JP2007162727A - Motor integrated magnetic bearing device - Google Patents
Motor integrated magnetic bearing device Download PDFInfo
- Publication number
- JP2007162727A JP2007162727A JP2005356035A JP2005356035A JP2007162727A JP 2007162727 A JP2007162727 A JP 2007162727A JP 2005356035 A JP2005356035 A JP 2005356035A JP 2005356035 A JP2005356035 A JP 2005356035A JP 2007162727 A JP2007162727 A JP 2007162727A
- Authority
- JP
- Japan
- Prior art keywords
- motor
- magnetic bearing
- main shaft
- turbine
- bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
- Support Of The Bearing (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
Description
この発明は、空気サイクル冷凍冷却用タービンユニット等に用いられる磁気軸受装置に関し、特に、転がり軸受と磁気軸受を併用し、磁気軸受がアキシアル負荷と軸受予圧のどちらか一方または両方を支持するようにしたモータ一体型磁気軸受装置に関する。 The present invention relates to a magnetic bearing device used in an air cycle refrigeration cooling turbine unit or the like, and in particular, a rolling bearing and a magnetic bearing are used together so that the magnetic bearing supports one or both of an axial load and a bearing preload. The present invention relates to a motor-integrated magnetic bearing device.
空気サイクル冷凍冷却システムは、冷媒として空気を用いるため、フロンやアンモニアガス等を用いる場合に比べてエネルギー効率が不足するが、環境保護の面では好ましい。また、冷凍倉庫等のように、冷媒空気を直接に吹き込むことができる施設では、庫内ファンやデフロストの省略等によってトータルコストを引下げられる可能性があり、このような用途で空気サイクル冷凍冷却システムが提案されている(例えば特許文献1)。 Since the air cycle refrigeration cooling system uses air as a refrigerant, energy efficiency is insufficient as compared with the case of using chlorofluorocarbon or ammonia gas, but it is preferable in terms of environmental protection. In addition, in facilities where refrigerant air can be directly blown into, such as a refrigerated warehouse, the total cost may be reduced by omitting the internal fan and defrost, etc. In such applications, the air cycle refrigeration cooling system Has been proposed (for example, Patent Document 1).
また、−30℃〜−60℃のディープ・コール領域では、空気冷却の理論効率は、フロンやアンモニアガスと同等以上になることが知られている。ただし、上記空気冷却の理論効率を得ることは、最適に設計された周辺装置があって、始めて成り立つとも述べられている。周辺装置は、圧縮機や膨張タービン等である。
圧縮機,膨張タービンとしては、コンプレッサ翼車および膨張タービン翼車を共通の主軸に取付けたタービンユニットが用いられている(特許文献1)。
Further, it is known that the theoretical efficiency of air cooling is equal to or higher than that of Freon or ammonia gas in a deep coal region of -30 ° C to -60 ° C. However, it is also stated that obtaining the theoretical efficiency of the air cooling is not possible until there is an optimally designed peripheral device. The peripheral device is a compressor, an expansion turbine, or the like.
As the compressor and the expansion turbine, a turbine unit in which a compressor impeller and an expansion turbine impeller are attached to a common main shaft is used (Patent Document 1).
なお、プロセスガスを処理するタービン・コンプレッサとしては、主軸の一端にタービン翼車、他端にコンプレッサ翼車を取付け、前記主軸を電磁石の電流で制御するジャーナルおよびスラスト軸受で支承した磁気軸受式タービン・コンプレッサが提案されている(特許文献2)。
また、ガスタービンエンジンにおける提案ではあるが、主軸支持用の転がり軸受に作用するスラスト荷重が軸受寿命の短縮を招くことを回避するため、転がり軸受に作用するスラスト荷重をスラスト磁気軸受により低減することが提案されている(特許文献3)。
In addition, although it is a proposal for a gas turbine engine, in order to avoid the thrust load acting on the rolling bearing for supporting the main shaft from shortening the bearing life, the thrust load acting on the rolling bearing should be reduced by the thrust magnetic bearing. Has been proposed (Patent Document 3).
上記のように、空気サイクル冷凍冷却システムとして、ディープ・コール領域で高効率となる空気冷却の理論効率を得るためには、最適に設計された圧縮機や膨張タービンが必要となる。
圧縮機,膨張タービンとしては、上記のようにコンプレッサ翼車および膨張タービン翼車を共通の主軸に取付けたタービンユニットが用いられている。このタービンユニットは、膨張タービンの生じる動力によりコンプレッサ翼車を駆動できることで空気サイクル冷凍機の効率を向上させている。
As described above, as the air cycle refrigeration cooling system, in order to obtain the theoretical efficiency of air cooling that is highly efficient in the deep coal region, an optimally designed compressor and expansion turbine are required.
As the compressor and the expansion turbine, a turbine unit in which the compressor wheel and the expansion turbine wheel are attached to a common main shaft as described above is used. In this turbine unit, the compressor impeller can be driven by the power generated by the expansion turbine, thereby improving the efficiency of the air cycle refrigerator.
しかし、実用的な効率を得るためには、各翼車とハウジングとの隙間を微小に保つ必要がある。この隙間の変動は、安定した高速回転の妨げとなり効率の低下を招く。
また、コンプレッサ翼車やタービン翼車に作用する空気により、主軸にスラスト力が作用し、主軸を支持する軸受にスラスト荷重が荷される。空気サイクル冷凍冷却システムにおけるタービンユニットの主軸の回転速度は、1分間に8万〜10万回転であり、一般的な用途の軸受に比べて非常に高速となる。そのため、上記のようなスラスト荷重は、主軸を支持する軸受の長期耐久性の低下、寿命低下を招き、空気サイクル冷凍冷却用タービンユニットの信頼性を低下させる。このような軸受の長期耐久性の課題を解消しなくては、空気サイクル冷凍冷却用タービンユニットの実用化が難しい。しかし、上記特許文献1に開示の技術は、この高速回転下におけるスラスト荷重の負荷に対する軸受の長期耐久性の低下については解決されるに至っていない。
However, in order to obtain practical efficiency, it is necessary to keep the gap between each impeller and the housing minute. The fluctuation of the gap hinders stable high-speed rotation and causes a decrease in efficiency.
