JPS6026817A - Bearing device - Google Patents

Bearing device

Info

Publication number
JPS6026817A
JPS6026817A JP58136472A JP13647283A JPS6026817A JP S6026817 A JPS6026817 A JP S6026817A JP 58136472 A JP58136472 A JP 58136472A JP 13647283 A JP13647283 A JP 13647283A JP S6026817 A JPS6026817 A JP S6026817A
Authority
JP
Japan
Prior art keywords
bearing
shaft
case
revolutional
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58136472A
Other languages
Japanese (ja)
Inventor
Junzo Hasegawa
長谷川 準三
Susumu Kawabata
川端 行
Senji Mimura
三村 宣治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP58136472A priority Critical patent/JPS6026817A/en
Publication of JPS6026817A publication Critical patent/JPS6026817A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • F16C39/063Permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2340/00Apparatus for treating textiles
    • F16C2340/18Apparatus for spinning or twisting

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To turn a revolutional shaft smoothly at a high speed and reduce power los or the like by bearing the revolutional shaft by means of an angular contact rolling bearing in both the radial and axial directions and additionally bearing the shaft by means of a magnetic bearing in the counter-axial direction. CONSTITUTION:Inside a case 1 a driving shaft 2 is disposed at the rear part thereof and supported by a ball bearing 3, A pulley 4 which is attached around the middle part of the driving shaft 2 is inserted in a window 5 formed on the peripheral wall of the case 1. The driving shaft 2 may be ready to be turned by winding a belt 6 on the pulley 4 exposed from the window 5. Inside the case 1 a revolutional shaft 7 is also disposed at the front part thereof in such a way that the front end of the shaft 7 passes through the end plate 8 disposed at the head of the case 1 and the middle part thereof is supported by an angular ball bearing 9 which is engaged inside the case 1. Permanent magnets 28 and 29 are embedded in the rear end face of the revolutional shaft 7 and the front end face of the driving shaft 2, respectively, whereby bearing the revolutional shaft 7 in the backward axial direction and applying a forward axial preload on said ball bearing 9.

Description

【発明の詳細な説明】 本発明は、高速回転する回転軸、例えばロータ式オープ
ンエンド精紡機における紡糸ロータの回転軸、の軸受装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bearing device for a rotating shaft that rotates at high speed, for example, the rotating shaft of a spinning rotor in a rotor-type open-end spinning machine.

従来、ロータ式オープンエンド精紡機においては、紡糸
ロータの回転軸を遊星摩擦軍機!7+¥の増速1:!1
 if;を介して駆動軸に接続し、駆動軸をベルト伝動
機稠を介してモータに連結し、また、紡糸ロータの回噌
軸を単列深みぞ玉軸受に工って径方向と軸方向に軸受し
ている。ところが、単列深みぞ玉軸受は、その内部すき
まのために、回転軸の径方向と軸方向位置分−足に保持
することができないので、大きな振動と騒音が発生して
回転軸が円滑に高速回転しない。史に、単列深みぞ玉軸
受は、保持器がその組付上仙造や材質に多くの制限があ
って強度が低いので、回転軸が毎分7万回R匹以上の高
速回転をすると、保持器が遠心力によって破損する。
Conventionally, in rotor-type open-end spinning machines, the rotating shaft of the spinning rotor is a planetary friction machine! 7+¥ speed increase 1:! 1
If; the drive shaft is connected to the motor through the belt transmission center; bearing. However, single-row deep groove ball bearings cannot be held in the radial and axial positions of the rotating shaft due to their internal clearances, which causes large vibrations and noise and prevents the rotating shaft from moving smoothly. Does not rotate at high speed. Historically, single-row deep-groove ball bearings have low strength due to many restrictions on the construction and material of the retainer, so when the rotating shaft rotates at high speeds of 70,000 rotations per minute or more, The cage is damaged by centrifugal force.

