JPS6026991B2 - Nuclear fuel elements and their manufacturing methods - Google Patents

Nuclear fuel elements and their manufacturing methods

Info

Publication number
JPS6026991B2
JPS6026991B2 JP52054251A JP5425177A JPS6026991B2 JP S6026991 B2 JPS6026991 B2 JP S6026991B2 JP 52054251 A JP52054251 A JP 52054251A JP 5425177 A JP5425177 A JP 5425177A JP S6026991 B2 JPS6026991 B2 JP S6026991B2
Authority
JP
Japan
Prior art keywords
nuclear fuel
cladding tube
oxygen
cladding
fuel element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52054251A
Other languages
Japanese (ja)
Other versions
JPS53140493A (en
Inventor
勝巳 宇根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP52054251A priority Critical patent/JPS6026991B2/en
Publication of JPS53140493A publication Critical patent/JPS53140493A/en
Publication of JPS6026991B2 publication Critical patent/JPS6026991B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 本発明は核燃料要素およびその製造方法に係り、特にジ
ルコニウム合金被覆管の腐食性核分裂生成物である沃素
による応力腐食割れ、および水素ガスによる腕化が起ら
ない被覆管を備えた核燃料要素およびその製造方法を提
供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear fuel element and a method for producing the same, and in particular to a zirconium alloy cladding tube that does not undergo stress corrosion cracking due to iodine, which is a corrosive fission product, and arm formation due to hydrogen gas. An object of the present invention is to provide a nuclear fuel element and a method for manufacturing the same.

経水炉用核燃料要素は核燃料物質、たとえば凝結した二
酸化ウランベレツトをジルカロィ被覆管内に充てんし、
この被覆管内部にヘリウムガスを封入し、両端を端栓で
閉塞した構造になっている。
Nuclear fuel elements for water reactors are made by filling a Zircaloy cladding tube with nuclear fuel material, such as condensed uranium dioxide pellets, and
This cladding tube has a structure in which helium gas is sealed inside and both ends are closed with end plugs.

この被覆管の役目は、核燃料物質と原子炉内の冷却材と
の反応を防ぐことと、放射性核分裂生成物が核燃料要素
から放出されて冷却中に混入するのを防ぐことにある。
従って、原子炉運転中に万一、被覆管に破損が生じた場
合には核分裂生成物が冷却材に混入し、冷却材の放射能
レベルが上昇して、遂にはプラントの運転を妨害するこ
とになる。通常、ジルコニウム合金の被覆管は水および
水蒸気に対して耐腐食性に優れ、中性子吸収断面積が小
さく、かつ照射下でも十分な延性を持つ金属である。し
かし、ジルカロィ被覆管に応力腐食割れ、あるいは水素
腕化が起ると、設計値よりもはるかに小さい歪で破損す
ることが明らかになって釆ている。
The role of this cladding is to prevent reactions between the nuclear fuel material and the coolant in the reactor, and to prevent radioactive fission products from being released from the nuclear fuel element and becoming mixed in during cooling.
Therefore, in the unlikely event that the cladding tube is damaged during reactor operation, fission products may enter the coolant, increasing the radioactivity level of the coolant and ultimately interfering with plant operation. become. Typically, zirconium alloy cladding is a metal that has excellent corrosion resistance against water and steam, has a small neutron absorption cross section, and has sufficient ductility even under irradiation. However, it has become clear that if stress corrosion cracking or hydrogen arm formation occurs in Zircaloy cladding, it will break with much smaller strain than the designed value.