In addition, a thrust force acts on the main shaft by the air acting on the compressor impeller and the turbine impeller, and a thrust load is applied to the bearing that supports the main shaft. The rotation speed of the main shaft of the turbine unit in the air cycle refrigeration cooling system is 80,000 to 100,000 rotations per minute, which is very high compared with a bearing for general use. For this reason, the thrust load as described above causes a decrease in long-term durability and life of the bearing supporting the main shaft, and decreases the reliability of the turbine unit for air cycle refrigeration cooling. Unless such a problem of long-term durability of the bearing is solved, it is difficult to put the air cycle refrigeration cooling turbine unit into practical use. However, the technique disclosed in Patent Document 1 has not yet been solved for the deterioration of the long-term durability of the bearing against the load of the thrust load under the high-speed rotation.
特許文献2の磁気軸受式タービン・コンプレッサのように、主軸を磁気軸受からなるジャーナル軸受およびスラスト軸受で支承したものでは、ジャーナル軸受にアキシアル方向の規制機能がない。そのため、スラスト軸受の制御の不安定要因等があると、上記翼車とディフューザ間の微小隙間を保って安定した高速回転を行うことが難しい。磁気軸受の場合は、電源停止時における接触の問題もある。
In the case where the main shaft is supported by a journal bearing made of a magnetic bearing and a thrust bearing, such as the magnetic bearing type turbine compressor of
そこで、本発明者等は、上記課題を解決するものとして、図5に示すようなモータ一体型の磁気軸受装置を開発した。このモータ一体型の磁気軸受装置は、主軸53の両端にコンプレッサ46のコンプレッサ翼車46aおよび膨張タービン47のタービン翼車47aを取付けた空気サイクル冷凍冷却用タービンユニットにおいて、主軸53のラジアル負荷を転がり軸受55,56で、アキシアル負荷を電磁石57でそれぞれ支持すると共に、主軸53に同軸に設けたモータ68による駆動力とタービン翼車47aの駆動力とでコンプレッサ翼車46aを回転駆動するようにしたものである。アキシアル負荷を支持する電磁石57は、主軸53に垂直かつ同軸に設けられたスラスト板53aに非接触で対向するように配置され、アキシアル方向の力を検出するセンサ58の出力に応じて磁気軸受用コントローラ59で制御される。モータ68はアキシアルギャップ型のものであって、主軸53に垂直かつ同軸に設けた別のスラスト板53bにモータロータ68aを形成すると共に、このモータロータ68aと軸方向に対向するようにモータステータ68bを配置して構成される。このモータ68は、電磁石57とは独立にモータ用コントローラ69で制御される。
Accordingly, the present inventors have developed a motor-integrated magnetic bearing device as shown in FIG. This motor-integrated magnetic bearing device rolls the radial load of the
上記構成のモータ一体型の磁気軸受装置によると、主軸53にかかるスラスト力を電磁石57で支持するため、非接触でトルクの増大を抑えながら、転がり軸受55,56に作用するスラスト力を軽減することができる。その結果、各翼車46a,47aとハウジング46b,47bとの微小隙間を一定に保つことができ、スラスト荷重の負荷に対する転がり軸受の長期耐久性を向上させることができる。
According to the motor-integrated magnetic bearing device configured as described above, since the thrust force applied to the
しかし、上記構成のモータ一体型の磁気軸受装置において、モータ68のステータ68bは、軸方向に延びるステータヨーク68baにコイル68bbを巻回したコア付き構造とされているので、モータロータ68aとステータヨーク68ba間の磁気力がアキシアル方向の負の剛性(変位した方向に作用し、変位が大きいほどその力も大きくなる)として作用する。
その結果、モータ68が高負荷状態で動作し、さらに過大なアキシアル方向荷重が作用した場合、電磁石57の負の剛性およびモータロータ68aとステータヨーク68ba間とで形成される磁気カップリングの負の剛性が大きくなり、電磁石57とモータ58とで形成される合成バネの負の剛性が、転がり軸受55,56と転がり軸受の支持系とで形成される合成バネの剛性よりも大きくなった時、磁気軸受の制御系が不安定になってしまうといった問題が生じる。そこで、この状態を回避するために予め磁気軸受用コントローラ59に位相補償回路を付加する必要が生じ、コントローラ59を複雑にする要因の一つになるといった問題がある。
However, in the motor-integrated magnetic bearing device configured as described above, the
As a result, when the
また、上記構成のモータ一体型の磁気軸受装置では、主軸53に設けた1つのスラスト板を挟んで左右2個の電磁石を配置して磁気軸受ユニットを構成すると共に、主軸53に別に設けたもう1つのスラスト板を挟んで左右2個のアキシアルギャップ型のモータ68を配置することで前記磁気軸受ユニットと独立にモータユニットを構成しているめ、主軸53の軸長が長くなって固有振動数が低下し、高速回転させることができないという問題もあった。
In the motor-integrated magnetic bearing device having the above-described configuration, the left and right electromagnets are arranged with one thrust plate provided on the
この発明の目的は、モータが高負荷状態で動作し過大なアキシアル荷重が作用した状態でも、安定な制御が可能でコントローラの構成を簡略化でき、かつ主軸を高速回転させることが可能なモータ一体型の磁気軸受装置を提供することである。 An object of the present invention is to provide a motor that can perform stable control even when the motor is operated in a high load state and an excessive axial load is applied, can simplify the configuration of the controller, and can rotate the spindle at high speed. It is to provide a body type magnetic bearing device.
