JPS58147676A - Nuclear fuel element - Google Patents

Nuclear fuel element

Info

Publication number
JPS58147676A
JPS58147676A JP57028976A JP2897682A JPS58147676A JP S58147676 A JPS58147676 A JP S58147676A JP 57028976 A JP57028976 A JP 57028976A JP 2897682 A JP2897682 A JP 2897682A JP S58147676 A JPS58147676 A JP S58147676A
Authority
JP
Japan
Prior art keywords
gas
nuclear fuel
fuel element
corrosion cracking
nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57028976A
Other languages
Japanese (ja)
Inventor
細川 隆徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP57028976A priority Critical patent/JPS58147676A/en
Publication of JPS58147676A publication Critical patent/JPS58147676A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Glass Compositions (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、原子炉の核燃料要素の改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in nuclear fuel elements for nuclear reactors.

第1図は原子炉に用いられている代表的な核燃料要素の
断面図を示し、1は核燃料要素で、核燃料4I索lは、
二酸化クラ/(UOt)を焼結した燃料ペレット3を内
部に多数積層内蔵し上下趨を上部端栓4、下部端栓5に
より溶接密封された被覆管2により形成されている。核
燃料要素l内には、ギャップガスとして熱伝導率のよφ
−・リウムガスが封入されて&す、また、上部には燃料
ベレット3から放出される核分裂生成ガスによる核燃料
要素1内の圧力上昇を防ぐために、ガスプレナム6が設
けられている。ガスプレナム6内にはコイルばね7が配
置され、核燃料輸送時等に燃料ベレット3が被覆管2内
で上下移#をしないように燃料ベレット3を押え付けて
いる。また、ニッケル、テタ/Iジルコニウム曾金より
なる水分ゲッター8がコイルば1t27内に配置され、
燃料ペレット製造時に吸収し原子炉運転初期に放出され
る水S、水分を吸収するようになってい石。
Figure 1 shows a cross-sectional view of a typical nuclear fuel element used in a nuclear reactor, 1 is a nuclear fuel element, and nuclear fuel 4I cable 1 is:
It is formed of a cladding tube 2 which contains a large number of stacked fuel pellets 3 made of sintered carbon dioxide (UOt) and is welded and sealed at the upper and lower ends with an upper end plug 4 and a lower end plug 5. Inside the nuclear fuel element l, there is a gap gas with a thermal conductivity of φ.
- A gas plenum 6 is provided at the top to prevent pressure rise within the nuclear fuel element 1 due to the fission product gas released from the fuel pellet 3. A coil spring 7 is disposed within the gas plenum 6 and holds down the fuel pellet 3 so that it does not move up and down within the cladding tube 2 during nuclear fuel transportation. Further, a moisture getter 8 made of nickel and teta/I zirconium is placed inside the coil 1t27,
Stones are designed to absorb water S and moisture that are absorbed during the production of fuel pellets and released during the early stages of reactor operation.

原子fOf心に、このような核燃料!!素lを複数本I
IL期的に配置形成した核燃料果合体を多数装着し原子
炉021転を始めると、発熱中の燃料ベレット8は放物
11に近い温度分it−有し、この温度分布の友めに燃
料ベレット3はつづみ状に変形すると共に熱応力のため
に燃料ベレット3内に割れが発生し、燃料ベレット3が
再配置され燃料ペレツ)3と被覆管2との閣のギャップ
が塩められる。
Atomic fOf mind, nuclear fuel like this! ! Multiple element I
When a large number of nuclear fuel assemblies arranged in the IL period are installed and the reactor is started, the heating fuel pellet 8 has a temperature close to that of the paraboloid 11, and the fuel pellet The fuel pellets 3 are deformed into a chain shape and cracks occur in the fuel pellets 3 due to thermal stress, and the fuel pellets 3 are rearranged and the gap between the fuel pellets 3 and the cladding tube 2 is eroded.

核燃料要素lの出力tさらに増加させると、燃料ベレッ
ト30熱膨張によって燃料ベレット3と被覆管2とが接
触し、機械的相互作用が生じる。
When the output t of the nuclear fuel element 1 is further increased, the fuel pellet 3 and the cladding tube 2 come into contact with each other due to the thermal expansion of the fuel pellet 30, and a mechanical interaction occurs.