上記の欠点をなくすには、/イ囚の単列深みぞ玉軸受に
代えて2個のアンギュラ玉軸受を用いることが考えられ
る。アンギュラ玉軸受においては、保持器の構造や材質
に制限が少lく、毎分りh回1tjr以上の高速回転に
おいても破損しない保持)(;りがある。また、2個の
アンギュラ玉軸受に適当な予圧を加えれば、回転軸の径
方向と軸方向位置を−1、jj Gこ保持することかで
きるので、回l倣軸を円滑に高速回転させることができ
る。ところが、玉軸受を2個用いるので、軸受におけ/
j’+ J■4qによる発熱や動力損失が太さい。
In order to eliminate the above-mentioned drawbacks, it is conceivable to use two angular contact ball bearings in place of the single-row deep-groove ball bearing of A. In angular contact ball bearings, there are few restrictions on the structure and material of the cage, and there are some limitations that prevent damage even when the cage rotates at a high speed of 1 tjr or more. If a certain preload is applied, the radial and axial positions of the rotating shaft can be maintained at -1,jj G, so the copying shaft can be rotated smoothly at high speed.However, if two ball bearings are used, Since it is used in bearings/
The heat generation and power loss due to j'+ J■4q are large.

本弁明の目的は、上記の工9な状況からして、回転−を
円滑に高速回転させることかでさ、しかも、摩擦による
発熱や動力損失が少ない軸受装置を提供することである
In view of the above-mentioned difficult circumstances, the purpose of the present invention is to provide a bearing device that rotates smoothly at high speed and that generates less heat and power loss due to friction.

本発明者は、上記の7個の単列深みぞ玉軸受を用いた装
置より利点の多い上記の2個のアンギュラ玉軸受を用い
た装置の欠点をなくすことについて考察したとCろ、そ
の欠点はころが9摩擦のある軸受を2個用いることに原
因があるので、先ず、アンギュラコンタクトころが−り
軸受を7個に減らし、これによって回転軸を径方向と一
方の軸方向に軸受することを考えた。すると、次に、必
要なCとは、ころがり摩擦を用いずに、回転軸を他方の
軸方向に軸受することと、アンギュラコンタクトころが
り軸受に一方の軸方向の予圧を加えるCとであるが、こ
れらの2要件は、結局、ころがり摩擦を用いずに、回転
軸に一方の軸方向にカ企加える/要件に集約芒れ、この
要件はスラスト磁気軸受を用いることによって達成する
ことができることに気付いた。
The present inventor has considered eliminating the disadvantages of the device using the above two angular contact ball bearings, which has many advantages over the device using the above seven single-row deep groove ball bearings. This is caused by the use of two bearings with 9 friction rollers, so first we reduced the number of angular contact roller bearings to 7, thereby bearing the rotating shaft in the radial direction and one axial direction. I thought about it. Then, the required C is to bear the rotating shaft in the other axial direction without using rolling friction, and to apply a preload in one axial direction to the angular contact rolling bearing. These two requirements eventually boiled down to the requirement of adding force to the rotating shaft in one axial direction without using rolling friction, and it was realized that this requirement could be achieved by using a thrust magnetic bearing. Ta.

即ち、本発明は、回転軸を、アンギュラコンタクトころ
がり軸受によって径方向と一方の軸方向に軸受し、また
、磁気軸受によって、他方の軸方向に側受すると共にア
ンギュラコンタクトころがり師1受に一方の軸方向の予
圧を加えたことを特徴とする軸受装置である。
That is, in the present invention, the rotating shaft is supported in the radial direction and in one axial direction by an angular contact rolling bearing, and is laterally supported in the other axial direction by a magnetic bearing, and one side is supported in the angular contact rolling bearing 1. This is a bearing device characterized by applying preload in the axial direction.

本発明の軸受装置にfは、アンギュラコンタクトころが
9軸受に予圧を加えるので、回転軸の径方向と軸方向位
置を一定に保持することかでさ、回転軸を大きな振動や
騒音を発生させずに円滑に611速回転させることかで
さ、しかも、ころかり摩擦のある軸受を7個しか用いな
いので、軸受における摩擦による発熱や動力損失が少な
い。
In the bearing device of the present invention, since the angular contact rollers apply preload to the 9 bearings, the radial and axial positions of the rotating shaft must be kept constant, and the rotating shaft may generate large vibrations and noise. In addition, since only seven bearings with rolling friction are used, there is less heat generation and power loss due to friction in the bearings.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