この発明のモータ一体型の磁気軸受装置は、転がり軸受と磁気軸受を併用し、転がり軸受がラジアル負荷を支持し、磁気軸受がアキシアル負荷と軸受予圧のどちらか一方または両方を支持し、前記磁気軸受を構成する電磁石は主軸に設けられた強磁性体からなるフランジ状のスラスト板に非接触で対向するように、スピンドルハウジングに取付けられており、前記スラスト板は軸方向に離れて2つ設けられ、これら2つのスラスト板は、片面に電磁石ターゲットが形成され、もう片方の面にはモータロータ用の永久磁石が配置され、前記モータロータ用の永久磁石は前記2つのスラスト板の対向する面に配置されており、前記永久磁石は異極が互いに対向するように、周方向に等ピッチで配置され、前記永久磁石に挟まれるように、モータステータが配置されてスピンドルハウジングに取付けられており、前記モータロータおよび前記モータステータ間のローレンツ力により主軸を回転させるアキシアルギャップ型のコアレスモータを有するものであって、前記転がり軸受に作用するアキシアル方向の力を検出するセンサの出力に応じて、前記電磁石を制御するコントローラを有し、転がり軸受と転がり軸受の支持系とで形成される剛性バネの剛性値がモータ部の負の剛性値よりも大という関係を有することを特徴とする。前記2つのスラストは、主軸に一体に形成されたものである。前記モータ部は、例えば、前記磁気軸受を構成する電磁石とモータとでなる。 A motor-integrated magnetic bearing device according to the present invention uses a rolling bearing and a magnetic bearing in combination, the rolling bearing supports a radial load, the magnetic bearing supports one or both of an axial load and a bearing preload, and The electromagnet constituting the bearing is mounted on the spindle housing so as to face the flange-shaped thrust plate made of a ferromagnetic material provided on the main shaft in a non-contact manner. Two thrust plates are provided apart in the axial direction. These two thrust plates have an electromagnet target formed on one side, a permanent magnet for the motor rotor is arranged on the other side, and the permanent magnet for the motor rotor is arranged on the opposite surface of the two thrust plates. The permanent magnets are arranged at an equal pitch in the circumferential direction so that the different poles face each other, and the motors are sandwiched between the permanent magnets. And an axial gap coreless motor that rotates a main shaft by a Lorentz force between the motor rotor and the motor stator, and that acts on the rolling bearing. A controller that controls the electromagnet according to the output of the sensor that detects the force of the roller, and the stiffness value of the rigid spring formed by the rolling bearing and the rolling bearing support system is greater than the negative stiffness value of the motor unit. It is characterized by having a large relationship. The two thrusts are formed integrally with the main shaft. The motor unit includes, for example, an electromagnet and a motor that constitute the magnetic bearing.
この構成によると、転がり軸受と磁気軸受を併用し、転がり軸受がラジアル負荷を支持し、磁気軸受がアキシアル負荷と軸受予圧のどちらか一方または両方を支持するものであるため、アキシアル方向の精度の良い支持が行え、また転がり軸受の長期耐久性が確保でき、磁気軸受のみの支持の場合における電源停止時の損傷も回避される。
また、軸方向に並べて主軸に設けられた2つのスラスト板の軸方向外側に2つの電磁石を配置して磁気軸受ユニットとすると共に、前記両スラスト板で挟まれる位置にアキシアルギャップ型のモータを配置してモータユニットとしたため、磁気軸受ユニットとモータユニットとがコンパクトな一体構造とできる。そのため、主軸の軸長を短くでき、それだけ主軸の固有振動数が高くなって、主軸を高速回転させることができる。
また、転がり軸受と転がり軸受の支持系とで形成される合成バネの剛性値が、モータ部(電磁石を含む)で形成される合成バネの負の剛性値よりも大という関係を有するものとしているので、モータが高負荷動作し過大なアキシアル荷重が作用した場合でも、制御帯域において、機械システムの位相が180°遅れとなることを防止できて、制御対象を安定なものとでき、コントローラの回路構成を簡略化できる。
According to this configuration, the rolling bearing and the magnetic bearing are used together, the rolling bearing supports the radial load, and the magnetic bearing supports one or both of the axial load and the bearing preload. Good support can be achieved, long-term durability of the rolling bearing can be ensured, and damage when the power supply is stopped in the case of supporting only the magnetic bearing can be avoided.
In addition, two electromagnets are arranged on the outer side in the axial direction of the two thrust plates provided on the main shaft side by side in the axial direction to form a magnetic bearing unit, and an axial gap type motor is arranged at a position sandwiched between the two thrust plates. Since the motor unit is used, the magnetic bearing unit and the motor unit can have a compact integrated structure. Therefore, the shaft length of the main shaft can be shortened, the natural frequency of the main shaft can be increased accordingly, and the main shaft can be rotated at high speed.
Further, the stiffness value of the synthetic spring formed by the rolling bearing and the rolling bearing support system is greater than the negative stiffness value of the synthetic spring formed by the motor unit (including the electromagnet). Therefore, even when the motor operates at a high load and an excessive axial load is applied, the phase of the mechanical system can be prevented from being delayed by 180 ° in the control band, and the controlled object can be made stable. The configuration can be simplified.
この発明において、前記2つのスラスト板は主軸に一体で形成されたものであっても良い。この構成の場合、これら両スラスト板を前記永久磁石のバックヨークおよび電磁石ターゲットに兼用できる。 In the present invention, the two thrust plates may be formed integrally with the main shaft. In the case of this configuration, both the thrust plates can be used as the back yoke and the electromagnet target of the permanent magnet.
この発明において、前記主軸には、コンプレッサ側翼車およびタービン側翼車が、前記スラスト板とモータロータと共通の主軸に嵌合し、モータ動力とタービン側翼車で発生した動力のどちらか一方または両方により、コンプレッサ側翼車を駆動させる、圧縮膨張タービンシステムに適用されたものであっても良い。この構成の場合、各翼車の適切な隙間を保って主軸の安定した高速回転が得られ、かつ軸受の長期耐久性、寿命の向上が得られる。 In this invention, on the main shaft, the compressor side impeller and the turbine side impeller are fitted to the common main shaft of the thrust plate and the motor rotor, and either or both of the motor power and the power generated by the turbine side impeller, The present invention may be applied to a compression / expansion turbine system that drives a compressor side impeller. In the case of this configuration, a stable high-speed rotation of the main shaft can be obtained while maintaining an appropriate gap between the impellers, and the long-term durability and life of the bearing can be improved.
