JPS6027168A - Thyristor - Google Patents

Thyristor

Info

Publication number
JPS6027168A
JPS6027168A JP13503083A JP13503083A JPS6027168A JP S6027168 A JPS6027168 A JP S6027168A JP 13503083 A JP13503083 A JP 13503083A JP 13503083 A JP13503083 A JP 13503083A JP S6027168 A JPS6027168 A JP S6027168A
Authority
JP
Japan
Prior art keywords
conductive layer
layer
groove
anode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13503083A
Other languages
Japanese (ja)
Inventor
Akira Honda
晃 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Rectifier Corp Japan Ltd
Infineon Technologies Americas Corp
Original Assignee
International Rectifier Corp Japan Ltd
Infineon Technologies Americas Corp
International Rectifier Corp USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Rectifier Corp Japan Ltd, Infineon Technologies Americas Corp, International Rectifier Corp USA filed Critical International Rectifier Corp Japan Ltd
Priority to JP13503083A priority Critical patent/JPS6027168A/en
Publication of JPS6027168A publication Critical patent/JPS6027168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41716Cathode or anode electrodes for thyristors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To relax power concentration by a method wherein a groove is formed in the surface part of an anode-emitter region opposed to the center of a cathod- emitter region, and then an insulation layer is formed in the surface part. CONSTITUTION:The GTO11 has a p type conductive layer 12, an n type conductive layer 13, a p type conductive layer 14, and an n type conductive layer 15. The groove W wide and (d) deep is formed in the surface part of the layer 12 opposed to the layer 15, thus forming a structure that the part covered with a layer 16 is electrically isolated from an anode metallic electrode 17 provided on the layer 12. A gate electrode 18 and a cathode electrode 19 are provided on the layers 14 and 15, respectively. In this structure, regions of high current density generate at both ends (a) and (b) of the groove 16.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、サイリスタに関し、特にゲートに逆バイアス
電圧を印加してターンオフさせるゲート・ターン・オフ
・サイリスタ(以下、GTOと略記する。)の改良構造
に係るものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a thyristor, and in particular to an improvement of a gate turn-off thyristor (hereinafter abbreviated as GTO) that is turned off by applying a reverse bias voltage to its gate. It is related to the structure.

[発明の技術的背景とその問題点] 第1図に従来のGTOの一般的な構造を示す。[Technical background of the invention and its problems] FIG. 1 shows the general structure of a conventional GTO.

同図において、GTOIのゲート2に順バイアス電圧を
印加すると、GTOlはターンオンし、そのオン領域は
ノコソードエミッタ領域幅Wneに相当する全領域に広
がり、アノード電流がこのG−「01の固有のラッチン
グ電流以上の鎮にあれば、ゲート2への順バイアス電圧
の印加を解除してもオン状態が持続される。
In the same figure, when a forward bias voltage is applied to the gate 2 of the GTOI, the GTOl turns on and its on region spreads over the entire region corresponding to the width Wne of the node emitter region, and the anode current If the current is higher than the latching current, the on state is maintained even if the application of the forward bias voltage to the gate 2 is removed.

その後、GTOIのゲート2に逆バイアス電圧を印加づ
ると、カソードエミッタ領域3のグー1〜電t!i2に
最も近い部分、づ゛なわら最も深く逆バイアスされてい
る部分からターンオフして行き、オン領域は次第にカソ
ードエミッタ領域3の中央部へと収縮しで行く。そして
最終的には、」−記のオン領域が非常に幅の狭い一本の
線状の領域となり、かかる部分での電流密度がきわめて
^くなる。
After that, when a reverse bias voltage is applied to the gate 2 of the GTOI, the voltage t! The turn-off starts from the part closest to i2, that is, the part that is most deeply reverse biased, and the on region gradually shrinks to the center of the cathode emitter region 3. In the end, the ON region indicated by "-" becomes a very narrow linear region, and the current density in this region becomes extremely low.