第1実施例(第1図乃至第5図参照) 本例の軸受装置dを備えたローフ式オープンエツト精紡
機の駆動装置1.1は、第7図に示すよりに、円筒状の
ケース(1)の後部内に駆動軸(2)を、その両%r?
H部をケース(1)内に嵌着した玉軸受(刃、(30こ
支承して、同職芯に配置すると共に径方向と軸方向に軸
受し、駆動軸(2)の中央部Gこ嵌着したプーリ(4)
をケース(1)の周壁に貫設しfc窓(5)に臨ませ、
窓(5)から露出したプーリ(4)に図示しないモータ
と連結したベルト(6)を掛渡して、駆動軸(2)を回
転駆動するように装置している。また、ケース(1)の
前部内には、第1図に示すように、回転軸(7)を、そ
の先端部をケース(1)の先端の端板(8)に貫通する
と共に中央部をケース内に嵌着したアンギュラ玉軸受(
9)に支承して、駆動軸(2)の前側位置に同軸芯に配
置すると共に、アンギュラ玉軸受(9)によって径方向
と前向きの軸方向に軸受している。史に、第1図と第2
は1に示すように、回転軸(7)の基’AHA部の外周
面に周溝0Qを形成し、駆動軸(2)の先端に連設した
支持環0υを回転軸の周溝(10の外回りに配置し、駆
動軸の支持環(1υの外回り位置のケース(1)内に固
定環0ηを嵌着し、駆動軸の支持環aυに等間隔位置に
軸芯方向に沿って設けた凹部(13にそれぞれ円筒状転
子の遊星摩擦車0<を摺嵌し、支持環(1υの肉厚より
大径の各遊星摩擦車q勾をそれぞれ固定坂燵4の内周面
と回転軸の周溝四間に適宜の圧力を加えて嵌込み、駆動
IIIIII(2)の(fl!1転により各遊星摩擦車
α4が公転すると共に自転して回転軸(7)が増速回賦
する遊星摩擦軍機(イなの増速機]14を構成している
。また、第1図と第3図に示すように、対向した回転軸
(7)の末端面と駆動軸(2)の先端面にそれぞれ円環
状の永久磁石(4)、に)を同軸芯にii!i設し、回
転軸(7)に固定した永久磁石(至)の14出後端面と
駆動軸(2)に固定した永久(磁石(慣の露出前端面全
同極にして透間′?r:設けて対面し、互いに反発する
肉水久磁石(イ場、cAによって磁気軸受を栴成し、こ
の磁気軸受(至)、 (allによって回転lll1l
I(7)を後向きの軸方向に軸受すると共にアンギュラ
玉軸受(9)に1iil向きの軸方向の予圧を加えてい
る。同軸芯に配列した駆動軸+21と回転IIIIIl
(7)には、第1図と第2図に示すように、その軸芯位
置に給油路(LF−を設け、給油路(19からt!−I
I回転軸周溝叫に達する複数本の注油路叫と、給油路(
1「−から回転軸のアンギュラ玉軸受(9)の内輪内周
に達する複数本の注油路αηをそれぞれ半径方向に沿っ
て設け、図示しない給油源から潤滑油を駆動1IIli
I(力の基W:M [111に開口した給油fi’6 
Qiに供給し、史に、注rlll路1.lIすを経て増
速機橘叫、(1η、04.α4.住弔に、また、注油路
曹を経て回転軸のアンギュラ玉軸受(9)にそれぞれ供
給し、増速機構α1 、 ulJ 、 (I四、0尋、
U弔とアンギュラ玉軸受(9)からそれぞれ流出する潤
滑油をケース(1)の周壁に貫設した排油孔明を経て給
油源に戻すように装置している。ケース(1)の先端の
端板(8)から突出した回転1i1111 (7)の先
端には、第1図に示す工9に、略カップ形状の紡糸ロー
タ(坩を、その閉か一基端を嵌着して、同軸芯に取付け
、紡糸ロータu9の最大内径部の基端側位置の周壁に複
数個の排気孔に)を等間隔に貫設し、紡糸ロータo9の
回転により紡糸ロータ(lCjV3をその先端の開口Q
υから排気孔(ホ)にjlfl過する空気流を発生させ
る工うしこ装置している。紡糸ロータ01と、その回転
軸(7)を支承したケース(1)の先端部には、第7図
に示す、l:″)に、熱伝導率と放熱特性の閤い材料で
円筒容器形状に形成した覆い(2)を被せ、従い四の先
端の端板(ハ)を紡糸ロータの開口(21)に対面する
と共に、樋い(ハ)の開口基端をケース(1)の先端部
にW、着して、紡糸ロータ(1’Jとその回転軸(万を
囲む覆い(イ)をケース(1)に同軸芯に取付け、覆い
の端板(ハ)に繊維供給路(ハ)を形成する管を貞°通
して取付け、f!h、維供給路■企紡糸ロータの開ロシ
υの周辺部に臨ませ、また、覆いの端板(岱に糸引出路
C脅をル成する管をH通して取付け、糸引出路(ハ)を
紡糸ロータリ9内の中11? ’rsに臨ませており、
紡糸ロータu9の回転にエリ発生する、繊維供給’?6
 ((4)を径てijj糸ロータQ9内をその開ロシ1
)から排気孔(2)に通過する空気流を、覆い(■内全
経て、覆いの周壁の基端側しこ貫設した排出口09から
排出する空気通路(5)を形成し、4+、lj、気油1
傷Qθを流通する空気流によって、紡糸ロータa9の回
転Gこ伴なって発生する厚挟熱を排除するように装HL
、ている、 本例の軸受装置を備えたロータ式オープンエンド精紡機
の駆9jh装置を運転する場合は、従来におけるのと同
様に、給油路0■に潤滑油を供給する一方、!試動油(
2)を回転駆動して、回転軸(7)従って紡糸ロータθ
9を増速回転する。すると、従来におけるのと異なり、
回転軸(7)と紡糸ロータ09は、大さ号振動や騒音を
’ib生ぜずに円滑に高速回転し、しかも、摩擦による
発熱や動力損失力・少ない。
FIRST EXAMPLE (See FIGS. 1 to 5) A drive device 1.1 of a loaf type open-end spinning frame equipped with a bearing device d of this example has a cylindrical case ( 1) in the rear of the drive shaft (2), both of which are %r?
A ball bearing (blade, (30 pieces) is fitted in the case (1) at the H part, and is placed in the same position and bears in the radial and axial directions, and the central part G of the drive shaft (2) Fitted pulley (4)
is installed through the peripheral wall of the case (1) so as to face the fc window (5),
A belt (6) connected to a motor (not shown) is wrapped around a pulley (4) exposed through a window (5) to rotate the drive shaft (2). In addition, in the front part of the case (1), as shown in FIG. Angular contact ball bearing fitted inside the case (
9), and is disposed coaxially at the front side of the drive shaft (2), and is supported in the radial direction and the forward axial direction by the angular ball bearing (9). In history, Figures 1 and 2
As shown in 1, a circumferential groove 0Q is formed on the outer circumferential surface of the base AHA portion of the rotating shaft (7), and a support ring 0υ connected to the tip of the drive shaft (2) is inserted into the circumferential groove (10 A fixed ring 0η was fitted into the case (1) at the outer circumferential position of the drive shaft support ring (1υ), and a fixed ring 0η was placed around the drive shaft support ring aυ at equal intervals along the axial direction. A planetary friction wheel 0< with a cylindrical rotor is slid into each recess (13), and each planetary friction wheel q angle having a diameter larger than the wall thickness of the support ring (1υ) is fixed between the inner peripheral surface of the