トランジスタによれば、電極配線コンタクト部における
配線の段切れを防止でき、電極配線表面の平坦化によっ
てトランジスタ動作部上でワイヤーボンディング接続が
可能になるので高集積化を実現できる。また、チャンネ
ル部ベース領域を低濃度不純物層のみで形成できるので
、寄生ダイオードの順方向電圧降下を低減し、逆回復時
間を短縮し、高周波特性を改善することができる。まだ
、電極配線コンタクト部に埋め込んだ多結晶シリコン層
の抵抗値を適正に設定することによシ、製造時のばらつ
きに起因するトランジスタの電流集中を防止でき、安全
動作領域を拡大できる。
As described above, according to the double-diffused insulated dart type field effect transistor of the present invention, it is possible to prevent disconnection of the wiring at the electrode wiring contact part, and the flattening of the electrode wiring surface allows wire bonding connection on the transistor operating part. Therefore, high integration can be achieved. Furthermore, since the channel base region can be formed only with a lightly doped impurity layer, the forward voltage drop of the parasitic diode can be reduced, the reverse recovery time can be shortened, and the high frequency characteristics can be improved. However, by appropriately setting the resistance value of the polycrystalline silicon layer embedded in the electrode wiring contact portion, current concentration in the transistor due to manufacturing variations can be prevented and the safe operating range can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)は従来の二重拡散絶縁ダート型電界効果ト
ランジスタの構造を示す断面図、第1図(b)は同図(
a)のトランジスタの等価回路を示す回路図、第2図お
よび第3図はそれぞれ従来の二重拡散絶縁f−)型電界
効果トランジスタの構造を示す断面図、第4図は本発明
の二重拡散絶縁ダート型電界効果トランジスタの一実施
例に係る構造を示す断面図、第5図(、)乃至第5図(
、)は第4図のトランジスタの製造工程における構造を
示す断面図、第6図は第4図のトランジスタが形成され
たチップにおける各トランジスタの等価回路を示す回路
図である。 1.2・・・シリコン層、4,5・・・ソース領域、6
・・・ゲート酸化膜、7・・・ダート埋め込み層、8・
・・層間絶縁膜、4ノ・・・多結晶シリコン層、42・
・・チャンネル部ベース領域、43・・・ソース電極配
線、44・・・ケ゛−ト電極配線。 出願人代理人 弁理士 鈴 江 武 彦第1図 <a)(b) 第2図 第3図 第4図 第6図
Figure 1(,) is a cross-sectional view showing the structure of a conventional double-diffused insulated dart field effect transistor, and Figure 1(b) is the same figure ().
2 and 3 are cross-sectional views showing the structure of a conventional double-diffused insulated f-) type field effect transistor, and FIG. 4 is a circuit diagram showing an equivalent circuit of the transistor of the present invention. Cross-sectional views showing the structure of an embodiment of a diffusion-insulated dart type field effect transistor, FIGS.
, ) are cross-sectional views showing the structure of the transistor shown in FIG. 4 in the manufacturing process, and FIG. 6 is a circuit diagram showing an equivalent circuit of each transistor in a chip in which the transistor shown in FIG. 4 is formed. 1.2... Silicon layer, 4, 5... Source region, 6
... Gate oxide film, 7... Dirt buried layer, 8.
...Interlayer insulating film, 4th...Polycrystalline silicon layer, 42.
... Channel portion base region, 43... Source electrode wiring, 44... Kate electrode wiring. Applicant's representative Patent attorney Takehiko Suzue Figure 1 <a) (b) Figure 2 Figure 3 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 第1導電型のシリコン基板と、このシリコン基板の表面
の一部に拡散形成された上記第1導電型とは逆導電型の
第2導電型のチャンネル部ペース領域と、このチャンネ
ル部ベース領域内の表面の一部に互いに離間してそれぞ
へ拡散形成された第1導電型のソース領域と、前記シリ
コン基板上に形成され前記ソース領域の一部およびソー
ス領域相互間部の上面に相当する部分が開口されたr−
)酸化膜と、このダート酸化膜の上面に形成されたダー
ト埋め込み層と、このr−)埋め込み層およびその開口
部の二重拡散領域の上面に形成されダートコンタクト部
に相当する部分およびソースコンタクト部に相当する部
分が開口された層間絶縁膜と、この眉間絶縁膜の開口部
内の少なくとも底面部に埋め込まれそれぞれ下方部の導
電型に対応して電極化された多結晶ポリシリコン層と、
前記層間絶縁膜およびその開口部の上面に被着され所定
のパターンに形成された金属電極配線とを具備し、金属
電極配線の段差を少なくすると共にチャンネル部ソース
領域を低濃度不純物層のみで形成して力ることを特徴と
する二重拡散絶縁ダート型電界効果トランジスタ。
a silicon substrate of a first conductivity type, a channel portion space region of a second conductivity type opposite to the first conductivity type diffused on a part of the surface of the silicon substrate, and a channel portion base region of the channel portion base region. source regions of a first conductivity type that are diffused and spaced apart from each other on a part of the surface of the silicon substrate; Partially opened r-
) oxide film, a dirt buried layer formed on the upper surface of this dirt oxide film, a portion corresponding to a dirt contact portion formed on the upper surface of the r-) buried layer and the double diffusion region in its opening, and a source contact. a polycrystalline polysilicon layer embedded in at least the bottom part of the opening of the glabellar insulating film and electroded in accordance with the conductivity type of the lower part;
The interlayer insulating film and a metal electrode wiring formed in a predetermined pattern are formed on the upper surface of the opening of the interlayer insulating film, and the steps of the metal electrode wiring are reduced, and the channel source region is formed only with a lightly doped impurity layer. A double-diffusion insulated dart type field effect transistor characterized by high power.
JP58134143A 1983-07-22 1983-07-22 Double diffused insulated gate type fet Pending JPS6027170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58134143A JPS6027170A (en) 1983-07-22 1983-07-22 Double diffused insulated gate type fet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58134143A JPS6027170A (en) 1983-07-22 1983-07-22 Double diffused insulated gate type fet