一方、1HO1&分裂によって21111i1の核分裂
生成物が生じ、その核分裂生成物のうち、約α3個が気
体状OIm分裂生成物で、轡に、腐食性核分裂生g*x
でぬるヨウ素は、核燃料要素lの1本轟り燃111j1
1:100100O/Tにつき、約20〜30mgmg
される。このように燃料ベレット3の燃−と共に蓄積さ
れるls*性核分裂生成ガスであるWt累と前述しえ燃
料ベレット3及び被覆管2のの応力腐食割れ破損が生じ
る。この核燃料1!$1の応力腐食割れgIL損を生じ
させるに必要な曹り素機度は、被覆管表面積に対し、3
 X I O−’ g/cxx”、燃料ベレット3によ
る被覆管2の引張応力は20GMP、で、これ以下のヨ
ウ素一度、あるいは燃料ベレット3による被覆管2の引
張応力では、核燃料要素、lの応力腐食割れ破損は生じ
ないと云われている。しかしながら、一旦、核燃料要素
lに応力腐食割れ破損が生じると、被覆管2の役@りで
ある燃料ベレット3と冷却水の接触及び化学反応を阻止
する機詑や、燃料ベレット3から放出された放射性核分
裂生成物が冷却水中に混入することを阻止するavAが
損なわれ、冷却施設の放射能レベルが上昇する。
On the other hand, fission products of 21111i1 are generated by 1HO1 & fission, and about α3 of the fission products are gaseous OIm fission products, and on the other hand, corrosive fission products g*x
The lukewarm iodine is one of the nuclear fuel elements l roaring 111j1
Approximately 20-30mgmg per 1:100100O/T
be done. In this way, the ls* nuclear fission product gas Wt accumulated together with the combustion of the fuel pellet 3 causes stress corrosion cracking failure of the fuel pellet 3 and the cladding tube 2 described above. This nuclear fuel 1! The degree of sulfuric acid required to cause stress corrosion cracking gIL loss of $1 is 3% relative to the surface area of the cladding tube.
X I O-'g/cxx", the tensile stress of the cladding tube 2 due to the fuel pellet 3 is 20 GMP, and if the iodine is less than this, or the tensile stress of the cladding tube 2 due to the fuel pellet 3 is the stress of the nuclear fuel element, l. It is said that corrosion cracking failure does not occur. However, once stress corrosion cracking failure occurs in the nuclear fuel element 1, contact between the fuel pellet 3, which serves as the cladding tube 2, and the cooling water and chemical reaction are prevented. This impairs the avA, which prevents the radioactive fission products released from the fuel pellet 3 from entering the cooling water, and increases the radioactivity level in the cooling facility.

破損しfe核燃料要素1は、冷却水を放射性核分裂生成
−で汚染するだけでなく、冷却水汚染の拡大を阻止する
ため原子Fを停止させて破損した核燃料要素It含んだ
核燃料集合体を原子炉から取り出す必要があり、原子炉
の稼動率の低下中核燃料県會体O経済的損失t4九らす
ことになる。
The damaged FE nuclear fuel element 1 not only contaminates the cooling water with radioactive fission production, but also stops the atomic F to prevent the spread of cooling water contamination and transfers the nuclear fuel assembly containing the damaged nuclear fuel element It to the reactor. It is necessary to take out the fuel from the reactor, reducing the operating rate of the reactor and reducing the economic loss of the core fuel prefecture.