ジルカロィ被覆管の応力腐食割れの原因となる被覆管に
働く引張応力は、燃料べレットと被覆管との機械的相互
作用に基づいている。すなわち二酸化ウランベレットの
熱畑彰張率は、ジルコニウム合金被覆管の熱膨張率より
も約2倍大きく、しかも燃料べレットの平均温度が12
00つ0程度と非常に高いだけでなく、そのうえ原子炉
の出力上昇とともに該べレットに亀裂が入り、ベレット
が再配列してべレットと被覆管とのギャップが埋められ
る。そのため該べレットと被覆管とが接触し、被覆管に
大さし、引張り応力が働くことになる。この応力腐食割
れを防ぐには被覆管に働く引張応力をなくすか、または
核分裂生成物である沃素を除去するかどちらか一方を消
滅させる必要がある。核燃料要素内の沃素を除去し、被
覆管と沃素とを直接反応させないようにするには、ジル
コニウム合金被覆管よりも沃素と反応しやすい沃素ゲッ
タ−を核燃料要素内に装填するか、ベレットと被覆管と
の間に金属層を設け、沃素の障壁を作る方法が考えられ
る。沃素ゲッターとしては酸化バリウムをステンレス金
網又は活性アルミナからなるマトリックス上に分散させ
たものがたとえば特公昭48一232斑号公報に提案さ
れている。
The tensile stress acting on the cladding that causes stress corrosion cracking in Zircaloy cladding is based on the mechanical interaction between the fuel pellet and the cladding. In other words, the thermal field expansion coefficient of uranium dioxide pellets is approximately twice as large as the thermal expansion coefficient of zirconium alloy cladding, and moreover, the average temperature of the fuel pellets is 12
Not only is it very high, on the order of 0.00, but also as the power of the reactor increases, cracks appear in the pellets, and the pellets rearrange to fill the gap between the pellets and the cladding. Therefore, the pellet and the cladding tube come into contact, and a tensile stress is applied to the cladding tube. In order to prevent this stress corrosion cracking, it is necessary to eliminate either the tensile stress acting on the cladding tube or the removal of iodine, which is a fission product. To remove iodine within the nuclear fuel element and prevent direct reaction between the cladding and iodine, an iodine getter that reacts more easily with iodine than the zirconium alloy cladding can be loaded into the nuclear fuel element, or a pellet and cladding can be loaded into the nuclear fuel element. One possible method is to provide a metal layer between the tube and the tube to create a barrier for iodine. As an iodine getter, one in which barium oxide is dispersed on a matrix made of stainless steel wire mesh or activated alumina has been proposed, for example, in Japanese Patent Publication No. 48-232.

また、侍公昭粉−6処3号公報には二酸化ウラン鱗鯖べ
レットと被覆管とを直接反応させないために両者の間に
AI、技、Nbおよびステンレス鋼などの金属を介在さ
せることも提案されている。さらに侍開昭51−697
92号公報には被覆管の内面に銅、ニッケル、鉄を、特
関昭51−69795号公報にはシルコニウムを、特関
昭51−69796号公報にはアルミニウム、クロム、
モリブテン、ニオブを、特開昭51−71497号公報
には被覆管と合金化したクロム含有耐酸化性合金、クロ
ム化コーティング、アルミニウム化コーティング、珪素
化コーティングを有する核燃料要素が提案されている。
さらに持開昭51一69794号公報には被覆管の内面
にクロムまたはクロム合金をコーティングし、その上被
覆管と燃料との間にステンレス鋼、銅、銅合金、ニッケ
ルまたはニッケル合金の金属ラィナを設ける提案がなさ
れている。さらに特開昭51−71498号公報にはア
ルミニウム、銅、ニオブ、ニッケル、ステンレス鋼また
は鉄の金属障壁を被覆管の内側に有し、該金属障壁の内
側にさらにジルコニウム合金を冶金結合させた内層を設
ける提案がなされている。以上例示した従来例はすべて
腐食性核分裂生成物と被覆管とを直接反応させないよう
に被覆管の内側に金属層を設けてなるものである。
Additionally, Samiko Shofun-6-6-Sho No. 3 also proposes interposing metals such as AI, Nb, and stainless steel between the uranium dioxide scale pellets and the cladding tube in order to prevent them from reacting directly. has been done. In addition, Samurai Kaisho 51-697
No. 92 uses copper, nickel, and iron on the inner surface of the cladding tube, Tokusekki No. 51-69795 uses silconium, and Tokkan Sho 51-69796 uses aluminum, chromium, and
JP-A-51-71497 proposes a nuclear fuel element having a chromium-containing oxidation-resistant alloy, a chromium coating, an aluminization coating, and a silicide coating, in which molybdenum and niobium are alloyed with a cladding tube.
Furthermore, in the publication of JOKAI No. 51-69794, the inner surface of the cladding tube is coated with chromium or chromium alloy, and a metal liner of stainless steel, copper, copper alloy, nickel, or nickel alloy is placed between the cladding tube and the fuel. A proposal has been made to establish a Further, JP-A-51-71498 discloses that a metal barrier of aluminum, copper, niobium, nickel, stainless steel, or iron is provided inside the cladding tube, and an inner layer is further formed by metallurgically bonding a zirconium alloy to the inside of the metal barrier. There have been proposals to establish a All of the conventional examples exemplified above have a metal layer provided inside the cladding tube to prevent the corrosive fission products from directly reacting with the cladding tube.