この発明において、前記モータ一体型の磁気軸受装置を適用した圧縮膨張タービンシステムが、流入空気に対して、タービンユニットのコンプレッサによる圧縮、他の熱交換器による冷却、前記タービンユニットの膨張タービンによる断熱膨張、もしくは予圧縮手段による圧縮、熱交換器による冷却、タービンユニットのコンプレッサによる圧縮、他の熱交換器による冷却、前記タービンユニットの膨張タービンによる断熱膨張、を順次行う空気サイクル冷凍冷却システムに適用されたものであっても良い。
このモータ一体型の磁気軸受装置を適用した圧縮膨張タービンシステムを、このような空気サイクル冷凍冷却システムに適用した場合、圧縮膨張タービンシステムにおいて、各翼車の適切な隙間を保って主軸の安定した高速回転が得られ、かつ軸受の長期耐久性の向上、寿命の向上が得られることから、圧縮膨張タービンシステムの全体として、しいては空気サイクル冷凍冷却システムの全体としても信頼性が向上する。また、空気サイクル冷凍冷却システムのネックとなっている圧縮膨張タービンシステムの主軸軸受の安定した高速回転、長期耐久性、信頼性が向上することから、空気サイクル冷凍冷却システムの実用化が可能となる。
In the present invention, the compression / expansion turbine system to which the motor-integrated magnetic bearing device is applied includes compressing the inflow air by a compressor of the turbine unit, cooling by another heat exchanger, and insulating the turbine unit by the expansion turbine. Application to an air cycle refrigeration cooling system that performs expansion or compression by means of pre-compression, cooling by a heat exchanger, compression by a compressor of a turbine unit, cooling by another heat exchanger, and adiabatic expansion of the turbine unit by an expansion turbine. It may be what was done.
When the compression-expansion turbine system to which the motor-integrated magnetic bearing device is applied is applied to such an air cycle refrigeration cooling system, the main shaft is stabilized in the compression-expansion turbine system while maintaining an appropriate clearance between the impellers. Since high-speed rotation can be obtained and the long-term durability and life of the bearing can be improved, the reliability of the entire compression / expansion turbine system, and the air cycle refrigeration cooling system as a whole, is improved. In addition, stable high-speed rotation, long-term durability, and reliability of the main shaft bearing of the compression / expansion turbine system, which is the bottleneck of the air cycle refrigeration cooling system, improve the practical use of the air cycle refrigeration cooling system. .
この発明のモータ一体型の磁気軸受装置は、転がり軸受と磁気軸受を併用し、転がり軸受がラジアル負荷を支持し、磁気軸受がアキシアル負荷と軸受予圧のどちらか一方または両方を支持し、前記磁気軸受を構成する電磁石は主軸に設けられた強磁性体からなるフランジ状のスラスト板に非接触で対向するように、スピンドルハウジングに取付けられており、前記スラスト板は軸方向に離れて2つ設けられ、これら2つのスラスト板は、片面に電磁石ターゲットが形成され、もう片方の面にはモータロータ用の永久磁石が配置され、前記モータロータ用の永久磁石は前記2つのスラスト板の対向する面に配置されており、前記永久磁石は異極が互いに対向するように、周方向に等ピッチで配置され、前記永久磁石に挟まれるように、モータステータが配置されてスピンドルハウジングに取付けられており、前記モータロータおよび前記モータステータ間のローレンツ力により主軸を回転サセルアキシアルギャップ型のコアレスモータを有するものであって、前記転がり軸受に作用するアキシアル方向の力を検出するセンサの出力に応じて、前記電磁石を制御するコントローラを有し、転がり軸受と転がり軸受の支持系とで形成される剛性バネの剛性値が電磁石とモータ部とで形成される合成バネの負の剛性値よりも大という関係を有することとしたため、モータに高負荷が作用した場合でも、安定な制御が可能でコントローラの構成を簡略化でき、かつ主軸を高速回転させることができる。 A motor-integrated magnetic bearing device according to the present invention uses a rolling bearing and a magnetic bearing in combination, the rolling bearing supports a radial load, the magnetic bearing supports one or both of an axial load and a bearing preload, and The electromagnet constituting the bearing is mounted on the spindle housing so as to face the flange-shaped thrust plate made of a ferromagnetic material provided on the main shaft in a non-contact manner. Two thrust plates are provided apart in the axial direction. These two thrust plates have an electromagnet target formed on one side, a permanent magnet for the motor rotor is disposed on the other side, and the permanent magnet for the motor rotor is disposed on the opposite surface of the two thrust plates. The permanent magnets are arranged at equal pitches in the circumferential direction so that the different poles face each other, and the motors are sandwiched between the permanent magnets. Is arranged on a spindle housing and has a coreless motor of a rotating serrated axial gap type by rotating the main shaft by Lorentz force between the motor rotor and the motor stator, and acting in the axial direction. A controller for controlling the electromagnet according to the output of the sensor for detecting the force of the roller, and the stiffness value of the rigid spring formed by the rolling bearing and the rolling bearing support system is formed by the electromagnet and the motor unit. Because the relationship is greater than the negative stiffness value of the composite spring, stable control is possible even when a high load is applied to the motor, the controller configuration can be simplified, and the spindle can be rotated at high speed. it can.