ζO応力腐食割れによる核燃料要素lの破損を鋳ぐ九め
には、燃料ベレット3と被覆管2との機械的相互作用を
防止するか、ジルカロづ被覆管1を腐食性核分裂生成ガ
スで塾るlつ素より防鰻する必要が奉る。そこで、核燃
料要素1内の冒つ素を除去し、被覆管2を腐食性核分裂
生成ガスより保臆するために、ジルカロイ被覆管2よ抄
ヨク素と化学反応し易いヨウ素ゲッターを核燃料要素l
内Kll填するか、燃料ベレット3と被覆管2との間に
金属層を設け、ヨウ素と被覆管2との間に障IIIを作
る1函が考えられている。しかし、ヨウ素ゲッターでは
、核燃料要素10大幅な出力上昇によってこれまで燃料
ベレット3内に蓄積されてい九核分曇生成ガスが放出さ
れることによる急激な璽り素濃直の変化に対処で叢なφ
、まえ、障壁材及び被覆管内gkり材の6るものは、中
性子吸収断面積が大暑く、中性子経済性を低下させるし
、核燃11)1!素の製造コストを上昇させると云う欠
点がある。 ″ ジルカロイ被覆管1内面の酸化被膜は腐食性核分裂生成
ガスであるヨウ素に対して強固な保躾被膜となp得る。
The ninth step to prevent damage to the nuclear fuel element 1 due to ζO stress corrosion cracking is to prevent mechanical interaction between the fuel pellet 3 and the cladding tube 2, or to expose the Zircal cladding tube 1 to corrosive fission product gas. There is a need to prevent eels more than anything else. Therefore, in order to remove harmful elements in the nuclear fuel element 1 and protect the cladding tube 2 from corrosive fission gases, an iodine getter that easily reacts chemically with iodine in the Zircaloy cladding tube 2 is added to the nuclear fuel element.
A box is being considered in which a metal layer is provided between the fuel pellet 3 and the cladding tube 2 to create a barrier between the iodine and the cladding tube 2. However, with the iodine getter, it is difficult to deal with the sudden change in the concentration of the nuclear fuel due to the release of the nuclear cloud formation gas that has been accumulated in the fuel pellet 3 due to a significant increase in the output of the nuclear fuel element 10. φ
However, the barrier material and the gk material inside the cladding have a large neutron absorption cross section, which reduces neutron economics and reduces nuclear fuel 11) 1! The disadvantage is that it increases the manufacturing cost of the element. The oxide film on the inner surface of the Zircaloy cladding tube 1 can serve as a strong protection film against iodine, which is a corrosive fission product gas.

机在の核燃料要素の被覆管底面′は、あらかじめ製造段
階で数ミクロンの酸化被膜を付着させているが、照射中
における燃料ベレット3と被覆管2との機械的相互作用
により酸化被膜に傷がつけられる可能性がある。核燃料
要素l内のガス雰囲気中VceIR素ガスが存在する場
合に、ジルカロイ被覆管2はヨウ素よりも早く酸化反応
し易いと云われている。そして、核燃料要素1中に最初
から112累を封入することは否開陥53−14049
3号公報で既に矧られており、また、習り累と反応して
酸Xを放出する酸化物を入れ九核燃料費嵩が考えられた
The bottom surface of the cladding tube of existing nuclear fuel elements is coated with an oxide film of several microns in advance during the manufacturing process, but the oxide film is damaged due to mechanical interaction between the fuel pellet 3 and the cladding tube 2 during irradiation. There is a possibility that it will be attached. It is said that when VceIR elementary gas is present in the gas atmosphere within the nuclear fuel element 1, the Zircaloy cladding tube 2 is more likely to undergo an oxidation reaction faster than iodine. And, it is impossible to encapsulate 112 elements in nuclear fuel element 1 from the beginning.53-14049
This was already discussed in Publication No. 3, and it was also considered that the cost of nine nuclear fuels would increase by including an oxide that reacts with the compound and releases acid X.

しかしながら、従来の技術でるる核燃料要素l内に最初
からM素ガスを封入した核燃料要X1では、酸素ガスの
混入によって燃料ベレット3と被覆管2との閣のギャッ
プガスであるへりクムガスの熱伝導率の低下をもたらし
、ひいては燃料ベレット3のm度上昇、熱膨張量の増加
による燃料ぺレット3と被覆管2とOIa械的相互作用
の悪化、燃料ベレツト3からの核分裂生成ガス放出量増
加による環境の層化につながる。そして、原子炉運@O
初期に燃料ベレット3から放出される水素及び水分を吸
収するために核燃料要素l内に配置され九水分ゲッター
に対しても、ニッケル、チタン。
However, in the conventional nuclear fuel element X1 in which the M gas is sealed in the nuclear fuel element l from the beginning, heat conduction of the gap gas between the fuel pellet 3 and the cladding tube 2 due to the mixing of oxygen gas. This leads to a decrease in the fuel pellet 3, resulting in a m degree rise in the fuel pellet 3, a worsening of the mechanical interaction between the fuel pellet 3 and the cladding tube 2 due to an increase in the amount of thermal expansion, and an increase in the amount of fission product gas released from the fuel pellet 3. Leads to environmental stratification. And reactor luck @O
Nickel and titanium also for the nine water getter placed within the nuclear fuel element l to absorb the hydrogen and moisture initially released from the fuel pellet 3.

