JPS59151085A - Nuclear fuel element - Google Patents

Nuclear fuel element

Info

Publication number
JPS59151085A
JPS59151085A JP58024675A JP2467583A JPS59151085A JP S59151085 A JPS59151085 A JP S59151085A JP 58024675 A JP58024675 A JP 58024675A JP 2467583 A JP2467583 A JP 2467583A JP S59151085 A JPS59151085 A JP S59151085A
Authority
JP
Japan
Prior art keywords
nuclear fuel
cladding tube
zirconium
fuel element
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58024675A
Other languages
Japanese (ja)
Inventor
雅文 中司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP58024675A priority Critical patent/JPS59151085A/en
Publication of JPS59151085A publication Critical patent/JPS59151085A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Glass Compositions (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、核燃料要素、特にジルコニウム合金系被覆管
もしくはジルコニウムライナ管金有する被覆管の応力腐
食割れ現象の防止構造を改良した核燃料要素に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a nuclear fuel element, particularly to a nuclear fuel element having an improved structure for preventing stress corrosion cracking of a zirconium alloy cladding tube or a cladding tube having a zirconium liner pipe metal. be.

〔従来技術〕[Prior art]

通常、核燃料要素は断面図全第1図に示したように、被
覆管l内に複数個の核燃料ベレット2を積層収納すると
共に、被覆管10両両端口を端栓3a  3bによ゛り
密封したものとなっている。核燃料ベレット2は、核分
裂性の酸化物燃料粉末を例えば長さと直径の比が約1か
らなる円柱状ペレットに成型焼結したものである。尚、
第1図中の4は被覆管1内にガス溜め用ブレナム5を形
成する機能と、核燃料ベレット2を安定に支持する機能
と全果すスプリングである。
Normally, a nuclear fuel element has a plurality of nuclear fuel pellets 2 stacked and housed in a cladding tube 1, as shown in the cross-sectional view of FIG. 1, and both ends of the cladding tube 10 are sealed with end plugs 3a and 3b. It has become. The nuclear fuel pellet 2 is formed by molding and sintering fissile oxide fuel powder into a cylindrical pellet having a length to diameter ratio of about 1, for example. still,
Reference numeral 4 in FIG. 1 denotes a spring that serves both the function of forming a gas reservoir brenum 5 within the cladding tube 1 and the function of stably supporting the nuclear fuel pellet 2.

ところで、上記のように構成された核燃料要素における
被覆管1には、核燃料ベレット2と冷却材との接触及び
化学反応を・阻止する機能と、燃料から放出された放射
性核分裂生成物が冷却材中に混入するの全阻止する機能
とが要求される。従って、このような機能を満足しない
被覆管、即ち、被覆管が破損したような場合には、冷却
系プラントの放射能レベルが上昇し、安全全確保するた
めに原子炉の運転を停止させなければならない事態とな
る。
Incidentally, the cladding tube 1 in the nuclear fuel element configured as described above has the function of preventing contact and chemical reaction between the nuclear fuel pellet 2 and the coolant, and the function of preventing radioactive fission products released from the fuel from entering the coolant. A function is required to completely prevent the contamination of the product. Therefore, if the cladding tube does not satisfy these functions, that is, if the cladding tube is damaged, the radioactivity level in the cooling system plant will increase, and the reactor operation will have to be stopped to ensure total safety. This is an unavoidable situation.

水冷型原子炉に用いられる核燃料要素の被覆管♂ は、一般にジルコニウム及びその合金系で形成されてい
る。ジルコニウム及びその合金は、中性子吸収断面積が
小さく、かつ、約400C以下の温度、で強靭で延性が
良く、シかも、冷却材として用いられる水蒸気とも反応
しない安定した特性を有している。しかしながら、現在
までの運転経験によると、ジルコニウム及びその合金で
形成された被覆管にあっても、中性子照射?受けること
による材料強度の低下及び核分裂生成物との化学反応に
よる腐食などの相互作用に基づく脆性割れが発生−j−
る。
The cladding tube ♂ of nuclear fuel elements used in water-cooled nuclear reactors is generally made of zirconium and its alloys. Zirconium and its alloys have a small neutron absorption cross section, are strong and ductile at temperatures below about 400C, and have stable properties that do not react with heat or water vapor used as a coolant. However, according to operating experience to date, even with cladding made of zirconium and its alloys, neutron irradiation is not possible. -j-
Ru.