slope lamp 4 and the rotating shaft. Appropriate pressure is applied to the four circumferential grooves of the drive shaft (7), and each planetary friction wheel α4 revolves and rotates on its own axis, causing the rotating shaft (7) to rotate at an increased speed. It constitutes a planetary friction military aircraft (Inano speed increaser) 14. Also, as shown in Figures 1 and 3, the opposing end face of the rotating shaft (7) and the leading end face of the drive shaft (2) Annular permanent magnets (4) and 2) were installed on the coaxial core, respectively, and fixed to the rear end surface of the 14-output permanent magnet (to) fixed to the rotating shaft (7) and the drive shaft (2). Permanent magnets (all exposed front end faces are the same polarity and open space ′?r) are provided to face each other and repel each other to form a magnetic bearing. ), (rotated by allllll1l
I (7) is supported in the rearward axial direction, and a preload is applied to the angular ball bearing (9) in the axial direction in the Iiil direction. Drive shaft +21 arranged coaxially and rotation III
As shown in Figures 1 and 2, (7) is provided with an oil supply passage (LF-) at its axial position,
Multiple oil supply passages reaching the circumferential groove of the I rotating shaft, and oil supply passages (
1. A plurality of oil supply passages αη reaching the inner circumference of the inner ring of the angular ball bearing (9) of the rotating shaft are provided along the radial direction, and lubricating oil is driven from an oil supply source (not shown).
I (Foundation of force W: M [Refueling fi'6 opened at 111
Supply Qi, History, Note rllll Road 1. The oil is supplied to the speed increasing mechanism Tachibana, (1η, 04. I4, 0 fathoms,
The lubricating oil flowing out from the U-shaped bearing and the angular contact ball bearing (9) is returned to the oil supply source through oil drain holes provided through the peripheral wall of the case (1). At the tip of the rotor 1i1111 (7) protruding from the end plate (8) at the tip of the case (1), a substantially cup-shaped spinning rotor (crucible) is attached to the workpiece 9 shown in FIG. The spinning rotor ( lCjV3 is the opening Q at its tip
A device is used to generate air flow from υ to the exhaust hole (e). At the tip of the case (1) that supports the spinning rotor 01 and its rotating shaft (7), there is a cylindrical container shape made of a material with high thermal conductivity and heat dissipation properties. Cover (2) formed in the case (2), so that the end plate (c) at the tip of No. 4 faces the opening (21) of the spinning rotor, and the base end of the opening of the gutter (c) is placed at the tip of the case (1). Attach the spinning rotor (1'J) and its rotating shaft (A) to the case (1) on the coaxial core, and attach the fiber supply path (C) to the end plate (C) of the cover. Attach the pipes that form the f! The pipe is installed through H, and the yarn pull-out path (C) faces the middle 11'rs of the spinning rotary 9.
Fiber supply caused by rotation of spinning rotor u9? 6
(Open the inside of the ijj thread rotor Q9 through (4)
) to the exhaust hole (2), an air passageway (5) is formed through which the air flow passes through the cover (■) and is discharged from an outlet 09 penetrating the proximal side of the peripheral wall of the cover, 4+, lj, air oil 1
The airflow flowing through the scratches Qθ eliminates the heat generated by the rotation G of the spinning rotor a9.
When operating the drive 9jh device of a rotor-type open-end spinning frame equipped with the bearing device of this example, lubricating oil is supplied to the oil supply path 0■, as in the conventional case, while! Trial oil (
2) to rotate the rotating shaft (7) and thus the spinning rotor θ.
Rotate 9 at increased speed. Then, unlike in the past,
The rotating shaft (7) and the spinning rotor 09 rotate smoothly at high speed without producing large scale vibrations or noise, and have little heat generation and power loss due to friction.