この発明の第1の実施形態を図1ないし図3と共に説明する。図1は、この実施形態のモータ一体型の磁気軸受装置を組み込んだタービンユニット5の断面図を示す。このタービンユニット5は圧縮膨張タービンシステムを構成するものであり、コンプレッサ6および膨張タービン7を有し、コンプレッサ6のコンプレッサ翼車6aおよび膨張タービン7のタービン翼車7aが主軸13の両端にそれぞれ嵌合している。主軸13の材料には、磁気特性の良好な低炭素鋼が使用される。
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a cross-sectional view of a
図1において、コンプレッサ6は、コンプレッサ翼車6aと微小の隙間d1を介して対向するコンプレッサハウジング6bを有し、中心部の吸込口6cから軸方向に吸入した空気を、コンプレッサ翼車6aで圧縮し、外周部の出口(図示せず)から矢印6dで示すように排出する。
膨張タービン7は、タービン翼車7aと微小の隙間d2を介して対向するタービンハウジング7bを有し、外周部から矢印7cで示すように吸い込んだ空気を、タービン翼車7aで断熱膨張させ、中心部の排出口7dから軸方向に排出する。
In FIG. 1, the
The
このタービンユニット5におけるモータ一体型の磁気軸受装置は、主軸13をラジアル方向に対し複数の軸受15,16で支持し、主軸13にかかるアキシアル負荷と軸受予圧のどちらか一方または両方を磁気軸受である電磁石17により支持すると共に、主軸13を回転駆動するアキシアルギャップ型のモータ28を設けたものである。このタービンユニット5は、主軸13に作用するスラスト力を検出するセンサ18と、このセンサ18の出力に応じて前記電磁石17による支持力を制御する磁気軸受用コントローラ19と、電磁石17とは独立に前記モータ28を制御するモータ用コントローラ29とを有している。
電磁石17は、主軸13の軸方向中間部において軸方向に並ぶように主軸13に垂直かつ同軸に設けられた強磁性体からなるフランジ状の2つのスラスト板13a,13bの各片面に非接触で対向するように、一対のものがスピンドルハウジング14に設置されている。具体的には、磁気軸受ユニットを構成する一方の電磁石17は、膨張タービン7寄りに位置するスラスト板13aの膨張タービン7側に向く片面を電磁石ターゲットとして、この片面に非接触で対向するようにスピンドルハウジング14に設置される。また、磁気軸受ユニットを構成する他方の電磁石17は、コンプレッサ6寄りに位置するスラスト板13bのコンプレッサ6側に向く片面を電磁石ターゲットして、この片面に非接触で対向するようにスピンドルハウジング14に設置される。
The motor-integrated magnetic bearing device in the
The
モータ28は、前記電磁石17と並んで主軸13に設けられたモータロータ28aと、このモータロータ28aに対し軸方向に対向するモータステータ28bとでなるモータユニットである。具体的には、モータユニットの一部品を構成するモータロータ28aは、主軸13における前記各スラスト板13a,13bの電磁石17が対向する側とは反対側の各片面に、円周方向に等ピッチで並ぶ永久磁石28aaを配置することで左右一対のものが構成される。このように軸方向に対向配置される永久磁石28aaの間では、その磁極が互いに異極となるように設定される。主軸13には磁気特性の良好な低炭素鋼を使用しているので、主軸13と一体構造となるように設けられる前記各スラスト板13a,13bを、永久磁石28aaのバックヨークおよび電磁石ターゲットに兼用できる。
モータユニットの他の部品であるモータステータ28bは、前記左右一対のモータロータ28aに挟まれる軸方向中央の位置において、これら両モータロータ28aの各面に非接触で対向するようにコアの無い状態で配置したコイル28baを、スピンドルハウジング14に設置して構成される。このモータ28は、前記モータロータ28aとモータステータ28b間に作用するローレンツ力により、主軸13を回転させる。このように、このアキシアルギャップ型のモータ28はコアレスモータとされていることから、モータロータ28aとモータステータ28b間の磁気カップリングによる負の剛性はゼロとなっている。
The
The motor stator 28b, which is another part of the motor unit, is disposed without a core so as to face each surface of both the
主軸13を支持する軸受15,16は転がり軸受であって、アキシアル方向位置の規制機能を有するものであり、例えば深溝玉軸受やアンギュラ玉軸受が用いられる。深溝玉軸受の場合、両方向のスラスト支持機能を有し、内外輪のアキシアル方向位置を中立位置に戻す作用を持つ。これら2個の軸受15,16は、それぞれスピンドルハウジング14におけるコンプレッサ翼車6aおよびタービン翼車7aの近傍に配置されている。
The
主軸13は、中間部の大径部13cと、両端部の小径部13dとを有する段付き軸とされている。両側の軸受15,16は、その内輪15a,16aが小径部13dに圧入状態に嵌合し、片方の幅面が大径部13cと小径部13d間の段差面に係合する。
スピンドルハウジング14における両側の軸受15,16よりも各翼車6a,7a側の部分は、内径面が主軸13に近接する径に形成され、この内径面に非接触シール21,22が形成されている。この実施形態では、非接触シール21,22は、スピドルハウジング14の内径面に複数の円周溝を軸方向に並べて形成したラビリンスシールとしているが、その他の非接触シール手段でも良い。
The
The portions of the spindle housing 14 closer to the
前記センサ18は、タービン翼車7a側の軸受16の近傍における静止側、つまりスピンドルハウジング14側に設けられている。このセンサ18を近傍に設けた軸受16は、その外輪16bが軸受ハウジング23内に固定状態に嵌合している。軸受ハウジング23は、リング状に形成されて一端に軸受16の外輪16bの幅面に係合する内鍔23aを有しており、スピンドルハウジング14に設けられた内径面24にアキシアル方向に移動自在に嵌合している。内鍔23aは、アキシアル方向の中央側端に設けられている。
The
センサ18は主軸13の回りの円周方向複数箇所(例えば2箇所)に分配配置され、軸受ハウジング23の内鍔23a側の幅面と、スピンドルハウジング14に固定された部材である片方の電磁石17との間に介在させてある。また、センサ18は、センサ予圧ばね25により予圧が印加されている。センサ予圧ばね25は、スピンドルハウジング14に設けられた収容凹部内に収容されて軸受16の外輪16bをアキシアル方向に付勢するものとされ、外輪16bおよび軸受ハウジング23を介してセンサ18を予圧する。センサ予圧ばね25は、例えば主軸13の回りの円周方向複数箇所に設けられたコイルばね等からなる。
The
センサ予圧ばね25による予圧は、押し付け力によってスラスト力を検出するセンサ18が、主軸13のアキシアル方向のいずれの向きの移動に対しても検出できるようにするためであり、タービンユニット5の通常の運転状態で主軸13に作用する平均的なスラスト力以上の大きさとされる。
The preload by the