このような望ましくない現象は次のようにして発生する
ものと考えられる。即ち、核燃料ペレット2で発生した
熱を被覆管1の外表面に効率よく伝えるには、被覆管1
の内側面と核燃料ペレット2との間に形成されるギャッ
プ全数十ミクロン以下に設定する必要がある。一方。運
転時には、核燃料ペレット2が発熱するので核燃料ペレ
ット2自身が熱応力で割れ、その破面の喰い違いや、さ
らには燃焼と共に核燃料ペレット2内に核分裂生成物が
蓄積して起こる体積膨張などが原因して第2図に示すよ
うに被覆管1が核燃料ペレット2によって押し拡げられ
る応力を受ける。被覆管1が受ける歪の周方向の平均値
はさほど大きくないが、核燃料ペレット2に生じたクラ
ック6近傍の壁には局部的に歪が集中し、この歪は降伏
応力以上に達する。更に、核分裂に伴なって核燃料ペレ
ット2からヨウ素及びヨウ素化合物、セシウム及びセシ
ウム化合物などの腐食性ガスが発生し、この腐食性ガス
は被覆管1内の自由空間、即ち、クラック6などの、特
に被覆管1の歪が集中している部分近傍に腐食性ガスが
集り易い。
It is thought that such an undesirable phenomenon occurs as follows. That is, in order to efficiently transfer the heat generated by the nuclear fuel pellets 2 to the outer surface of the cladding tube 1,
The total gap formed between the inner surface of the nuclear fuel pellet 2 and the nuclear fuel pellet 2 must be set to several tens of microns or less. on the other hand. During operation, the nuclear fuel pellet 2 generates heat, which causes the nuclear fuel pellet 2 itself to crack due to thermal stress, resulting in discrepancies in the fracture surfaces and volumetric expansion caused by the accumulation of fission products within the nuclear fuel pellet 2 as it burns. Then, as shown in FIG. 2, the cladding tube 1 is subjected to the stress of being expanded by the nuclear fuel pellets 2. Although the average value of the strain that the cladding tube 1 receives in the circumferential direction is not so large, the strain is locally concentrated on the wall near the crack 6 that has occurred in the nuclear fuel pellet 2, and this strain reaches more than the yield stress. Furthermore, corrosive gases such as iodine and iodine compounds, cesium and cesium compounds are generated from the nuclear fuel pellets 2 as a result of nuclear fission, and these corrosive gases are distributed especially in the free space within the cladding tube 1, such as the cracks 6. Corrosive gas tends to collect near the portion of the cladding tube 1 where strain is concentrated.

一般に、腐食性ガスの雰囲気中で応力(特に降伏応力以
上)が作用すると、材料の延性が低減し、応力腐食割れ
と呼称される脆性破壊現象が発生する。応力腐食割れは
、温度、応力、腐食性ガスの濃度、浴存酸素、合金の組
成、熱処理、加工度などによっても左右されてその発生
メカニズムは単一ではなく明らかでない。
Generally, when stress (particularly greater than yield stress) is applied in a corrosive gas atmosphere, the ductility of the material decreases and a brittle fracture phenomenon called stress corrosion cracking occurs. Stress corrosion cracking is influenced by temperature, stress, concentration of corrosive gas, oxygen present in the bath, alloy composition, heat treatment, degree of processing, etc., and the mechanism by which it occurs is not clear.

〔発明の目的〕[Purpose of the invention]

本発明は上記の状況に鑑みなされたものであp1ジルコ
ニウム系被覆管もしく1″はジルコニウムライく破損確
率の低い核燃料要素を提供すること全目的としたもので
ある。
The present invention has been made in view of the above situation, and the entire purpose of the present invention is to provide a nuclear fuel element in which the p1 zirconium cladding tube or 1'' is zirconium-like and has a low probability of failure.

〔発明の幇要〕[Summary of the invention]

本発明の核燃料要素は、ジルコニウム合金系被覆管もし
くはジルコニウムライナ管を有する被覆管内に核燃料ペ
レットが収納されると共に、上記被覆管の両端開口全密
封してなり、上記被覆管内に、ジルコニウムよシも熱力
学的に安定なヨウ化物全形成する元素全挿入配置したも
のである。本発明者は上記目的全達成するために応力腐
食割れの発生メカニズムによる応力腐食割れの防止手段
全見出したものであり、応力腐食割れの発生メカニズム
は次の過程によって生じるものと思料される。
In the nuclear fuel element of the present invention, nuclear fuel pellets are housed in a zirconium alloy cladding tube or a cladding tube having a zirconium liner tube, and the openings at both ends of the cladding tube are completely sealed. All elements are intercalated to form a thermodynamically stable iodide. In order to achieve all of the above objects, the present inventors have discovered all means for preventing stress corrosion cracking based on the stress corrosion cracking mechanism, and it is believed that the stress corrosion cracking mechanism is caused by the following process.

岐ゐつ 被覆管内面の結晶粒が特定の方向全肉いノシ想界は粒界
析出物と核分裂生成物であるヨウ素(■2)との反応が
活発である。いわゆるアクチブバスとなり、こめ付近で
歪集中を生じると底面酸化膜が破壊し、この破壊部分が
ピントとなって割れの核が発生する。この初期クラック
先端では工2の表面吸着によって界面エネルギーが低下
し、クラックが伝播することが推測される。そこで、何
らかの手段でこの結晶粒界析出物とヨウ素との反応速度
全低下させるかまたは停止できれば初期クラックの核が
発生しないことになシ応力腐食割れが発生しないことに
なる。
In the imaginary boundary where the crystal grains on the inner surface of the cladding tube are completely oriented in a specific direction, the reaction between the grain boundary precipitates and the fission product iodine (■2) is active. This becomes a so-called active bus, and when strain concentration occurs near the temple, the bottom oxide film is destroyed, and this destroyed portion becomes a focal point, generating a crack nucleus. It is presumed that at the tip of this initial crack, the interfacial energy decreases due to surface adsorption of workpiece 2, and the crack propagates. Therefore, if the reaction rate between the grain boundary precipitates and iodine can be completely reduced or stopped by some means, the initial crack nucleus will not be generated and stress corrosion cracking will not occur.

被覆管内の各元素が350Cで、1モルのヨウ素と反応
するときのギブスの生成自由エネルギー変化音、横軸に
被覆管内の合金元素及び不純物元素をとり、縦軸にヨウ
化物の生成自由エネルギー変化をとった第3図に示す。
The Gibbs formation free energy change sound when each element in the cladding reacts with 1 mole of iodine at 350C, the horizontal axis shows the alloying elements and impurity elements in the cladding, and the vertical axis shows the change in the formation free energy of iodide. It is shown in Figure 3.

第3図において、ヨウ素と7.rとは反応し易いが、A
位置に示すMg、B位置に示すCaは7.rよりさらに
ヨウ素と反応し易く、このため、核分裂によって核燃料
ベレツトから発生したヨウ素は、被覆管全構成している
ジルコニウムよシ、被覆管内に挿入配置したカルシウム
、マグネシウムと反応することになり、この結果、被覆
管に作用するヨウ素全除去した核燃料要素を得ることが
できる。
In Figure 3, iodine and 7. It easily reacts with r, but A
Mg shown at position and Ca shown at position B are 7. It reacts even more easily with iodine than r, and for this reason, the iodine generated from the nuclear fuel beret through nuclear fission will react with the zirconium that makes up the entire cladding tube, as well as with the calcium and magnesium inserted into the cladding tube. As a result, a nuclear fuel element can be obtained in which all iodine acting on the cladding tube has been removed.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の核燃料要素を、一実施例を用い、従来と同
部品は同符号音用い同部分の構造の説明は省略し第4図
によシ説明する。第4図において、内径約10.8++
u++、外径約12.5 rrnn、長さ約4mのジル
カロイ−2被覆管1に端栓3b’に溶接し、内部に外径
約10.6mm、高さ約10間の二酸化ウランの核燃料
ペレット2を挿入する。そして、厚さ約1陶の高純度マ
グネシウム板からり1tu約108のマグネシウム円板
7を打ち抜き加工によって形成し、上下の核燃料ペレッ
ト2のそれぞれの相互間に挿入する。
Hereinafter, the nuclear fuel element of the present invention will be explained using one embodiment, using the same symbols and symbols for the same parts as the conventional one, omitting the explanation of the structure of the same parts, and referring to FIG. In Figure 4, the inner diameter is approximately 10.8++
Zircaloy-2 cladding tube 1 with an outer diameter of about 12.5 rrnn and a length of about 4 m is welded to an end plug 3b', and uranium dioxide nuclear fuel pellets with an outer diameter of about 10.6 mm and a height of about 10 mm are inside. Insert 2. Then, a magnesium disk 7 with a thickness of about 1 tu and about 108 is formed by punching from a high-purity magnesium plate with a thickness of about 1 porcelain, and inserted between the upper and lower nuclear fuel pellets 2, respectively.

このようにジルコニウムのヨウ化物よシ熱力学的に安定
なヨウ化物を形成する元素全被覆管内に含んだ核燃料要
素の特性を調べた。その方法として被覆管内表面上にり
、ボン状のマグネシウム1Mi人配置し、かつ、被覆管
内に中をの核燃料ベレツIt挿入すると共に、核燃料ベ
レットの中空部に円柱状の純アルミニウム棒を充填し、
W期よショウ素a度3 m g71c c 、被覆管温
度350Cの雰囲気下でアルミニウム棒全長手方向に圧
縮し、中空の核燃料ベレット全弁して被覆管に円周方向
応力を刀lえた。そして、このときに得られた被覆管内
表面上のクラックの分布分水めた。一方、比較のために
マグネシウムのリボン紮挿入しない従来の被覆管全用意
し同様の実験?行った結果、横軸にクラックの長さをと
り縦軸にクラックの発生頻度を取った@5図に示すよう
に、従来の燃料棒要素の曲線Cは、マグネシウムを入れ
た被覆管の曲線りよシフラックの発生頻度が高いことが
認められた。
In this way, we investigated the properties of nuclear fuel elements contained within the cladding tube, which form an iodide that is thermodynamically more stable than zirconium iodide. The method is to place 1Mi of magnesium in a bong shape on the inner surface of the cladding tube, insert a nuclear fuel pellet inside the cladding tube, and fill the hollow part of the nuclear fuel pellet with a cylindrical pure aluminum rod.
During the W period, the aluminum rod was compressed in the entire longitudinal direction in an atmosphere with a phosphorus a degree of 3 m g71c c and a cladding tube temperature of 350C, and a hollow nuclear fuel pellet was fully valved to apply stress in the circumferential direction to the cladding tube. Then, the distribution of cracks on the inner surface of the cladding tube obtained at this time was determined. On the other hand, for comparison, a similar experiment was conducted in which a conventional cladding tube was prepared without inserting a magnesium ribbon ligature. As a result, as shown in Figure 5, where the horizontal axis represents the length of cracks and the vertical axis represents the frequency of crack occurrence, the curve C of the conventional fuel rod element is significantly lower than the curve of the cladding tube containing magnesium. A high incidence of siffrac was observed.

この第5図の結果から明らかなように、本実施例の核燃
料要素にあっては、応力腐食割れ試験においてクラック
の発生頻度が低く、即ち、マグネシウム全被覆管内に挿
入したことにより応力腐食割れ防止に有効に作用してい
ることが明らかである。
As is clear from the results shown in FIG. 5, in the nuclear fuel element of this example, the frequency of cracking in the stress corrosion cracking test was low. It is clear that it is working effectively.

このように本実施例の核燃料要素は、被覆管内に、ジル
コニウムよりも熱力学的に安定なヨウ化物全形成する元
素を挿入配置したことにより、ジルコニウム系被覆管が
腐食性ガス中において応力を加えられた場合に、腐食割
れを起こす確率が大幅に低く破損確率を低くして信−頼
性?大幅に向上できる。
In this way, in the nuclear fuel element of this example, an element that forms all iodides, which is thermodynamically more stable than zirconium, is inserted into the cladding tube, so that the zirconium-based cladding tube is not subjected to stress in corrosive gas. The probability of corrosion cracking occurring is significantly lower, reducing the probability of damage and improving reliability. It can be significantly improved.

上記実施例では、シルカ9イー2製の被覆管の場合につ
いて述べたが、ジルカロイ−4などの他のジルコニウム
合金系により形成された被覆管及びジルコニウムライナ
分有する被覆管に実施しても作用効果は同じである。ま
た、被覆管内に挿入する元素をマグネシウムの場合につ
いて述べたが、ジルコニウムよシもヨウ素と反応し易い
カルシウム、ナトリウム、カリウムなどの他の元素でも
同様の作用効果全有する。
In the above example, the case of a cladding tube made of Silca 9E2 was described, but it can also be applied to a cladding tube formed of other zirconium alloy systems such as Zircaloy-4, and a cladding tube with a zirconium liner. are the same. Furthermore, although we have described the case where magnesium is used as the element inserted into the cladding tube, the same effects can be obtained even with zirconium or other elements that easily react with iodine, such as calcium, sodium, and potassium.

〔発明の効果〕〔Effect of the invention〕

以上記述した如く本発明の核燃料要素は、ジルコニウム
合金系被覆管もしくはジルコニウムライナ管を有する被
覆管の腐食ガス中における応力を加えられた場合の応力
腐食割れを起こす確率を大幅に低減し破損確率を減少し
信頼性を大幅に向上できる効果を有するものである。
As described above, the nuclear fuel element of the present invention significantly reduces the probability of stress corrosion cracking and reduces the probability of failure when stress is applied to a zirconium alloy cladding tube or a cladding tube having a zirconium liner tube in corrosive gas. This has the effect of significantly improving reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の核燃料要素の要部縦断面図、第2図は第
1図の核燃料要素に起り易い問題点説明図、第3図は被
覆管材料内部の種々の元素とヨウ素との反応性説明図、
第4図は本発明の核燃料要素の実施例の要部断面図、第
5図は第4図の核燃料要素と従来の核燃料要素とのクラ
ック発生頻度比較説明図である。 1・・・被覆管、2・・・核燃料ベレン)、3a、3b
・・・第 1 図 第 3 図 第 4−図 第 S 図
Figure 1 is a longitudinal sectional view of the main part of a conventional nuclear fuel element, Figure 2 is an explanatory diagram of problems that tend to occur in the nuclear fuel element of Figure 1, and Figure 3 is a diagram showing the reactions between various elements inside the cladding material and iodine. Gender illustration,
FIG. 4 is a sectional view of a main part of an embodiment of the nuclear fuel element of the present invention, and FIG. 5 is an explanatory diagram comparing the frequency of crack occurrence between the nuclear fuel element of FIG. 4 and a conventional nuclear fuel element. 1... Cladding tube, 2... Nuclear fuel belen), 3a, 3b
...Figure 1 Figure 3 Figure 4-Figure S

Claims (1)

【特許請求の範囲】 1、ジルコニウム合金系被覆管もしくはジルコニウムラ
イナ管を有する被覆管内に核燃料ペレットが収納される
と共に上記被覆管の両端開口を密封してなる核燃料要素
において、上記被覆管内に、熱力学的にジルコニウムよ
シも安定なヨウ化物全形成する元素を挿入配置したこと
を特徴とする核燃料要素。 2、上記元素が、マグネシウムから形成されている特許
請求の範囲第1項記載の核燃料要素。 3、上記元素が、カルシウムから形成されている特許請
求の範囲第1項記載の核燃料要素。
[Claims] 1. A nuclear fuel element in which nuclear fuel pellets are housed in a zirconium alloy cladding tube or a cladding tube having a zirconium liner tube, and both openings of the cladding tube are sealed, wherein heat is A nuclear fuel element characterized by the insertion of an element that forms an iodide that is mechanically more stable than zirconium. 2. The nuclear fuel element according to claim 1, wherein the element is formed from magnesium. 3. The nuclear fuel element according to claim 1, wherein said element is formed from calcium.
JP58024675A 1983-02-18 1983-02-18 Nuclear fuel element Pending JPS59151085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024675A JPS59151085A (en) 1983-02-18 1983-02-18 Nuclear fuel element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024675A JPS59151085A (en) 1983-02-18 1983-02-18 Nuclear fuel element

Publications (1)

Publication Number Publication Date
JPS59151085A true JPS59151085A (en) 1984-08-29

Family

ID=12144708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024675A Pending JPS59151085A (en) 1983-02-18 1983-02-18 Nuclear fuel element

Country Status (1)

Country Link
JP (1) JPS59151085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997785A1 (en) * 2012-11-08 2014-05-09 Commissariat Energie Atomique COMBUSTIBLE ELEMENT COMPRISING AN ALKALINO-EARTH CORROSION MATERIAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997785A1 (en) * 2012-11-08 2014-05-09 Commissariat Energie Atomique COMBUSTIBLE ELEMENT COMPRISING AN ALKALINO-EARTH CORROSION MATERIAL
WO2014072454A1 (en) * 2012-11-08 2014-05-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Fuel element including an anticorrosive alkaline-earth material

Similar Documents

Publication Publication Date Title
US4029545A (en) Nuclear fuel elements having a composite cladding
US4894203A (en) Nuclear fuel element having oxidation resistant cladding
US4200492A (en) Nuclear fuel element
US4022662A (en) Nuclear fuel element having a metal liner and a diffusion barrier
US3925151A (en) Nuclear fuel element
JP3614885B2 (en) Zircaloy tube with excellent crack growth resistance
US5434897A (en) Hydride damage resistant fuel elements
US4406012A (en) Nuclear fuel elements having a composite cladding
JP2846266B2 (en) Cladding tube
US3969185A (en) Getter for nuclear fuel elements
US5475723A (en) Nuclear fuel cladding with hydrogen absorbing inner liner
JPH0843568A (en) Coating withstanding nodular corrosion and manufacture of coating
JPH033917B2 (en)
JPS59151085A (en) Nuclear fuel element
GB1569078A (en) Nuclear fuel element
JPS5958389A (en) Nuclear fuel element
JPS639187B2 (en)
JPH0137463B2 (en)
JP2009145251A (en) Fuel rod and its manufacturing method
JPH0469592A (en) Nuclear fuel element
JPS58147677A (en) Nuclear fuel element
JPS6031089A (en) Nuclear fuel composite coated pipe and manufacture thereof
JPS61201191A (en) Nuclear fuel element
JPS60183583A (en) Nuclear fuel element
JPS6026991B2 (en) Nuclear fuel elements and their manufacturing methods