ジルプニクム合金よりなる水分ゲッター材と酸素とが反
応して水分ゲッター材の水素及び水分の吸収総力の低下
ttたらす、また、核燃料要素内に酸化物を配置しても
、核燃料要素1の大幅な出力増Jlによる燃料ベレット
からの大量のヨウ素放出で急激な櫨境悪化に対応できな
−とiう欠点がある。
The moisture getter material made of the Zirpnicum alloy reacts with oxygen, resulting in a decrease in the total absorption capacity of the moisture getter material for hydrogen and moisture.Also, even if an oxide is placed in the nuclear fuel element, the output of the nuclear fuel element 1 will be significantly reduced. There is a drawback that it is not possible to cope with sudden deterioration of the forest condition due to the release of a large amount of iodine from the fuel pellet due to increased Jl.

本発明は上記の状況に鑑みなされたものであり、被覆管
の応力腐食割れによる破損を防止できて原子炉の安食性
、効果的な運転性を同上できる核燃料要素を提供するこ
とを目的としたものである。
The present invention was made in view of the above situation, and an object of the present invention is to provide a nuclear fuel element that can prevent damage due to stress corrosion cracking of the cladding tube and improve the safety and effective operability of a nuclear reactor. It is something.

本楯Ijliの核燃料要素は、仮積管内に燃料ベレット
が封入密閉されてなp1上上記覆管上端内部のガスブレ
ナム内に、応力腐食割れ抑制ガスが封入されると共に上
記銭燃料袂素内の核分裂生成ガスに基づく上記仮積管内
圧との差圧によって上記応力腐食割れ抑制ガスを放出す
るように形成場れ九カプセルが内蔵されてなるものであ
る。
The nuclear fuel element of this shield Ijli consists of a fuel pellet enclosed and sealed in a temporary stack tube, a stress corrosion cracking suppressing gas sealed in a gas brenum inside the upper end of the cladding tube, and nuclear fission generation in the above-mentioned fuel sleeve. Nine capsules are built in to release the stress corrosion cracking suppressing gas based on the pressure difference between the gas and the internal pressure of the temporary tube.

以下本発明の核燃料要素の一実1fA?Ilを従来と同
部品は同符号で示し同部分の説明は省略しs2図。
The following is one example of the nuclear fuel element of the present invention, 1fA? The same parts as in the conventional Il are indicated by the same reference numerals, and the explanation of the same parts is omitted in Fig. s2.