また、その部分の電流集中に伴い接合部温度が非常に高
くなる等により可制御陽極電流があまり大きくならない
という問題があった。
In addition, there is a problem in that the controllable anode current does not become very large because the junction temperature becomes extremely high due to current concentration in that part.

また、この構造で可制御陽極電流を大きくしようとする
と、島状に分割したカソード・エミッタ領域3の幅を狭
くし、その島状カソード・エミッタ領域3の本数を増や
す必要があるが、この方法によると、シリコンペレット
の有効面積率、すなわち、総力ソードエミッタ面積をシ
リコンペレット全体の面積で除した値が減少してしまい
、定常状態でのオン電圧およびサージ電流耐量に悪影響
を及ぼす欠点があった。
In addition, in order to increase the controllable anode current with this structure, it is necessary to narrow the width of the island-shaped cathode/emitter regions 3 and increase the number of island-shaped cathode/emitter regions 3. According to , the effective area ratio of the silicon pellet, that is, the value obtained by dividing the total force sword emitter area by the area of the entire silicon pellet, decreased, which had a negative effect on the on-voltage and surge current withstand capacity in steady state. .

GTOの上記欠点を改良する方法として以下のようない
くつかの方法が提案されているがいずれも最良のものと
なっていなかった。
Several methods have been proposed to improve the above-mentioned drawbacks of GTO, but none of them have been the best.

例えば、特公昭42−21978号に示すようにカソー
ド・エミッタ電極に対応するアノード側のP層を形成し
ない欠損部を設けたり、Nベース層をアノード側の表面
にまで延在さUたりしlc構造のものがある。しかし、
この構造ではGTOのオフ時におけるアノード・カソー
ド間に逆電圧が印加された時のNベース領域内の空乏層
の広がりから逆電圧があまり高くできない欠点を有する
For example, as shown in Japanese Patent Publication No. 42-21978, a defect is provided on the anode side corresponding to the cathode/emitter electrode where no P layer is formed, or an N base layer is extended to the surface of the anode side. There is a structure. but,
This structure has a drawback that the reverse voltage cannot be increased very much because the depletion layer in the N base region expands when a reverse voltage is applied between the anode and the cathode when the GTO is off.

また、伯の改良として、例えば、実公昭44−1193
7号に示されているようにカソード・エミッタ電極に対
応するアノード側のP層表面に絶縁膜を形成し、その上
に金属電極層を形成した構造が提案されている。しかし
、この構造においても以下のような欠点を有づる。
In addition, as an improvement of Haku, for example,
As shown in No. 7, a structure has been proposed in which an insulating film is formed on the surface of the P layer on the anode side corresponding to the cathode/emitter electrode, and a metal electrode layer is formed thereon. However, this structure also has the following drawbacks.

不純物拡散によって形成されたアノード側のP層の結晶
内の横方向抵抗は、表面に近いところ程低い。このため
P層表面に絶縁層を形成してもカソード・エミッタ電極
下方の電流密度は期待した程小さくならない。
The intracrystalline lateral resistance of the anode-side P layer formed by impurity diffusion is lower as it approaches the surface. For this reason, even if an insulating layer is formed on the surface of the P layer, the current density below the cathode/emitter electrode does not become as small as expected.

[発明の目的] 本発明は、上記の事情に基づきなされたもので、中心部
の電力密度を効果的に緩和させ、可制御陽極電流を大ぎ
くしたゲート・ターン・Aノ・サイリスタを提供づるこ
とを目的とする。
[Object of the Invention] The present invention has been made based on the above-mentioned circumstances, and an object thereof is to provide a gate turn A thyristor in which the power density in the center part is effectively relaxed and the controllable anode current is greatly increased. purpose.