Publications (1)

Publication Number Publication Date
JPS6027170A true JPS6027170A (en) 1985-02-12

Family

ID=15121472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58134143A Pending JPS6027170A (en) 1983-07-22 1983-07-22 Double diffused insulated gate type fet

Country Status (1)

Country Link
JP (1) JPS6027170A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181571A (en) * 1988-01-11 1989-07-19 Nippon Denso Co Ltd Conduction modulation type mosfet
JPH01248564A (en) * 1988-03-30 1989-10-04 Nissan Motor Co Ltd Power transistor
JPH02307274A (en) * 1989-05-23 1990-12-20 Toshiba Corp Semiconductor device
EP0936677A1 (en) * 1998-02-16 1999-08-18 Asea Brown Boveri AG Power semiconducteur device with an isolated gate electrode and its method of fabrication

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181571A (en) * 1988-01-11 1989-07-19 Nippon Denso Co Ltd Conduction modulation type mosfet
JPH01248564A (en) * 1988-03-30 1989-10-04 Nissan Motor Co Ltd Power transistor
JPH02307274A (en) * 1989-05-23 1990-12-20 Toshiba Corp Semiconductor device
EP0936677A1 (en) * 1998-02-16 1999-08-18 Asea Brown Boveri AG Power semiconducteur device with an isolated gate electrode and its method of fabrication

Similar Documents

Publication Publication Date Title
US5430316A (en) VDMOS transistor with improved breakdown characteristics
US7358141B2 (en) Semiconductor device and method for fabricating the same
US6114207A (en) Method of producing a semiconductor device
US9614055B2 (en) Semiconductor device and method for fabricating the same
US5382536A (en) Method of fabricating lateral DMOS structure
GB2103877A (en) Gate protection for insulated gate semiconductor devices
US5061649A (en) Field effect transistor with lightly doped drain structure and method for manufacturing the same
JP2005286328A (en) Process for manufacturing terminal region of trench mis device, semiconductor die including mis device, and method for forming the same
JP2005510088A (en) Trench metal oxide semiconductor field effect transistor device with polycrystalline silicon source contact structure
JP4063353B2 (en) Manufacturing method of trench gate type MOS field effect transistor
JPH05315620A (en) Semiconductor device and manufacture thereof
US8133788B2 (en) Method of manufacturing semiconductor device
JP2002016080A (en) Manufacturing method of trench-gate type mosfet
JP2005536868A (en) Method of manufacturing trench metal oxide semiconductor field effect transistor device with low parasitic resistance
JP4800566B2 (en) Semiconductor device and manufacturing method thereof
US6078079A (en) Semiconductor device and method of manufacturing the same
US20010023957A1 (en) Trench-gate semiconductor devices
JPS6027170A (en) Double diffused insulated gate type fet
JPH09260659A (en) Semiconductor element and manufacture thereof
JPH0555583A (en) Manufacture of insulated-gate bipolar transistor
US6248620B1 (en) Method for fabricating a field effect-controlled semiconductor component
JP2003174164A (en) Vertical mos semiconductor device and its manufacturing method
JPS6225456A (en) Vertical semiconductor device and manufacture thereof
JPH06204472A (en) Manufacture of trench-type source/ drain mosfet
EP1703567A2 (en) Insulated gate field-effect transistor and method of making the same