第3図により説明する。第2図は核燃料要素の縦断面図
、第3図は第2図の酸素封入カプセルの縦−面図である
。核燃料要素1は、内径10.8■、肉厚α86m1全
長4mのジルカロイ−2の被覆’12に外4!に1α5
6mのU Os燃料ベレット3を&6mに渡って装填し
、1気圧のヘリウムガスを封入し死後、その上下両端t
m栓4.5で溶接缶*iれている。プレナム6部内には
、コイルばね7、水分ゲッター8及びI!IX封入カプ
セル9が収納されている。成木封入カプセル9は、第3
図にP細を示すように、外径6■、肉厚α2■、長さ2
0■のジルカロイの管10と、管lOの片側端に形成さ
れた厚さα05−のジルカロイ製の薄膜11と、薄11
[11に1ml!素封入カプセル9及び核燃料要素lと
の圧力差を利用して大金あけるように形成されたベネト
レータ12と、内部に封入された喜気圧の酸素ガス13
とからなっている。薄膜110厚さは腐食性核分裂生成
ガスであるヨウ素のギャップガス中の員直が応力腐食割
れ破損を起こすし哀1/’113 X I G −” 
g/m”より小サイ2.5X10’″”117ex”に
違したときに、核燃料要素1内の被分裂生成ガスによる
内圧と酸素封入カプセル90内圧との差圧により薄j[
11に加わる圧力とベネトレータ−12の鋭い針先によ
って穴があくように形IILされている。
This will be explained with reference to FIG. FIG. 2 is a longitudinal sectional view of the nuclear fuel element, and FIG. 3 is a longitudinal sectional view of the oxygen-filled capsule of FIG. The nuclear fuel element 1 is coated with Zircaloy-2 and has an inner diameter of 10.8 cm, a wall thickness of α86 m, and a total length of 4 m. ni1α5
A 6m long U Os fuel pellet 3 was loaded over a length of 6m, and 1 atm of helium gas was filled in. After death, both the upper and lower ends t
Welded can *i is fitted with m stopper 4.5. Inside the plenum 6 are a coil spring 7, a moisture getter 8 and an I! IX enclosed capsule 9 is stored. Nariki enclosed capsule 9 is the third
As shown in the figure, the outer diameter is 6 cm, the wall thickness is α2 cm, and the length is 2 cm.
0■ Zircaloy tube 10, a Zircaloy thin film 11 with a thickness α05- formed on one end of the tube lO, and a thin 11
[1ml on 11! A ventrator 12 is formed to release a large amount of money by utilizing the pressure difference between the element-sealed capsule 9 and the nuclear fuel element l, and the oxygen gas 13 at positive pressure sealed inside.
It consists of The thickness of the thin film 110 is 1/'113 because stress corrosion cracking occurs due to oxidation in the gap gas of iodine, which is a corrosive fission product gas.
When the size is smaller than 2.5 x 10''' and 117ex'', the thin j [
It is shaped so that a hole is made by the pressure applied to 11 and the sharp needle tip of venetrator 12.

核燃料要素it−原子炉内に装架し原子炉の運転を始め
ると、ギャップガス中の曹つXlllI度は燃料ぺレッ
ト3の温度、即ち、核燃料1!XIの出力及びSatに
よって決まる。ギャップガス中のヨウ素ll&直が応力
腐食割れ破損を起こすしきい1[3X10−g/aII
”以下o z s x 1o −’ g/cm’に達す
るW#O楓燃料賛素10燃焼度は、核燃料要素1が、3
4N)W/amの一定出力で運転された場合、約100
00 MWD/ Two、  で、また、400 W/
cI11の一定出力で運転逼れ友場曾、約3000MW
D/Tυ−である。この時、酸素封入カプセル9の外部
の圧力の万が萬くなり薄膜11がベネトレータ−12に
より破られ、は系封入カプセル9内に封入されていたI
I!素ガス13が核燃料要素l内に放出され、腐食性核
分裂生成ガスであるヨウ素による応力腐食割れ破損を防
止できる安全ガス雰囲気(ガスプレナム6内の[8分圧
は? Torr以上)t−作り出し、核燃料要素1の応
力腐食割れ破損を防止することができる。
When the nuclear fuel element is installed in the reactor and the reactor starts operating, the temperature of the fuel pellet 3, that is, the nuclear fuel 1! Determined by the output of XI and Sat. Threshold 1 of iodine in gap gas causing stress corrosion cracking failure [3X10-g/aII
W#O maple fuel element 10 burnup reaching oz s x 1o -'g/cm'
When operated at a constant output of 4N) W/am, approximately 100
00 MWD/ Two, and also 400 W/
Operating at a constant output of cI11, approximately 3000MW
D/Tυ-. At this time, the pressure outside the oxygen-filled capsule 9 was increased, and the thin film 11 was broken by the ventrator 12, and the I sealed inside the oxygen-filled capsule 9 was
I! The elementary gas 13 is released into the nuclear fuel element 1, creating a safe gas atmosphere ([8 Torr or more in the gas plenum 6]) that can prevent stress corrosion cracking damage due to iodine, which is a corrosive fission product gas, and the nuclear fuel Stress corrosion cracking failure of element 1 can be prevented.