本例の軸受装置aにおける摩擦熱と動力損失の低減効果
を確認するため、潤滑油の流量を容置に設足し、それぞ
れの場合に回転軸(7)を毎分10万回転させて、アン
ギュラ玉軸受(9)の外輪の上昇温度と樋先動力をそれ
ぞれ測定したところ、第グ図の線図と第5図の線図にそ
れぞれ丸印付の実線で示すような結果を得た。次に、こ
の結果と対照するため、前記の2個のアンギュラ玉軸受
を用いた従来装置について、同様に、潤滑油の流量を容
置に設定し、それぞれの場合に回転軸を毎分70万回転
させて、アンギュラ玉軸受の外輪の上昇温度と損失動力
をそれぞれ測定したところ、第グ図の線図と比5図の線
図にそれぞれ三角印付の破線で示すような結果を得た。
In order to confirm the effect of reducing frictional heat and power loss in bearing device a of this example, a flow rate of lubricating oil was added to the container, and in each case, the rotating shaft (7) was rotated 100,000 revolutions per minute, and the angular When the temperature rise of the outer ring of the ball bearing (9) and the gutter tip power were measured, the results were obtained as shown by the solid lines with circles in the diagrams of Fig. 3 and Fig. 5, respectively. Next, in order to compare this result, for the conventional device using the two angular contact ball bearings mentioned above, the flow rate of the lubricating oil was similarly set to 700,000 yen per minute. When the bearing was rotated and the temperature rise and power loss of the outer ring of the angular contact ball bearing were measured, the results were obtained as shown by the dashed lines with triangle marks in the diagrams in Figure 3 and Figure 5, respectively.