「発明の概要」 本発明は、−導電型を有する第1導電層と、この第1導
電廟に隣接して形成した前記第1導電層と反対導電型の
第2導電層と、この第2導電層に隣接して形成した前記
第1導電層と同じ導電型の第3導電層と、この第3導電
層内に選択的に形成した前記第21電層と同じ導電型の
第4導電層と、この第4導電層に対向する箇所の前記第
1導電層の表面に形成した前記第4導電層側に向う溝を
形成し、この溝の表面を覆う絶縁層と、前記第1導電層
、第3導NNおよび第4導電層にそれぞれ第1電極、第
2電極およびゲート電極とを設けたことを特徴とするサ
イリスタであって中心部への電力密度の集中を効果的に
緩和できるようにし、可制御陽極電流を大きくなるよう
にしたものである。
"Summary of the Invention" The present invention provides a first conductive layer having a - conductivity type, a second conductive layer formed adjacent to the first conductive layer and having a conductivity type opposite to the first conductive layer, and a second conductive layer having a conductivity type opposite to the first conductive layer. a third conductive layer of the same conductivity type as the first conductive layer formed adjacent to the conductive layer; and a fourth conductive layer of the same conductivity type as the twenty-first conductive layer selectively formed within the third conductive layer. and a groove facing the fourth conductive layer formed on the surface of the first conductive layer at a location opposite to the fourth conductive layer, an insulating layer covering the surface of this groove, and the first conductive layer. , a thyristor characterized in that the third conductive NN and the fourth conductive layer are provided with a first electrode, a second electrode, and a gate electrode, respectively, so that concentration of power density in the center can be effectively alleviated. The controllable anode current is increased.

[発明の実施例] 第2図は、本発明の一実施例を示す断面図である。[Embodiments of the invention] FIG. 2 is a sectional view showing one embodiment of the present invention.

同図において、GTOllは、第1図と同様に例えばP
型筒11電層12と、この第1導電層12に隣接して形
成した[1型の第2導電層13と、この第2導電層13
に隣接して形成したP型の第3導電層14と、この第3
導電層14内に選択的に形成した幅Wneなるn型の第
4導電層15とを有1′る。そしてこの第4導電層15
に対向する第1導電層12の表面部分には公知の方法で
幅w1深さdなる溝を形成し、その後例えばシリコン酸
化膜からなる絶縁層16を形成し、この絶縁層16で覆
われてた部分は、第1導電812上に設けられたアノー
ド金属N極17と電気的に分離された構造とする。
In the figure, GTOll is, for example, P
A mold cylinder 11 conductive layer 12 , a second conductive layer 13 of type 1 formed adjacent to this first conductive layer 12 , and a second conductive layer 13 formed adjacent to this first conductive layer 12 .
a P-type third conductive layer 14 formed adjacent to the third conductive layer 14;
An n-type fourth conductive layer 15 having a width Wne is selectively formed within the conductive layer 14. And this fourth conductive layer 15
A groove having a width w1 and a depth d is formed in the surface portion of the first conductive layer 12 facing the surface by a known method, and then an insulating layer 16 made of, for example, a silicon oxide film is formed, and the groove is covered with this insulating layer 16. This portion has a structure that is electrically isolated from the anode metal N pole 17 provided on the first conductor 812.

なお、第3導電層14、第4導電層15上には、それぞ
れゲート電極18、カソード電極19が設けられる。
Note that a gate electrode 18 and a cathode electrode 19 are provided on the third conductive layer 14 and the fourth conductive layer 15, respectively.

上記の構造において、G、TOllのゲート電極18を
負バイアスし、ターンオフさせると、そのターンA)領
域は通常のGTOと同様に第4導電層15、すなわちア
ノード・エミッタ領域の表面部分に前記の絶縁層16が
存在するので、この絶縁N16の部分に電流が集中しよ
うとしても、かかる部分の横方向抵抗の存在によりカソ
ード・1ミツタ領域の図示x−X線で示す中央部分への
電流集中が阻止される。さらにこれを詳しく説明づれば
、アノード・エミッタ領域の横方向抵抗部分が欠損して
いて溝の底の部分の横方向抵抗が表面部分に較べて高い
のでかかる部分への電流の流れが阻止されることとなる
。したがって、この構造のGTOで最も電流密度の高い
領域は、上記溝16の両端a、b付近に各々発生し、二
本の線状領域の内側へ向って一定の電流密度の勾配を持
って広がっている。
In the above structure, when the gate electrode 18 of G, TOll is turned off by applying a negative bias, the turn A) region is formed on the surface of the fourth conductive layer 15, that is, the anode/emitter region, as in a normal GTO. Since the insulating layer 16 exists, even if the current tries to concentrate in the insulating layer N16, the current will not concentrate in the central part of the cathode 1st region shown by the line x-X in the figure due to the lateral resistance of this part. blocked. To explain this in more detail, the lateral resistance portion of the anode/emitter region is missing and the lateral resistance of the bottom portion of the groove is higher than that of the surface portion, so current flow to this portion is blocked. becomes. Therefore, in a GTO with this structure, the regions with the highest current density occur near both ends a and b of the groove 16, and spread toward the inside of the two linear regions with a constant current density gradient. ing.

上記の構造によれば、従来のGTOの構造に較べ、電力
密度の集中を効果的に緩和でき、可制御電流を大きくす
ることができる。
According to the above structure, the concentration of power density can be effectively alleviated and the controllable current can be increased compared to the conventional GTO structure.

なお、上記の効果を得るための溝の形成方法には次のい
ずれの方法でも良い。
Note that any of the following methods may be used to form the grooves to obtain the above effect.

(1)図示の溝16の深さdをアノード・エミッタ領域
中の不純物濃度がかなり低いところまで深くし、溝16
の底に対向するアノード・エミッタ領域部分の抵抗率を
高く取り、溝16の幅Wは、比較的狭くとも必要な抵抗
値かえられる構造とすること。
(1) The depth d of the groove 16 shown in the figure is increased to a point where the impurity concentration in the anode emitter region is quite low, and the groove 16
The resistivity of the anode/emitter region portion facing the bottom of the groove 16 is set high, and the width W of the groove 16 is structured so that the required resistance value can be changed even if it is relatively narrow.

(2)溝16の深さdは、比較的浅く取り、幅Wを前記
(1)よりも広くして必要な抵抗を得ること。
(2) The depth d of the groove 16 should be relatively shallow, and the width W should be wider than in (1) above to obtain the necessary resistance.

「発明の効果」 本発明は、上記のようにカソード・エミッタ領域の中央
部分に対向するアノード・エミッタ領域の表面部分に満
を形成し、その表面部分に絶縁層を形成するようにした
ので、カソード・エミッタ領域の中央部分への電力集中
が効果的に緩和でき、その結果、可制御陽極電流が大き
くなる。
"Effects of the Invention" In the present invention, as described above, a filler layer is formed on the surface portion of the anode emitter region opposite to the central portion of the cathode emitter region, and an insulating layer is formed on the surface portion. Power concentration in the central part of the cathode-emitter region can be effectively alleviated, resulting in a larger controllable anode current.

また、アノード・エミッタ・ショート構造では、逆耐圧
がゲート・カソード間耐圧のみ低い値になってしまうが
、本発明の構造では順耐1■と同等の逆耐圧を得ること
ができる。
Further, in the anode-emitter short structure, only the gate-cathode breakdown voltage has a low reverse breakdown voltage, but the structure of the present invention can obtain a reverse breakdown voltage equivalent to the forward breakdown voltage 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の01−0の構造の一例を示J断面図、
第2図は、本発明に係るGTOの構造を示す断面図であ
る。 11・・・G−10 12・・・第1尋電層 13・・・第2導電層 14・・・第3導電層 15・・・第4導電層 16・・・溝 17・・・アノード金属電極 18・・・ゲート電極 特許出願人 神奈川県秦野市曽屋1204番地
Figure 1 shows an example of the structure of the conventional 01-0;
FIG. 2 is a sectional view showing the structure of the GTO according to the present invention. 11...G-10 12...First conductive layer 13...Second conductive layer 14...Third conductive layer 15...Fourth conductive layer 16...Groove 17...Anode Metal electrode 18... Gate electrode patent applicant 1204 Soya, Hadano City, Kanagawa Prefecture

Claims (1)

【特許請求の範囲】[Claims] 一導電型を有1゛る第1導電層と、この第1導電層に隣
接して形成した前記第1導N層と反対導電型の第2導電
層と、この第2導電層に隣接して形成した前記第1導電
層と同じ導電型の第3導電層と、この第3導電層内に選
択的に形成した前記第2導電層と同じ導電型の第4導電
層と、この第4導電層に対向する箇所の前記第1導N層
の表面に形成した前記第4導電層側に向う溝表面を覆う
絶縁層と、前記第1導劃り第3導N層および第4導電層
にそれぞれ第1電極、第2電極およびゲート電極とを設
けたことを特徴とするサイリスタ。
a first conductive layer having one conductivity type; a second conductive layer formed adjacent to the first conductive layer and having an opposite conductivity type to the first conductive layer; a third conductive layer of the same conductivity type as the first conductive layer formed in the third conductive layer; a fourth conductive layer of the same conductivity type as the second conductive layer selectively formed within the third conductive layer; an insulating layer covering the surface of a groove facing the fourth conductive layer formed on the surface of the first conductive N layer at a location facing the conductive layer; and the first conductive third conductive N layer and the fourth conductive layer. A thyristor characterized in that each of the thyristors is provided with a first electrode, a second electrode, and a gate electrode.
JP13503083A 1983-07-22 1983-07-22 Thyristor Pending JPS6027168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13503083A JPS6027168A (en) 1983-07-22 1983-07-22 Thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13503083A JPS6027168A (en) 1983-07-22 1983-07-22 Thyristor

Publications (1)

Publication Number Publication Date
JPS6027168A true JPS6027168A (en) 1985-02-12

Family

ID=15142296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13503083A Pending JPS6027168A (en) 1983-07-22 1983-07-22 Thyristor

Country Status (1)

Country Link
JP (1) JPS6027168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672116U (en) * 1993-03-24 1994-10-07 有限会社イワサキ Marker lamp structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672116U (en) * 1993-03-24 1994-10-07 有限会社イワサキ Marker lamp structure

Similar Documents

Publication Publication Date Title
US4646117A (en) Power semiconductor devices with increased turn-off current ratings and limited current density in peripheral portions
US4060821A (en) Field controlled thyristor with buried grid
US4259683A (en) High switching speed P-N junction devices with recombination means centrally located in high resistivity layer
US4782379A (en) Semiconductor device having rapid removal of majority carriers from an active base region thereof at device turn-off and method of fabricating this device
US4901120A (en) Structure for fast-recovery bipolar devices
US5346838A (en) Method for fabricating an insulated gate control thyristor
JPH043113B2 (en)
US4236169A (en) Thyristor device
US20030071305A1 (en) Insulated gate semiconductor device
JPH02122671A (en) Controllable power semiconductor element
JP3807023B2 (en) Power diode
JPS6040190B2 (en) Semiconductor controlled rectifier
CA1155236A (en) Transistor having improved turn-off time and second breakdown characteristics
EP0081642B1 (en) Multicellular thyristor
JP2622521B2 (en) Gate cut-off thyristor and manufacturing method thereof
JPS6027168A (en) Thyristor
US3906545A (en) Thyristor structure
JPH06112494A (en) Insulated gate bipolar transistor
US4937644A (en) Asymmetrical field controlled thyristor
JPH0241182B2 (en)
JPS5933988B2 (en) Electrostatic induction thyristor
JPS6013311B2 (en) Semiconductor controlled rectifier
JP3789580B2 (en) High voltage semiconductor device
US4047218A (en) Semiconductor devices with improved turn-off characteristics
JPH0136711B2 (en)