第4図は他の実施例を示し、戚索耐入カプセル9の薄J
[11を破り易くするために、rR業ガス13の圧力よ
り萬い圧力でベローズ14内にヘリウムガスl5t−封
入しておき、核燃料要素1を原子炉内に装架し、原子炉
の運転(冷却水温度:280U)を始めたときにペネト
レータ−12がベローズ14内圧の増〃Ωにより薄膜1
1に力を加えておく臘の酸素封入カプセル9も利用でき
、酸素封入カプセル9の外側の圧力が高くなるとペネト
レータ−12により破られる。また、薄膜11の厚さt
異にし次数−の酸素封入カプセル9を核燃料要素lのガ
スプレナム6に配置し、核燃料要素10内圧の違いに1
って薄膜11が違つ死時点で逐次破れるようにしてもよ
い。
FIG. 4 shows another embodiment, in which the thin J of the penetration-resistant capsule 9 is
[In order to easily break 11, helium gas 15t- is sealed in the bellows 14 at a pressure higher than that of the rR industrial gas 13, the nuclear fuel element 1 is installed in the reactor, and the reactor is operated ( Cooling water temperature: 280U) When the penetrator 12 starts cooling, the thin film 1 due to the increase in the internal pressure of the bellows 14
An oxygen-filled capsule 9 can also be used which applies force to the oxygen-filled capsule 9 and is ruptured by the penetrator 12 when the pressure outside the oxygen-filled capsule 9 increases. Also, the thickness t of the thin film 11
Oxygen-filled capsules 9 of different orders are placed in the gas plenum 6 of the nuclear fuel element 1, and the difference in the internal pressure of the nuclear fuel element 10 is
Therefore, the thin film 11 may be sequentially torn at different points of death.

陶、上記両実施伺とも、腐食性核分裂生成ガスでるゐ璽
り素による核燃料要素の応力腐食割れ破損O抑制に酸素
を使用し九場合について述べたが、酸素以外に、水嵩、
水蒸気、窒素でも同様の作用幼果を有する。tた、これ
ら水素、水蒸気、輩素番るーは緻累の混合ガスt1戚素
の代わ9としてカブ七ルに封入しても、!II!素ガス
と同様に銭燃料畳嵩O応力腐食割れ破損を防止できる。
In both of the above-mentioned investigations, we have discussed cases in which oxygen is used to suppress stress corrosion cracking of nuclear fuel elements due to corrosive fission product gases, such as crystals.
Water vapor and nitrogen have similar effects on young fruits. Even if these hydrogen, water vapor, and base materials are sealed in a carburetor as a substitute for the dense mixed gas t1-related materials,! II! Similar to raw gas, it can prevent stress corrosion cracking and damage in the fuel tank.

以上記述した如く本発明の核燃料要素は、応力腐食割れ
による破損を防止できて原子F(Z)安全性。
As described above, the nuclear fuel element of the present invention can prevent damage due to stress corrosion cracking and has atomic F(Z) safety.

9a釆的な運転性【向上で富る効果t−1゛するもので
るる。
9a Improved drivability [improvement has a significant effect of t-1.

【図面の簡単な説明】[Brief explanation of the drawing]

s1図は従来の核燃料要素の縦#面図、第2図は本発明
の核燃料!!素素置実施例縦断面図、第3図は第2図の
酸素封入カプセルの詳細図、第4図は本発明の核燃料要
素の他の夾厖例の第3図と同部品の1JtX封入カプセ
ルの詳細図である。 1・・・核燃料要素、2・・・41.6I管、3・・・
燃料ベレット、6・・・ガスプレナム、9・・・酸素封
入カプセル、13第1図 舅2 図
Figure s1 is a longitudinal view of a conventional nuclear fuel element, and Figure 2 is the nuclear fuel of the present invention! ! 3 is a detailed view of the oxygen-filled capsule of FIG. 2, and FIG. 4 is a 1JtX-filled capsule of the same part as in FIG. 3 of another example of the nuclear fuel element of the present invention. FIG. 1...Nuclear fuel element, 2...41.6I tube, 3...
Fuel pellet, 6... Gas plenum, 9... Oxygen capsule, 13 Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】 1、被覆管内に燃料ベレットが封入密閉されてなる礁燃
料畳素において、上記仮覆管上端内部のガスプレナム内
に、応力腐食割れ抑制ガスが封入されると共に上記核燃
料要素内の核分裂生成ガスに基づ(上記砿覆管内圧との
差圧によって上記応力腐食割れ抑制ガスを放出するよう
に形成されたカプセルが内蔵されてなるととt−特徴と
する核燃料要素− 2、上記カプセルに、酸素、水素、iil素、水蒸気の
いずれか111以上の応力腐食割れ抑制ガスが封されて
いる特許請求の範囲第1項記載の截燃料要素。 3、上記ガスプレナム内に、上記応力腐食割れ抑制ガス
【放出する際に破られるように形成される薄属O厚さが
それぞれ異なるように形成された上記★プ七ルが複数個
内蔵されている¥fiff#lI求の範8111項記載
の核燃料要素。
[Claims] 1. In a reef fuel element in which fuel pellets are sealed and sealed in a cladding tube, a stress corrosion cracking suppressing gas is sealed in a gas plenum inside the upper end of the temporary cladding tube, and a stress corrosion cracking suppressing gas is sealed in the nuclear fuel element. Based on the nuclear fission product gas (the nuclear fuel element characterized in that it has a built-in capsule formed to release the stress corrosion cracking suppressing gas based on the pressure difference between the internal pressure of the cladding tube and the internal pressure of the nuclear fission product). The cut fuel element according to claim 1, wherein the capsule is sealed with a stress corrosion cracking inhibiting gas of 111 or more of oxygen, hydrogen, III hydrogen, and water vapor. 3. The stress corrosion cracking suppressing gas in the gas plenum Crack-suppressing gas [thin metal O formed so as to break when released nuclear fuel elements.
JP57028976A 1982-02-26 1982-02-26 Nuclear fuel element Pending JPS58147676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57028976A JPS58147676A (en) 1982-02-26 1982-02-26 Nuclear fuel element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57028976A JPS58147676A (en) 1982-02-26 1982-02-26 Nuclear fuel element

Publications (1)

Publication Number Publication Date
JPS58147676A true JPS58147676A (en) 1983-09-02

Family

ID=12263446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57028976A Pending JPS58147676A (en) 1982-02-26 1982-02-26 Nuclear fuel element

Country Status (1)

Country Link
JP (1) JPS58147676A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125588A (en) * 1983-11-16 1985-07-04 ウエスチングハウス エレクトリック コ−ポレ−ション Nuclear reactor member
US7570728B2 (en) 2002-12-20 2009-08-04 Westinghouse Electric Sweden Ab Nuclear fuel rod

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125588A (en) * 1983-11-16 1985-07-04 ウエスチングハウス エレクトリック コ−ポレ−ション Nuclear reactor member
US7570728B2 (en) 2002-12-20 2009-08-04 Westinghouse Electric Sweden Ab Nuclear fuel rod

Similar Documents

Publication Publication Date Title
US3925151A (en) Nuclear fuel element
US4717534A (en) Nuclear fuel cladding containing a burnable absorber
US3969185A (en) Getter for nuclear fuel elements
JPH02115792A (en) Fuel element
JPS60125588A (en) Nuclear reactor member
JPH11202072A (en) Nuclear fuel particle for reactor, nuclear fuel pellet and element
JPH033917B2 (en)
JPS58147676A (en) Nuclear fuel element
EP0161539A1 (en) Hydride blister-resistant zirconium-based nuclear fuel rod cladding
JP4708032B2 (en) Nuclear fuel rod and method of manufacturing nuclear fuel rod
FR2617323A1 (en) NEUTRON ABSORBING ELEMENT MADE IN MODULAR FORM AND MODULAR CAPSULE FOR SUCH AN ELEMENT
JPH0469592A (en) Nuclear fuel element
JPS6260038B2 (en)
JPS5911879B2 (en) nuclear fuel elements
JPS58165085A (en) Nuclear fuel element
JPH09251088A (en) Nuclear fuel element
JPH0540186A (en) Nuclear fuel element
JPS5940195A (en) Nuclear fuel element for fast breeder
JPS58161877A (en) Nuclear fuel element
JPS61140890A (en) Nuclear fuel rod
JPH0694868A (en) Nuclear fuel element
JP2641736B2 (en) Nuclear fuel element
Ross et al. Getter for nuclear fuel elements
JPH07244180A (en) Nuclear fuel element
JPH04236391A (en) Nuclear fuel element