即ち、画線図から明らかな工9に、本例の軸受装置は、
上記の対照例の従来装置に比して、潤滑油の流量が同一
であれば、アンギュラ玉軸受(9)の上昇温度と損失動
力が少ない。
That is, it is clear from the drawing that the bearing device of this example has the following features:
Compared to the conventional device of the comparative example described above, if the flow rate of lubricating oil is the same, the temperature rise and power loss of the angular ball bearing (9) are small.

換ぎすると、アンギュラ玉軸受(9)の許容上昇τg%
度が同一であれば、潤滑油の流量が少量で済み、従って
、損失動力が少ない。結局、アンギュラ玉軸受(9)の
許容上昇温度と潤滑油の流量がそれぞれ同一であれば、
回転軸(7)の回転数を史に高めることができる。
When replaced, the allowable rise in angular contact ball bearing (9) τg%
If the temperature is the same, the flow rate of lubricating oil will be small, and therefore the loss of power will be small. After all, if the allowable temperature rise of the angular contact ball bearing (9) and the flow rate of lubricating oil are the same,
The rotational speed of the rotating shaft (7) can be increased to an unprecedented level.

第2笑施例 本例の軸受装置において前例のそれと異なる唯一の点は
、アンギュラ玉軸受(9)と磁気軸受(2)、(ハ)に
よるそれぞれの軸方向の支承の向きを逆にしたことであ
る。即ち、ケースの前部内の回転軸を、ケース内に嵌着
したアンギュラ玉軸受によって径方向と後向きの軸方向
に軸受し、また、回転軸の末端とケースの後部内の駆動
軸の先駒に固足した互いに吸引する両永久磁石による?
+8気軸受によって、前向きのhl+方回に軸受すると
東にアンギュ?玉受に後向さの軸方向の予圧を加えてい
る。
Second Example The only difference in the bearing device of this example from that of the previous example is that the directions of the axial support by the angular ball bearing (9) and magnetic bearings (2) and (c) are reversed. It is. That is, the rotating shaft inside the front part of the case is supported in the radial and rearward axial directions by angular contact ball bearings fitted inside the case, and the end of the rotating shaft and the tip of the drive shaft inside the rear part of the case are By two fixed permanent magnets that attract each other?
With a +8 air bearing, if you bear it in the forward hl + direction, will it be angular to the east? A rearward axial preload is applied to the ball bearing.

なお、回転軸の末端と駆動軸の先端の一方が他方に固足
した磁石に吸引されるCa性体の場合には、一方の磁石
はなくてもよい。
Note that if one of the end of the rotation shaft and the tip of the drive shaft is a Ca-based body that is attracted to a magnet fixed to the other, one of the magnets may be omitted.

第3実施例(第6図参照) 本例の軸受装置において第1実施例のそれと異なる唯一
の点は、磁気軸受の取付位置を変えたCとであジ、第6
図組示すように、力面した紡糸口−タθ9の外底面とケ
ース(1)先端の端板(8)の前面にそれぞれ円輪板状
の永久(重石Cat) 、 にiD 2同軸芯に固定し
、紡糸ロータ09に固定した永久磁石(1)の後面と端
板(8)に固定した永久磁石0υの前面を同極にして透
間2設けて対面し、互いに反発する両永久磁石C力、O
J)によって?1夕(気軸受をl’f(成している。即
ち、ケース(1)のj3iT部内の回転軸(7)を、ケ
ース(1)内に嵌着したアンギュラ玉軸受(9)によっ
て径方向と前向きの軸方向に軸受し、また、上記の磁気
軸受(り)。
Third embodiment (see Fig. 6) The only difference in the bearing device of this embodiment from that of the first embodiment is that the mounting position of the magnetic bearing has been changed.
As shown in the figure, a circular plate-shaped permanent (weight Cat) is placed on the outer bottom surface of the spinneret θ9 facing the force side and on the front surface of the end plate (8) at the tip of the case (1), and on the iD 2 coaxial core. The rear surface of the permanent magnet (1) fixed to the spinning rotor 09 and the front surface of the permanent magnet 0υ fixed to the end plate (8) are made of the same polarity and face each other with a gap 2 provided, and both permanent magnets C repel each other. Power, O
By J)? In other words, the rotating shaft (7) in the j3iT section of the case (1) is rotated in the radial direction by the angular ball bearing (9) fitted in the case (1). and a forward axial bearing, and also a magnetic bearing (RI) above.

()0によって、後向きの軸方向に軸受すると共にアン
ギュラ玉軸受(9)に前向きの軸方向の予圧を加えてい
る。その他の点は、掲/実施例におけるのと同種である
ので、第乙口口こ同−狗一号を付して説明を省1’li
する。
()0 applies a preload in the forward axial direction to the angular ball bearing (9) while bearing in the rearward axial direction. The other points are the same as those in the example/example, so the explanation will be omitted by adding the title ``No.
do.

本例の軸受装置においては、磁気1jQ11受翰、l−
8」jの値力作/IJ面猜を第1.第2来施例における
それよりも広くすることかでさる。健って、磁気軸受(
(1)。
In the bearing device of this example, the magnetic 1jQ11 bearing, l-
8"j's value masterpiece/IJ face is the first. The reason is to make it wider than that in the second embodiment. Good health, magnetic bearings (
(1).

Lll)の軸方向輔受能カを大きくすることがでさ、又
は永久磁石く刈、c3υに単位面積当りの磁力の弱い安
1曲なものを用いることができる。
It is possible to increase the axial force of C3υ, or to use a permanent magnet with a weaker magnetic force per unit area for C3υ.

第1実施例 本例の軸受装置において前例のそれと異なる唯一の点は
、アンギュラ玉軸受(9)と磁気軸受間、0υによるそ
れぞれの軸方向の支承の向きを逆にしたことであり、ケ
ース内のlL!Iii広軸を、ケース内に嵌着したアン
ギュラ玉軸受によって径方向と後向きの軸方向に軸受し
、また、紡糸ロータの外底用Jとケース先端の端板の前
面に固定した互いに吸引する両永久磁石によるも&気軸
受しこよって、削向きの軸方向に軸受すると共にアンギ
ュラ玉軸受に後向きの軸方向の予圧を加えている。
First Embodiment The only difference in the bearing device of this example from that of the previous example is that the direction of the axial support between the angular contact ball bearing (9) and the magnetic bearing and by 0υ was reversed, and inside the case. NolL! The wide shaft is supported in the radial and rearward axial directions by angular ball bearings fitted into the case, and is also supported by two mutually suction bearings fixed to the outer bottom J of the spinning rotor and the front surface of the end plate at the tip of the case. A permanent magnet bearing is used to support the bearing in the axial direction facing the cutting direction, and also applies preload in the axial direction facing backwards to the angular contact ball bearing.

なお、紡糸ロータの底板とケース元端の端板の一方が他
方に固定した711石に吸引される磁性体の場合には、
一方の磁石はなくてもよい。
In addition, if one of the bottom plate of the spinning rotor and the end plate at the base end of the case is a magnetic material that is attracted to the 711 stone fixed to the other,
One of the magnets may be omitted.

上記の/6実施例の軸受装置は、アノギュラコンタクト
Cろがり軸受としてアンギュラ玉軸受を用いたが、アン
ギュラ円錐ころ軸受を用いてもよい。
Although the bearing device of the above-mentioned /6 embodiment uses an angular contact ball bearing as the anogular contact C rolling bearing, an angular tapered roller bearing may also be used.

また、各実施例の軸受装置は、ロータ式オーブンエンド
精紡様の駆動装置の軸受に用いたものであるが、ターボ
チャージャやターピノのような高速回転機械の軸受にも
用いることができる。
Furthermore, although the bearing devices of each example are used as bearings for drive devices for rotor-type oven-end spinning, they can also be used for bearings for high-speed rotating machines such as turbochargers and turpinoes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の軸受装置を備えたロータ
式オープンエンド精紡機の駆動装置の縦11;fi 1
1111面′図、第2図は第1図の■−川綿線断面図第
3図は第1図における磁気軸受部分の拡大図、第7図は
同駆動装置における軸受上昇温度と潤滑油流量の関係を
示す線図、第S図は同駆動装置における損失動力と潤滑
油流量の関係を示す線は1であり、第6は1は第3実施
例の軸受装置分備えたロータ式オーブンエンド精紡様の
駆動装置の縦II(「側面図である。 );回転軸 9:アンギュラ玉j:仙受2 B 、 2
9 : i;χく気軸受 30,31:磁気軸受第 2
図 第3図
FIG. 1 shows a longitudinal 11;
Figure 2 is a cross-sectional view along the ■-kawawata line in Figure 1. Figure 3 is an enlarged view of the magnetic bearing part in Figure 1. Figure 7 is the bearing temperature rise and lubricating oil flow rate in the same drive device. The line diagram S shows the relationship between power loss and lubricating oil flow rate in the same drive device. Vertical II of spinning-like drive device (this is a side view); Rotating shaft 9: Angular ball j: Senke 2 B, 2
9: i; χ magnetic bearing 30, 31: magnetic bearing 2nd
Figure 3