センサ18の非配置側の軸受15は、スピンドルハウジング14に対してアキシアル方向に移動自在に設置され、かつ軸受予圧ばね26によって弾性支持されている。この例では軸受15の外輪15bが、スピンドルハウジング14の内径面にアキシアル方向移動自在に嵌合していて、軸受予圧ばね26は、外輪15bとスピンドルハウジング14との間に介在している。軸受予圧ばね26は、内輪15aの幅面が係合した主軸13の段面に対向して外輪15bを付勢するものとされ、軸受15に予圧を与えている。軸受予圧ばね26は、主軸13回りの円周方向複数箇所に設けられたコイルばね等からなり、それぞれスピンドルハウジング14に設けられた収容凹部内に収容されている。軸受予圧ばね26は、センサ予圧ばね25よりもばね定数が小さいものとされる。
The bearing 15 on the non-arrangement side of the
上記タービンユニット5におけるモータ一体型の磁気軸受装置の力学モデルは簡単なバネ系で構成することができる。すなわち、このバネ系は、軸受15,16とこれら軸受の支持系(センサ予圧ばね25、軸受予圧ばね26、軸受ハウジング23など)とで形成される合成バネと、モータ部(電磁石17とモータ28)で形成される合成バネとが並列となった構成である。このバネ系において、軸受15,16とこれら軸受の支持系とで形成される合成バネは、変位した方向と逆の方向に変位量に比例して作用する剛性となるのに対し、電磁石17とモータ28とで形成される合成バネは、変位した方向に変位量に比例して作用する負の剛性となる。
このため、上記した両合成バネの剛性の大小関係を、
軸受等による合成バネの剛性値<電磁石・モータによる合成バネの負の剛性値…(1)とした場合、機械システムの位相は180°遅れとなり不安定な系となることから、電磁石17を制御する磁気軸受用コントローラ19において、予め位相補償回路を付加する必要が生じ、コントローラ19の構成が複雑なものになる。
The dynamic model of the motor-integrated magnetic bearing device in the
For this reason, the magnitude relationship between the stiffnesses of the two composite springs described above is
If the stiffness value of the composite spring by the bearing etc. <the negative stiffness value of the composite spring by the electromagnet / motor ... (1), the phase of the mechanical system is delayed by 180 ° and the system becomes unstable, so the
そこで、この実施形態のモータ一体型の磁気軸受装置では、上記した両合成バネの剛性の大小関係を、
軸受等による合成バネの剛性値>電磁石・モータによる合成バネの負の剛性値…(2)としている。とくに、このモータ一体型の磁気軸受装置では、上記したようにアキシアルギャップ型のモータ28をコアレスモータとしているので、モータ28に作用する負の剛性値をゼロとすることができ、モータ28が高負荷動作し過大なアキシアル荷重が作用した状態においても上記(2)式の大小関係を保つことができる。
その結果、制御帯域において、機械システムの位相が180°遅れとなることを防止できるので、モータ28が高負荷動作し過大なアキシアル荷重が作用した状態でも磁気軸受用コントローラ19の制御対象を安定なものとでき、コントローラ19の回路構成を図2のように比例もしくは比例積分を用いた簡単なものに構成できる。
Therefore, in the motor-integrated magnetic bearing device of this embodiment, the above-described rigidity relationship of the two composite springs is expressed as follows:
Rigidity value of the combined spring by the bearing or the like> Negative rigidity value of the combined spring by the electromagnet / motor (2). In particular, in this motor-integrated magnetic bearing device, since the axial
As a result, since the phase of the mechanical system can be prevented from being delayed by 180 ° in the control band, the controlled object of the
ブロック図で示す図2の磁気軸受用コントローラ19では、各センサ18の検出出力P1,P2をセンサ出力演算回路30で加減算し、その演算結果を比較器31で基準値設定手段32の基準値と比較して偏差を演算し、さらに演算した偏差をPI補償回路(もしくはP補償回路)33によりタービンユニット5に応じて適宜設定される比例積分(もしくは比例)処理を行うことで、電磁石17の制御信号を演算するようにしている。PI補償回路(もしくはP補償回路)33の出力は、ダイオード34,35を介して各方向の電磁石171 ,172 を駆動するパワー回路36,37に入力される。電磁石171 ,172 は、図1に示したスラスト板13aに対向する一対の電磁石17であり、吸引力しか作用しないため、予めダイオード34,35で電流の向きを決め、2個の電磁石171 ,172 を選択的に駆動するようにしている。
In the
同じくブロック図で示す図3のモータ用コントローラ29では、回転同期指令信号を基に、モータロータ28aの回転角をフィードバック信号として位相調整回路38でモータ駆動電流の位相調整が行われ、その調整結果に応じたモータ駆動電流をモータ駆動回路39からモータステータ28bに供給することによって、定回転制御が行われる。前記回転同期指令信号は、モータロータ28aに設けられた回転角度検出センサ(図示せず)の出力に応じて演算される。
In the
この構成のタービンユニット5は、例えば空気サイクル冷凍冷却システムに適用されて、冷却媒体となる空気を後段の熱交換器(ここでは図示せず)により効率良く熱交換できるように、コンプレッサ6で圧縮して温度上昇させ、さらに後段の前記熱交換器で冷却された空気を、膨張タービン7により、目標温度、例えば−30℃〜−60℃程度の極低温まで断熱膨張により冷却して排出するように使用される。
このような使用例において、このタービンユニット5は、コンプレッサ翼車6aおよびタービン翼車7aが、前記スラスト板13aとモータロータ28aと共通の主軸13に嵌合し、モータ28の動力とタービン翼車7aで発生した動力のどちらか一方または両方によりコンプレッサ翼車6aを駆動するものとしている。このため、各翼車6a,7aの適切な隙間d1,d2を保って主軸13の安定した高速回転が得られ、かつ軸受15,16の長期耐久性の向上、寿命の向上が得られる。
The
In such a use example, the
すなわち、タービンユニット5の圧縮,膨張の効率を確保するためには、各翼車6a,7aとハウジング6b,7bとの隙間d1,d2を微小に保つ必要がある。例えば、このタービンユニット5を空気サイクル冷凍冷却システムに適用する場合には、この効率確保が重要となる。これに対して、主軸13を転がり形式の軸受15,16により支持するため、転がり軸受の持つアキシアル方向位置の規制機能により、主軸13のアキシアル方向位置がある程度規制され、各翼車6a,7aとハウジング6b,7bとの微小隙間d1,d2を一定に保つことができる。