このような金属層を核燃料要素内に設ける場合の欠点と
して次のようなことが挙げられる。第1に核燃料要素の
製造コストが上昇する。第2に金属層と被覆管とが反応
して反応層を作り被覆管の性質を変える可能性がある。
第3に局所的に金属層が破壊した場合、被覆管の一部に
腐食が集中する可能性がある。第4に金属層の中性子吸
収断面積がジルコニウムより大きい場合炉心設計上の中
性子吸収べナルテイーを与える。一方、ジルカロィ被覆
管の水素腕化の主原因となる水素ガスは燃料榛製造時に
燃料べレツトに吸着した水分から発生したものであるこ
とが知られている。原子炉運転中に水蒸気は被覆管や燃
料べレットと反応して水素を遊離し燃料構内のガス雰囲
気は酸化雰囲気からしだし、に還元雰囲気になる。一方
ジルカロィ被覆管はある一定値以上の水分および酸素等
の酸化剤が存在する下では水素化は起さない。このよう
な水素鹸化を防止する方法の1つとしてニッケル−チタ
ンージルコニウム合金の水素ゲツターが特関昭47−6
953号公報に提案されている。しかしゲツター材は化
学的に活性な合金から成っており、しかも運転初期には
燃料榛内は水蒸気で満たされるため前記ゲツターはまず
水蒸気と反応し、残った雰囲気を還元性にして、被覆管
が水素化する危険性を増大させ、なおかつゲッター表面
は酸化皮膜に覆われるため水素吸収能力が減少する欠点
がある。このようなことから依然として、応力腐食割れ
、および水素腕化が起らないようなジルカロィ被覆管を
備えた核燃料要素の開発が望まれている。本発明は上記
要望にかんがみてなされたもので、ジルカロィ被覆管に
生じる放射性核分裂生成物である沃素によるこの被覆管
の応力腐食割れおよび水素腕化を起さないような核燃料
要素およびその製造方法を提供することを目的としてい
る。
Disadvantages of providing such a metal layer within a nuclear fuel element include the following. First, the cost of manufacturing nuclear fuel elements increases. Second, the metal layer and the cladding may react to form a reactive layer that changes the properties of the cladding.
Thirdly, if the metal layer is locally destroyed, corrosion may concentrate on a portion of the cladding. Fourth, if the neutron absorption cross section of the metal layer is larger than that of zirconium, it gives rise to a neutron absorption potential in core design. On the other hand, it is known that hydrogen gas, which is the main cause of the formation of hydrogen arms in the Zircaloy cladding tube, is generated from moisture adsorbed on the fuel pellet during the production of the fuel shell. During reactor operation, water vapor reacts with the cladding and fuel pellets to liberate hydrogen, and the gas atmosphere in the fuel chamber changes from an oxidizing atmosphere to a reducing atmosphere. On the other hand, Zircaloy-clad tubes do not undergo hydrogenation in the presence of moisture and oxidizing agents such as oxygen above a certain level. One of the ways to prevent such hydrogen saponification is to use a hydrogen getter made of nickel-titanium-zirconium alloy.
This is proposed in Publication No. 953. However, the getter material is made of a chemically active alloy, and since the fuel chamber is filled with water vapor at the beginning of operation, the getter reacts with the water vapor, making the remaining atmosphere reducing, and causing the cladding to deteriorate. This method has the disadvantage that it increases the risk of hydrogenation and that the getter surface is covered with an oxide film, which reduces its hydrogen absorption ability. For these reasons, it is still desired to develop a nuclear fuel element equipped with a Zircaloy cladding that does not cause stress corrosion cracking and hydrogen arm formation. The present invention has been made in view of the above-mentioned needs, and provides a nuclear fuel element and a method for manufacturing the same that do not cause stress corrosion cracking and hydrogen arm formation in the Zircaloy cladding due to iodine, which is a radioactive fission product. is intended to provide.