Claims (1)

【特許請求の範囲】[Claims] 回転軸を、アンギュラコンタクトころがり軸受によって
径方向と一方の軸方向に軸受し、捷た、磁気軸受によっ
て、他方の軸方向に軸受すると共にアンギュラコンタク
)Cろが、o qIII+受に一方の軸方向の予圧を加
えた0とを特徴とする軸受装置。
The rotating shaft is supported in the radial direction and in one axial direction by an angular contact rolling bearing, and in the other axial direction by a twisted magnetic bearing, and in one axial direction by an angular contact roller bearing. A bearing device characterized by a preload of 0 and 0.
JP58136472A 1983-07-25 1983-07-25 Bearing device Pending JPS6026817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58136472A JPS6026817A (en) 1983-07-25 1983-07-25 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58136472A JPS6026817A (en) 1983-07-25 1983-07-25 Bearing device

Publications (1)

Publication Number Publication Date
JPS6026817A true JPS6026817A (en) 1985-02-09

Family

ID=15175915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58136472A Pending JPS6026817A (en) 1983-07-25 1983-07-25 Bearing device

Country Status (1)

Country Link
JP (1) JPS6026817A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4423605A1 (en) * 1994-07-06 1996-01-11 Rieter Ingolstadt Spinnerei Open end spinning rotor bearing
WO2007066474A1 (en) * 2005-12-09 2007-06-14 Ntn Corporation Motor built-in magnetic bearing device
WO2007066473A1 (en) * 2005-12-09 2007-06-14 Ntn Corporation Magnetic bearing device
JP2007162715A (en) * 2005-12-09 2007-06-28 Ntn Corp Magnetic bearing device
JP2007162727A (en) * 2005-12-09 2007-06-28 Ntn Corp Motor integrated magnetic bearing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4423605A1 (en) * 1994-07-06 1996-01-11 Rieter Ingolstadt Spinnerei Open end spinning rotor bearing
DE4423605B4 (en) * 1994-07-06 2007-05-24 Rieter Ingolstadt Spinnereimaschinenbau Ag Storage for an open-end spinning rotor
WO2007066474A1 (en) * 2005-12-09 2007-06-14 Ntn Corporation Motor built-in magnetic bearing device
WO2007066473A1 (en) * 2005-12-09 2007-06-14 Ntn Corporation Magnetic bearing device
JP2007162715A (en) * 2005-12-09 2007-06-28 Ntn Corp Magnetic bearing device
JP2007162727A (en) * 2005-12-09 2007-06-28 Ntn Corp Motor integrated magnetic bearing device
US7723883B2 (en) 2005-12-09 2010-05-25 Ntn Corporation Motor built-in magnetic bearing device
US7932656B2 (en) 2005-12-09 2011-04-26 Ntn Corporation Magnetic bearing device

Similar Documents

Publication Publication Date Title
CN107249816B (en) Main shaft device
TWI678249B (en) Main spindle device
JP6079057B2 (en) Rolling bearing device for turbocharger
JPS6026817A (en) Bearing device
JPS641681B2 (en)
JP6079058B2 (en) Rolling bearing device for turbocharger
JP5018334B2 (en) Rolling bearing device
US1669779A (en) Rotary compressor, exhauster, and engine
JPH0560145A (en) Rolling bearing
JPH0382356A (en) Cooling structure of motor
JP2005522611A (en) Air motor
JP3611387B2 (en) Motor with hydrodynamic bearing
JP4225104B2 (en) Rolling bearing device
JP3016111B2 (en) Ultra high speed cylindrical roller bearing
JP2020145833A (en) Magnetic coupling
JPH0328614B2 (en)
JPH10318260A (en) Hydrostatic bearing
KR102581492B1 (en) hydrostatic bearing spindle
JP2022163432A (en) rolling bearing
JPS5982428A (en) Driving apparatus in rotary open end fine spinning machine
JP2019070429A (en) Cooling structure for bearing device
JPS6078106A (en) Dynamic pressure type complex bearing device
JP2003042091A (en) Improved lubricating device for regenerative vacuum pump
JPS6288817A (en) Thrust slide bearing device
JPS59129552A (en) Bearing supporting device for vertical rotary electric machine