That is, in order to ensure the efficiency of compression and expansion of the
しかし、タービンユニット5の主軸13には、各翼車6a,7aに作用する空気の圧力でスラスト力がかかる。また、空気冷却システムで使用するタービンユニット5では、1分間に例えば8万〜10万回転程度の非常に高速の回転となる。そのため、主軸13を回転支持する転がり軸受15,16に上記スラスト力が作用すると、軸受15,16の長期耐久性が低下する。
この実施形態は、上記スラスト力を電磁石17で支持するため、非接触でトルクの増大を抑えながら、主軸13の支持用の転がり軸受15,16に作用するスラスト力を軽減することができる。この場合に、主軸13に作用するスラスト力を検出するセンサ18と、このセンサ18の出力に応じて前記電磁石17による支持力を制御する磁気軸受用コントローラ19とを設けたため、転がり軸受15,16を、その軸受仕様に応じてスラスト力に対し最適な状態で使用することができる。
特に、軸方向に並べて主軸13に設けられた2つのスラスト板13a,13bの軸方向外側に2つの電磁石17を配置して磁気軸受ユニットを構成すると共に、前記両スラスト板13a,13bで挟まれる位置にアキシアルギャップ型のモータ28を配置してモータユニットを構成することにより、磁気軸受ユニットとモータユニットをコンパクトな一体構造としているため、主軸53の軸長を短くでき、それだけ主軸13の固有振動数が高くなって、主軸13を高速回転させることができる。
However, a thrust force is applied to the
In this embodiment, since the thrust force is supported by the
In particular, two
図4は、上記タービンユニット5を用いた空気サイクル冷凍冷却システムの全体の構成を示す。この空気サイクル冷凍冷却システムは、冷凍倉庫等の被冷却空間10の空気を直接に冷媒として冷却するシステムであり、被冷却空間10にそれぞれ開口した空気の取入口1aから排出口1bに至る空気循環経路1を有している。この空気循環経路1に、予圧縮手段2、第1の熱交換器3、空気サイクル冷凍冷却用タービンユニット5のコンプレッサ6、第2の熱交換器3、中間熱交換器9、および前記タービンユニット5の膨張タービン7が順に設けられている。中間熱交換器9は、同じ空気循環経路1内で取入口1aの付近の流入空気と、後段の圧縮で昇温し、冷却された空気との間で熱交換を行うものであり、取入口1aの付近の空気は熱交換器9a内を通る。
FIG. 4 shows the overall configuration of an air cycle refrigeration cooling system using the
予圧縮手段2はブロア等からなり、モータ2aにより駆動される。第1の熱交換器3および第2の熱交換器8は、冷却媒体を循環させる熱交換器3a,8aをそれぞれ有し、熱交換器3a,8a内の水等の冷却媒体と空気循環経路1の空気との間で熱交換を行う。各熱交換器3a,8aは、冷却塔11に配管接続されており、熱交換で昇温した冷却媒体が冷却塔11で冷却される。なお、前記予圧縮手段2を含まない構成の空気サイクル冷凍冷却システムでもよい。
The pre-compression means 2 comprises a blower or the like and is driven by a
この空気サイクル冷凍冷却システムは、被冷却空間10を0℃〜−60℃程度に保つシステムであり、被冷却空間10から空気循環経路1の取入口1aに0℃〜−60℃程度で1気圧の空気が流入する。なお、以下に示す温度および気圧の数値は、一応の目安となる一例である。取入口1aに流入した空気は、中間熱交換器9により、空気循環経路1中の後段の空気の冷却に使用され、30℃まで昇温する。この昇温した空気は1気圧のままであるが、予圧縮手段2により1.4気圧に圧縮させられ、その圧縮により、70℃まで昇温する。第1の熱交換器3は、昇温した70℃の空気を冷却すれば良いため、常温程度の冷水であっても効率良く冷却することができ、40℃に冷却する。
This air cycle refrigeration cooling system is a system that keeps the space to be cooled 10 at about 0 ° C. to −60 ° C., and is 1 atmosphere at about 0 ° C. to −60 ° C. from the space to be cooled 10 to the inlet 1a of the air circulation path 1. Inflow of air. Note that the numerical values of temperature and atmospheric pressure shown below are examples that serve as a guide. The air that has flowed into the intake port 1a is used by the
熱交換により冷却された40℃,1.4気圧の空気が、タービンユニット5のコンプレッサ6により、1.8気圧まで圧縮され、この圧縮により70℃程度に昇温した状態で、第2の熱交換器8により40℃に冷却される。この40℃の空気は、中間熱交換器9で−30℃の空気により−20℃まで冷却される。気圧はコンプレッサ6から排出された1.8気圧が維持される。
中間熱交換器9で−20℃まで冷却された空気は、タービンユニット5の膨張タービン7により断熱膨張され、−55℃まで冷却されて排出口1bから被冷却空間10に排出される。この空気サイクル冷凍冷却システムは、このような冷凍サイクルを行う。
The air at 40 ° C. and 1.4 atm cooled by heat exchange is compressed to 1.8 atm by the
The air cooled to −20 ° C. by the
この空気サイクル冷凍冷却システムでは、タービンユニット5において、各翼車6a,7aの適切な隙間d1,d2を保って主軸13の安定した高速回転が得られ、かつ軸受15,16の長期耐久性の向上、寿命の向上が得られることで、軸受15,16の長期耐久性が向上することから、タービンユニット5の全体として、しいては空気サイクル冷凍冷却システムの全体としての信頼性が向上する。このように、空気サイクル冷凍冷却システムのネックとなっているタービンユニット5の主軸軸受15,16の安定した高速回転、長期耐久性、信頼性が向上するため、空気サイクル冷凍冷却システムの実用化が可能となる。
In this air cycle refrigeration cooling system, in the
2…予圧縮手段
3…第1の熱交換器
5…タービンユニット
6…コンプレッサ
6a…コンプレッサ翼車
7…膨張タービン
7a…タービン翼車
8…第2の熱交換器
13…主軸
13a,13b…スラスト板
14…スピンドルハウジング
15,16…転がり軸受
17…電磁石
18…センサ
19…磁気軸受用コントローラ
28…コアレスモータ
28a…モータロータ
28aa…永久磁石
28b…モータステータ
2 ... Pre-compression means 3 ...