すなわちこの発明は核燃料要素内を酸化性の雰囲気にし
て、その雰囲気中の酸素分圧を7ron以上とすること
によって、ジルカロィ被覆管に生じる放射性核分裂生成
物である沃素によるその被覆管の応力腐食割れおよび水
素ガスによる水素縦化を防ぐことのできる核燃料要素お
よびその製造方法である。なお、核燃料要素内の酸素分
圧を上記の値に調整するには、次のような方法がある。
○)第1図に示したようなジルコニウム合金被覆管2内
に核燃料物質1を充てんした核燃料要素において、被覆
管2の片端部を端栓で封止した後、核燃料物質1をその
被覆管2内に装填し、その後ヘリウムを満たしたチャン
バー内で、被覆管2の池端部を端キ全3で密封する際、
ヘリウムガス中に酸素分圧がれon以上存在する条件下
で端栓を溶接する。なお前記酸素分圧を致成するために
は、あらかじめヘリウムと酸素を所定の比で浪合ごせて
おいた混合ガスをチヤンバ−内に導入してもよいし、チ
ャンバー内でヘリウムと酸素を混合させてもよい。又、
ヘリウムの圧力に通常1気圧であるが、1気圧以上の圧
力のヘリウム中でも上記核燃料要素の製造は可能である
。■ 第1図に示した如くあらかじめ酸素を封入した小
さなキャプセル6を、核燃料要素のプレナム部4に置き
原子炉に装荷する前の衝撃によって、該キャプセル6を
、破壊させるか、あるいは核燃料物質の燃料によって発
生する熱によってキャプセル6を破壊させ、核燃料要素
内の酸素分圧をれon以上にする。
In other words, this invention prevents stress corrosion cracking of the Zircaloy cladding due to iodine, a radioactive fission product, by creating an oxidizing atmosphere within the nuclear fuel element and increasing the partial pressure of oxygen in the atmosphere to 7ron or more. and a nuclear fuel element capable of preventing hydrogen verticalization due to hydrogen gas, and a method for producing the same. Note that the following methods can be used to adjust the oxygen partial pressure within the nuclear fuel element to the above value.
○) In a nuclear fuel element in which a zirconium alloy cladding tube 2 is filled with nuclear fuel material 1 as shown in FIG. When sealing the pond end of the cladding tube 2 with all 3 end keys in a chamber filled with helium,
The end plug is welded under conditions where a partial pressure of oxygen exists in the helium gas. In order to achieve the above oxygen partial pressure, a mixed gas of helium and oxygen mixed in a predetermined ratio may be introduced into the chamber, or helium and oxygen may be mixed in the chamber. You may let them. or,
Although the pressure of helium is usually 1 atm, it is possible to manufacture the above-mentioned nuclear fuel element even in helium at a pressure of 1 atm or higher. ■ As shown in Figure 1, a small capsule 6 pre-filled with oxygen is placed in the plenum part 4 of the nuclear fuel element, and the capsule 6 is destroyed by impact before being loaded into the reactor, or the nuclear fuel material is The heat generated by this causes the capsule 6 to rupture, and the oxygen partial pressure within the nuclear fuel element to exceed 40°C.

キャプセル6の材質としては衝撃に弱いガラス、あるい
は低融点金属が適している。沸騰水型原子炉ではプレナ
ム部4の温度は約290q○であるから、たとえば融点
が2760である67%鉛一般%錫をキャプセル材料に
使用した場合、キャプセルは溶融して、酸素ガスが核燃
料要素の内部空間を満す。以上の方法によって製造され
た核燃料要素によれば、核燃料要素の内部空間の雰囲気
が孔orr以上の酸素分圧が存在する酸素雰囲気になる
ことによって、放射性腐食性核分裂生成物である沃素に
よるジルコニウム合金被覆管の応力腐食割れおよび水素
硫化を防止することができる。本発明の有効性を明らか
にするために以下に具体的実施例を示す。
A suitable material for the capsule 6 is glass, which is weak against impact, or a metal with a low melting point. In a boiling water reactor, the temperature of the plenum part 4 is approximately 290q○, so if, for example, 67% lead general % tin with a melting point of 2760 is used as the capsule material, the capsule will melt and oxygen gas will be released into the nuclear fuel element. fills the interior space of. According to the nuclear fuel element manufactured by the above method, the atmosphere in the internal space of the nuclear fuel element becomes an oxygen atmosphere in which the oxygen partial pressure is higher than the pore orr, so that the zirconium alloy is made of iodine, which is a radioactive corrosive fission product. Stress corrosion cracking and hydrogen sulfidation of the cladding can be prevented. In order to clarify the effectiveness of the present invention, specific examples will be shown below.

実施例 1 ジルカロィ−2被覆管のヨウ素による応力腐食割れに対
する酸素の影響を調べるために、夏空キャプセル内にヨ
ウ素および酸素とともにジルカロィ‐2被覆管を入れ、
この被覆管内に熱膨張率の大きいAI合金の中子を挿入
して35び0に温度を保ち応力を加えた。
Example 1 In order to investigate the effect of oxygen on stress corrosion cracking caused by iodine in a Zircaloy-2 cladding tube, the Zircaloy-2 cladding tube was placed in a Natsuzora capsule together with iodine and oxygen.
A core of an AI alloy having a high coefficient of thermal expansion was inserted into the cladding tube, and the temperature was maintained at 35°C and 0.00°C to apply stress.

第2図は真空キャプセル内に封入した酸素分圧に対する
被覆管の破断時間の関係を示すが、第2図から酸素分圧
が九om以上で応力腐食割れは起らなくなることが認め
られた。実施例 2ジルカロイー2被覆管の水素化に対
する酸素分圧の影響を調べるために300o0で1気圧
の純水素と酸素とを混合した雰囲気下で反応させた。
FIG. 2 shows the relationship between the rupture time of the cladding tube and the partial pressure of oxygen sealed in the vacuum capsule. From FIG. 2, it was confirmed that stress corrosion cracking does not occur when the partial pressure of oxygen is 9 om or more. Example 2 In order to investigate the influence of oxygen partial pressure on the hydrogenation of a Zircaloy 2 cladding tube, a reaction was carried out at 300°C in an atmosphere of a mixture of pure hydrogen and oxygen at 1 atm.

純水素中では8時間でジルカロィー2中のすべてのZr
がZrH2の水素化物になったのに対し、酸素分圧がh
Prr存在する水素中では8時間反応させても、ジルカ
ロィ−2は全く水素と反応してし、なかつた。以上の実
施例からの核燃料要素内に九on以上の酸素が存在する
ことによって放射性腐食性核分裂生成物である沃素によ
るジルカロィ被覆管の応力腐食割れおよび水素吸収が防
げることが明らかである。
In pure hydrogen, all Zr in Zircaloy 2 is destroyed in 8 hours.
becomes a hydride of ZrH2, while the oxygen partial pressure is h
Zircaloy-2 did not react with hydrogen at all even after 8 hours of reaction in hydrogen containing Prr. It is clear that the presence of more than nine tons of oxygen in the nuclear fuel element from the above examples prevents stress corrosion cracking of the Zircaloy cladding and hydrogen absorption by the radioactively corrosive fission product iodine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る核燃料要素の上部のみを示す縦
断面図、第2図は第1図においてジルカロィー2被覆管
の応力腐食割れが発生する時間に対する酸素分圧の影響
を示す曲線図である。 1・・・・・・燃料べレット、2・・・・・・被覆管、
3・・・・・・端栓、4…・・・プレナム部、5・・・
・・・スプリング、6・・・・・・酸素ガスが封入され
たキャプセル。 第1図 第2図
Fig. 1 is a vertical cross-sectional view showing only the upper part of the nuclear fuel element according to the present invention, and Fig. 2 is a curve diagram showing the influence of oxygen partial pressure on the time for stress corrosion cracking to occur in the Zircaloy 2 cladding tube in Fig. 1. be. 1... fuel pellet, 2... cladding tube,
3...End plug, 4...Plenum part, 5...
...Spring, 6...Capsule filled with oxygen gas. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 ジルコニウム合金被覆管内にウラン酸化物系の焼結
ペレツトを充てんした核燃料要素において、前記核燃料
要素内に酸素分圧で7torr以上の酸素ガスを封入し
てなることを特徴とする核燃料要素。 2 酸素ガスをプレナム部に配置したキヤプセルに封入
してなり、前記キヤプセルが破壊した際に前記プレナム
部内の酸素分圧が7torr以上となるようにしたこと
を特徴とする特許請求の範囲第1項記載の核燃料要素。 3 ジルコニウム合金被覆管の一端部を端栓で封止した
後、核燃料物質を該被覆管内に装置し、その後ヘリウム
ガスを満したチヤンバー内で、前記被覆管の他端部を端
栓で密封する際、ヘリウムガス中に酸素分圧が7tor
r以上存在する条件下で密封することを特徴とする核燃
料要素の製造方法。
[Scope of Claims] 1. A nuclear fuel element in which a zirconium alloy cladding tube is filled with uranium oxide-based sintered pellets, characterized in that oxygen gas having an oxygen partial pressure of 7 torr or more is sealed in the nuclear fuel element. nuclear fuel elements. 2. Claim 1, characterized in that oxygen gas is sealed in a capsule arranged in a plenum part, and when the capsule is destroyed, the oxygen partial pressure in the plenum part becomes 7 torr or more. Nuclear fuel elements listed. 3. After sealing one end of the zirconium alloy cladding tube with an end plug, nuclear fuel material is placed in the cladding tube, and then the other end of the cladding tube is sealed with an end plug in a chamber filled with helium gas. At this time, the partial pressure of oxygen in helium gas is 7 torr.
1. A method for producing a nuclear fuel element, characterized by sealing it under conditions that exist at least r.
JP52054251A 1977-05-13 1977-05-13 Nuclear fuel elements and their manufacturing methods Expired JPS6026991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52054251A JPS6026991B2 (en) 1977-05-13 1977-05-13 Nuclear fuel elements and their manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52054251A JPS6026991B2 (en) 1977-05-13 1977-05-13 Nuclear fuel elements and their manufacturing methods

Publications (2)

Publication Number Publication Date
JPS53140493A JPS53140493A (en) 1978-12-07
JPS6026991B2 true JPS6026991B2 (en) 1985-06-26

Family

ID=12965322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52054251A Expired JPS6026991B2 (en) 1977-05-13 1977-05-13 Nuclear fuel elements and their manufacturing methods

Country Status (1)

Country Link
JP (1) JPS6026991B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609524A (en) * 1983-11-16 1986-09-02 Westinghouse Electric Corp. Nuclear reactor component rods and method of forming the same

Also Published As

Publication number Publication date
JPS53140493A (en) 1978-12-07

Similar Documents

Publication Publication Date Title
US4029545A (en) Nuclear fuel elements having a composite cladding
US4894203A (en) Nuclear fuel element having oxidation resistant cladding
US4200492A (en) Nuclear fuel element
US5517541A (en) Inner liners for fuel cladding having zirconium barriers layers
US5026516A (en) Corrosion resistant cladding for nuclear fuel rods
JP3614885B2 (en) Zircaloy tube with excellent crack growth resistance
US4406012A (en) Nuclear fuel elements having a composite cladding
US3925151A (en) Nuclear fuel element
US5434897A (en) Hydride damage resistant fuel elements
JP2846266B2 (en) Cladding tube
US5475723A (en) Nuclear fuel cladding with hydrogen absorbing inner liner
CA1198231A (en) Zirconium alloy barrier having improved corrosion resistance
JPH07224373A (en) Method of improving corrosion resistance of barrier coating made of zirconium or zirconium alloy
CA1209726A (en) Zirconium alloy barrier having improved corrosion resistance
JPS6026991B2 (en) Nuclear fuel elements and their manufacturing methods
GB1569078A (en) Nuclear fuel element
US5867552A (en) Zirconium-based two-phase alloys for hydride resistant nuclear reactor components
JPS58216988A (en) Buried zirconium layer
JPH0373832B2 (en)
JPH0469592A (en) Nuclear fuel element
CA1209727A (en) Buried zirconium layer
JP2000230993A (en) Fuel clad tube and its production method
Adamson et al. Zirconium alloy barrier having improved corrosion resistance
JPS59151085A (en) Nuclear fuel element
JPS58147676A (en) Nuclear fuel element