Claims (4)
前記スラスト板は軸方向に離れて2つ設けられ、これら2つのスラスト板は、片面に電磁石ターゲットが形成され、もう片方の面にはモータロータ用の永久磁石が配置され、前記モータロータ用の永久磁石は前記2つのスラスト板の対向する面に配置されており、前記永久磁石は異極が互いに対向するように、周方向に等ピッチで配置され、前記永久磁石に挟まれるように、モータステータが配置されてスピンドルハウジングに取付けられており、前記モータロータおよび前記モータステータ間のローレンツ力により主軸を回転させるアキシアルギャップ型のコアレスモータを有するものであって、
前記転がり軸受に作用するアキシアル方向の力を検出するセンサの出力に応じて、前記電磁石を制御するコントローラを有し、
転がり軸受と転がり軸受の支持系とで形成される剛性バネの剛性値が電磁石とモータ部とで形成される合成バネの負の剛性値よりも大という関係を有することを特徴とするモータ一体型の磁気軸受装置。 A rolling bearing and a magnetic bearing are used in combination, the rolling bearing supports the radial load, the magnetic bearing supports one or both of the axial load and the bearing preload, and the electromagnet constituting the magnetic bearing is a strong force provided on the main shaft. It is attached to the spindle housing so as to face the flange-shaped thrust plate made of magnetic material without contact,
Two thrust plates are provided apart in the axial direction, and these two thrust plates have an electromagnet target formed on one side and a permanent magnet for a motor rotor disposed on the other side, and the permanent magnet for the motor rotor Are arranged on opposite surfaces of the two thrust plates, the permanent magnets are arranged at equal pitches in the circumferential direction so that the different poles face each other, and the motor stator is sandwiched between the permanent magnets. An axial gap type coreless motor that is disposed and attached to a spindle housing and rotates a main shaft by a Lorentz force between the motor rotor and the motor stator,
A controller for controlling the electromagnet according to an output of a sensor for detecting an axial force acting on the rolling bearing;
A motor integrated type characterized in that the rigidity value of the rigid spring formed by the rolling bearing and the support system of the rolling bearing is larger than the negative rigidity value of the synthetic spring formed by the electromagnet and the motor unit. Magnetic bearing device.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005356035A JP4799159B2 (en) | 2005-12-09 | 2005-12-09 | Motor-integrated magnetic bearing device |
CN2006800460403A CN101326378B (en) | 2005-12-09 | 2006-11-13 | Motor integrated magnetic bearing device |
DE112006003333T DE112006003333T5 (en) | 2005-12-09 | 2006-11-13 | In a motor built-in magnetic bearing device |
US12/095,933 US7723883B2 (en) | 2005-12-09 | 2006-11-13 | Motor built-in magnetic bearing device |
PCT/JP2006/322560 WO2007066474A1 (en) | 2005-12-09 | 2006-11-13 | Motor built-in magnetic bearing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005356035A JP4799159B2 (en) | 2005-12-09 | 2005-12-09 | Motor-integrated magnetic bearing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007162727A true JP2007162727A (en) | 2007-06-28 |
JP4799159B2 JP4799159B2 (en) | 2011-10-26 |
Family
ID=38245873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005356035A Expired - Fee Related JP4799159B2 (en) | 2005-12-09 | 2005-12-09 | Motor-integrated magnetic bearing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4799159B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008015776A1 (en) * | 2006-08-03 | 2008-02-07 | Ntn Corporation | Magnetic bearing device integral with motor |
WO2008015777A1 (en) * | 2006-08-03 | 2008-02-07 | Ntn Corporation | Air cycle refrigerating machine turbine unit |
WO2008018169A1 (en) * | 2006-08-11 | 2008-02-14 | Ntn Corporation | Motor-integrated magnetic bearing device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6026817A (en) * | 1983-07-25 | 1985-02-09 | Toyota Central Res & Dev Lab Inc | Bearing device |
JPH08261237A (en) * | 1995-03-17 | 1996-10-08 | Aisin Seiki Co Ltd | Gas turbine engine |
JPH11503223A (en) * | 1995-04-05 | 1999-03-23 | ロートフロー・コーポレイション | Cooling system |
JP2002095209A (en) * | 2000-09-14 | 2002-03-29 | Mitsubishi Heavy Ind Ltd | Flywheel apparatus for storing electric power |
JP2003065621A (en) * | 2001-08-24 | 2003-03-05 | Shimadzu Corp | Cooling system |
-
2005
- 2005-12-09 JP JP2005356035A patent/JP4799159B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6026817A (en) * | 1983-07-25 | 1985-02-09 | Toyota Central Res & Dev Lab Inc | Bearing device |
JPH08261237A (en) * | 1995-03-17 | 1996-10-08 | Aisin Seiki Co Ltd | Gas turbine engine |
JPH11503223A (en) * | 1995-04-05 | 1999-03-23 | ロートフロー・コーポレイション | Cooling system |
JP2002095209A (en) * | 2000-09-14 | 2002-03-29 | Mitsubishi Heavy Ind Ltd | Flywheel apparatus for storing electric power |
JP2003065621A (en) * | 2001-08-24 | 2003-03-05 | Shimadzu Corp | Cooling system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008015776A1 (en) * | 2006-08-03 | 2008-02-07 | Ntn Corporation | Magnetic bearing device integral with motor |
WO2008015777A1 (en) * | 2006-08-03 | 2008-02-07 | Ntn Corporation | Air cycle refrigerating machine turbine unit |
WO2008018169A1 (en) * | 2006-08-11 | 2008-02-14 | Ntn Corporation | Motor-integrated magnetic bearing device |
Also Published As
Publication number | Publication date |
---|---|
JP4799159B2 (en) | 2011-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007162723A (en) | Motor integrated magnetic bearing device | |
JP2008190376A (en) | Turbine unit for air cycle refrigerating machine | |
JP2008283813A (en) | Motor-integrated magnetic bearing device | |
WO2008032430A1 (en) | Motor-integrated magnetic bearing device | |
JP2007162726A (en) | Motor integrated magnetic bearing device | |
JP2007162725A (en) | Motor integrated magnetic bearing device | |
JP2008038970A (en) | Motor integrated magnetic bearing device | |
JP2007162493A (en) | Compression expansion turbine system | |
JP2008082216A (en) | Compression expansion turbine system | |
JP2008072809A (en) | Magnetic bearing arrangement integral with motor | |
JP2009062848A (en) | Motor integrated type magnetic bearing device | |
JP2007162714A (en) | Magnetic bearing device | |
JP2009050066A (en) | Motor-integrated magnetic bearing apparatus | |
JP4799159B2 (en) | Motor-integrated magnetic bearing device | |
JP2008072808A (en) | Magnetic bearing arrangement integrated with motor | |
JP2007162492A (en) | Compression expansion turbine system | |
JP2008039228A (en) | Turbine unit for air cycle refrigerating machine | |
JP2008082426A (en) | Magnetic bearing device | |
JP2008072810A (en) | Magnetic bearing arrangement integrated with motor | |
JP2008187829A (en) | Motor-integrated magnetic bearing device | |
JP4969272B2 (en) | Motor-integrated magnetic bearing device | |
JP2010007726A (en) | Motor-integrated magnetic bearing device | |
JP2007162491A (en) | Compression expansion turbine system | |
JP2007162724A (en) | Motor integrated magnetic bearing device | |
JP2008045586A (en) | Motor integrated magnetic bearing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110802 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110802 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140812 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4799159 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |