JPS602663A - Production of thin film - Google Patents

Production of thin film

Info

Publication number
JPS602663A
JPS602663A JP10913783A JP10913783A JPS602663A JP S602663 A JPS602663 A JP S602663A JP 10913783 A JP10913783 A JP 10913783A JP 10913783 A JP10913783 A JP 10913783A JP S602663 A JPS602663 A JP S602663A
Authority
JP
Japan
Prior art keywords
zno
thin film
target
substrate
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10913783A
Other languages
Japanese (ja)
Other versions
JPS6320302B2 (en
Inventor
Takashi Ushikubo
牛窪 孝
Ryozo Furukawa
古川 量三
Masao Kobayashi
正男 小林
Takeshi Kamijo
健 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP10913783A priority Critical patent/JPS602663A/en
Publication of JPS602663A publication Critical patent/JPS602663A/en
Publication of JPS6320302B2 publication Critical patent/JPS6320302B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/544Controlling the film thickness or evaporation rate using measurement in the gas phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To control freely the ZnO/SiO2 ratio of a sputtered film in the stage of forming the sputtered film consisting of ZnO and SiO2 on a base plate by regulating the negative biasing voltage to be impressed on the base plate. CONSTITUTION:A target 23 contg. ZnO and SiO2 and a base plate 24 are placed to face each other and Ar<+> plasma 22 is generated between both by a high frequency power source 21. ZnO and SiO2 are released from the target 23 by the sputtering effect generated when the plasma 22 collides against the target 23, by which a thin film mixed with ZnO and SiO2 is formed on the plate 34. The Ar<+> ion of the plasma 22 in this case is also made incident to the surface of the plate 24 by the negative biasing voltage impressed by a DC power source 26 to sputter again the thin film 25 on the surface of the plate 24. Since the value of ZnO/SiO2 of the film 25 can be freely adjusted by regulating the negative biasing voltage value to be impressed, the film 25 having different ZnO/SiO2 ratios is freely formed with one target.

Description

【発明の詳細な説明】 (技術分野) この発明は、ZnOと5iftの任意の混合比の膜を得
ることができるようにした薄膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing a thin film that makes it possible to obtain a film with an arbitrary mixing ratio of ZnO and 5ift.

(従来技術) 従来、スパッタ装置によ、9ZnOと5i02 の混合
膜を作成する場合第1図に示すように、アルゴンプラズ
マ(以下Ar+プラズマ)11が任意の混合比のZnO
と810.からなるターゲット12に衝突し、その際、
生じるスパッタ効果により、ターゲット物質であるZn
O、5in2がターゲット12よシ放出され、基板13
上に付着して、ZnOと5in2の混合膜14が作成さ
れる。
(Prior art) Conventionally, when creating a mixed film of 9ZnO and 5i02 using a sputtering apparatus, as shown in FIG.
and 810. It collides with target 12 consisting of
Due to the sputtering effect that occurs, the target material Zn
O, 5in2 is emitted from the target 12, and the substrate 13
A mixed film 14 of ZnO and 5 in 2 is deposited thereon.

この際基板13上に付着するZnOと5i02の混合膜
14はターゲット12の混合比と関係があシ、種々の混
合比(ZnO/St O2)の薄膜を作成するには、そ
れぞれの混合比に対応するターゲット12を用意しなけ
ればならず、多数のターゲットを用意するために、多額
な費用がかかり、さらに、それらのターゲットを交換す
るために多額の工数が必要であるという欠点があった。
At this time, the mixed film 14 of ZnO and 5i02 deposited on the substrate 13 has a relationship with the mixing ratio of the target 12, and in order to create thin films with various mixing ratios (ZnO/StO2), it is necessary to It is necessary to prepare corresponding targets 12, which requires a large amount of cost to prepare a large number of targets, and furthermore, there is a drawback that a large amount of man-hours are required to replace the targets.

(発明の目的) この発明は、上記従来の欠点を解決するためになされた
もので、1種類の混合比の(ZnO/Stow)ターゲ
ットから任意の混合比の薄膜が作成でき、工数の簡略と
費用の削減を期することのできる薄膜の製造方法を提供
することを目的とする。
(Purpose of the Invention) This invention was made to solve the above-mentioned conventional drawbacks, and it is possible to create a thin film with any mixture ratio from a target with one type of mixture ratio (ZnO/Stow), simplify the number of steps, and An object of the present invention is to provide a method for manufacturing a thin film that can reduce costs.

(発明の構成) この発明の薄膜の製造方法は、酸化亜鉛と酸化硅素を任
意の混合比で混合したターゲットと基板間に高周波電源
を印加して基板とターゲット間にAr” 7’ラズマを
生成することによシスバッタリングを行なって上記ター
ゲットから酸化亜鉛と酸化硅素を放出させて上記基板上
に酸化亜鉛と酸化硅素の混合薄膜を形成し、上記Ar+
プラズマによシ上記基板上の混合薄膜に再スパツタリン
グを行うようにしたものである。
(Structure of the Invention) The method for producing a thin film of the present invention involves applying a high frequency power source between a target containing zinc oxide and silicon oxide in an arbitrary mixing ratio and a substrate to generate Ar"7' plasma between the substrate and the target. By performing cis battering, zinc oxide and silicon oxide are released from the target to form a mixed thin film of zinc oxide and silicon oxide on the substrate, and the Ar+
The mixed thin film on the substrate is re-sputtered using plasma.

(実施例) 以下、この発明の薄膜の製造方法の実施例について図面
に基づき説明する。第2図はその一実施に適用されるス
パッタ装置を示す図である。この第2図において、21
は高周波電源であシ、その一方の電極はアースされ、他
方の電極はターゲット23に接続されている。
(Example) Hereinafter, an example of the method for manufacturing a thin film of the present invention will be described based on the drawings. FIG. 2 is a diagram showing a sputtering apparatus applied to one implementation. In this Figure 2, 21
is a high frequency power source, one electrode of which is grounded and the other electrode connected to the target 23.

ターゲット23はZnOとSin、で構成され、基板2
4上に対向しておシ、この基板24とターゲット23間
にAr+プラズマ22が発生する↓うになっている。基
板24上にZnOとSin、の混合薄膜25が形成され
るようになっている。
The target 23 is made of ZnO and Sin, and is
Ar+ plasma 22 is generated between the substrate 24 and the target 23, facing the substrate 4. A mixed thin film 25 of ZnO and Sin is formed on the substrate 24.

基板24はインダクタンス要素子L1を介して直流バイ
アス電源26の負極に接続されているとともに、コンデ
ンサC1を介してアースされている。直流バイアス電源
26の正極はアースされている。このインダクタンス要
素子L1とコンデンサC1は高周波電源21の高周波成
分が直流バイアス電圧に印加するのを阻止するだめのフ
ィルタである。
The substrate 24 is connected to the negative electrode of a DC bias power supply 26 via an inductance element L1, and is grounded via a capacitor C1. The positive electrode of the DC bias power supply 26 is grounded. This inductance element L1 and capacitor C1 are a filter that prevents the high frequency component of the high frequency power supply 21 from being applied to the DC bias voltage.

次に、この第2図に示すスパッタ装置によシ、この発明
の薄膜の製造方法について説明する。
Next, a method for manufacturing a thin film according to the present invention will be explained using the sputtering apparatus shown in FIG.

ZnOとSin、の混合薄膜25を基板24上に作成さ
せるためにはまず高周波電源21によシAr+プラズマ
22を発生させる。そのAr+プラズマ21はターゲッ
ト23と衝突する際に生じるスパッタ効果によシ、ター
ゲット23の構成物質であるZn0とSin、を放出す
る。
In order to form a mixed thin film 25 of ZnO and Sin on the substrate 24, first an Ar+ plasma 22 is generated by the high frequency power source 21. Due to the sputtering effect produced when the Ar+ plasma 21 collides with the target 23, Zn0 and Sin, which are constituent substances of the target 23, are emitted.

次に放出されたZnOとStO,はAr+プラズマ22
中を通過した後、基板24の表面に付着しZnOと5i
02の混合薄膜25を形成する。
Next, the released ZnO and StO are Ar+ plasma 22
After passing through the inside, ZnO and 5i adhere to the surface of the substrate 24.
02 mixed thin film 25 is formed.

また、Ar+イオンプラズマ21のAr+イオンは基板
25に印加した負の直流バイアス電圧26によシ、基板
24の表面にも入射し、基板240表面に付着した混合
薄膜(znO/sio、)25を再びスパッタ効果によ
シ放出する。この効果をここでは再スパツタ効果と定義
する。
Further, the Ar+ ions of the Ar+ ion plasma 21 are also incident on the surface of the substrate 24 due to the negative DC bias voltage 26 applied to the substrate 25, and the mixed thin film (znO/sio) 25 attached to the surface of the substrate 240 is It is emitted again by the sputtering effect. This effect is defined here as a resputter effect.

この再スパツタ効果が生じる割合、すなわち一定量のA
r+プラズマ22が基板24の表面に単位エネルギで入
射した場合の基板表面の薄膜構成物質が再スパツタされ
る割合は、物質によシ異なり、その物質特有のものであ
る。
The rate at which this re-sputtering effect occurs, that is, a certain amount of A
When the r+ plasma 22 is incident on the surface of the substrate 24 with unit energy, the rate at which the thin film constituent material on the substrate surface is re-sputtered varies depending on the material and is unique to that material.

第3図はターゲット23にZnOを用いた場合の基板2
40表面に付着するZnO薄膜の膜厚と付着時間の関係
の一例を示すものである。同図よシ、ZnOの付着する
速度は約145715)である。
Figure 3 shows the substrate 2 when ZnO is used for the target 23.
4 shows an example of the relationship between the thickness of the ZnO thin film deposited on the surface of No. 40 and the deposition time. As shown in the figure, the rate at which ZnO is deposited is approximately 145,715).

第4図は第3図と同条件でターゲットに5102を用い
た場合のStO,膜の膜厚と付着時間の関係の一例を示
すものである。同図より、5i02の付着する速度は約
66人勺・である・なお、第4図ではスパッタ電源とし
ての高周波電源21は、13.56MHz 。
FIG. 4 shows an example of the relationship between StO, film thickness, and deposition time when 5102 is used as a target under the same conditions as in FIG. 3. From the same figure, the speed at which 5i02 adheres is approximately 66 MHz. In FIG. 4, the high frequency power source 21 as a sputtering power source is 13.56 MHz.

250Wのものを使用した場合を示している。The case where a 250W one is used is shown.

第3図、第4図よシ、ZnOとSiO□が付着する割合
dznO/dsiOt = 2.2となる。この値は、
同じエネルギ同数のAr+プラズマが入射した場合、S
iO,に比較して、znOが2.2倍スパッタされるこ
とを示している。また、この関係は基板24の上で行な
われる再スパツタ効果でも同様になシたつ。
As shown in FIGS. 3 and 4, the adhesion ratio of ZnO and SiO□ is dznO/dsiOt=2.2. This value is
When the same energy and the same number of Ar+ plasmas are incident, S
This shows that znO is sputtered 2.2 times more than iO. This relationship also holds true for the resputtering effect performed on the substrate 24.

さらに、同一物質が再スパツタされる割合は、基板に印
加する直流バイアス電圧の大きさに比例することは明白
である。したがって再スパツタ効果の大きさは基板に印
加バイアス電圧によって制御できることが明白である。
Furthermore, it is clear that the rate at which the same material is resputtered is proportional to the magnitude of the DC bias voltage applied to the substrate. It is therefore clear that the magnitude of the resputtering effect can be controlled by the bias voltage applied to the substrate.

これにより、基板24上に形成される混合薄膜25の混
合比(Zn O/St Ox )は基板24に印加する
バイアス電圧によシ制御が可能となる。
Thereby, the mixture ratio (ZnO/StOx) of the mixed thin film 25 formed on the substrate 24 can be controlled by the bias voltage applied to the substrate 24.

以上のように、第1の実施例では、基板24に印加する
バイアス電圧にょシ基板24上に形成される混゛合薄膜
25の混合比(znO/Si O,)が任意に制御でき
るため、次のように利点がある。
As described above, in the first embodiment, since the bias voltage applied to the substrate 24 and the mixture ratio (znO/SiO,) of the composite thin film 25 formed on the substrate 24 can be controlled arbitrarily, It has the following advantages:

α)混合薄膜25の混合比(ZnO/5io2)カハイ
アス電圧により制御できるため、従来のように要求され
る混合比の種類だけターゲット23を用意する必要がな
くなシ、費用の面で有利となる。
α) Since the mixture ratio (ZnO/5io2) of the mixed thin film 25 can be controlled by the Kahyas voltage, there is no need to prepare targets 23 for the types of mixture ratios required as in the past, which is advantageous in terms of cost. .

(2)要求される混合薄膜25の混合比に対応するター
ゲット23を作る必要がないため、ターゲット23を作
る工数が省略できる。
(2) Since it is not necessary to create a target 23 corresponding to the required mixing ratio of the mixed thin film 25, the number of steps required to create the target 23 can be omitted.

(3) ターゲット23により混合薄膜の混合比(Zn
O/5io2)が決定されていた従来法は混合比がディ
ジタルで変化したのに対して、この発明では、アナログ
で混合比の制御が可能となシ、よ勺精密な制御が可能と
なる。
(3) The target 23 determines the mixing ratio of the mixed thin film (Zn
In the conventional method in which O/5io2) was determined, the mixing ratio was changed digitally, whereas in the present invention, the mixing ratio can be controlled in an analog manner, making it possible to control the mixing ratio more precisely.

(発明の効果) 以上のように、この発明の薄膜の製造方法によれば、酸
化亜鉛と酸化硅素を任意の混合比で混合したターゲット
と基板間に高周波電圧を印加して、このターゲットと基
板間にAr+プラズマを生成させ、このプラズマによジ
ターゲットから酸化亜鉛と酸化硅素を放出させて基板上
に混合薄膜を形成するとともに、この混合薄膜に上記A
r+プラズマにより再スパツタリングを行なうようにし
たので、1種類の混合比(ZnO/5io2)のターゲ
ットから、要求される混合比(ZnO/St O,)の
薄膜が任意に作成できる利点がある。これにより種々な
混合比が要求される製造工程に利用することができる。
(Effects of the Invention) As described above, according to the thin film manufacturing method of the present invention, a high frequency voltage is applied between the target and the substrate in which zinc oxide and silicon oxide are mixed at an arbitrary mixing ratio, and the target and the substrate are In the meantime, Ar+ plasma is generated, and this plasma releases zinc oxide and silicon oxide from the di-target to form a mixed thin film on the substrate, and the above-mentioned A is applied to this mixed thin film.
Since the re-sputtering is performed using r+ plasma, there is an advantage that a thin film having a desired mixture ratio (ZnO/St 2 O,) can be arbitrarily created from a target having one type of mixture ratio (ZnO/5io2). This allows it to be used in manufacturing processes that require various mixing ratios.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の薄膜の製造方法を説明するための模式図
、第2図はこの発明の薄膜の製造方法の一実施例を説明
するための模式図、第3図は、ターゲットにZnOを用
いた場合の基板表面に付着するZnO薄膜の膜厚と付着
時間の関係の一例を示す図、第4図は第3図と同条件で
、ターゲットに5iftを用いた場合のSin、薄膜の
膜厚と付着時間の関係の一例を示す図である。 21・・・高周波電源、22・・・Ar+プラズマ、2
3・・・ターゲット、24・・・基板、25・・・薄膜
、26・・・直流バイアス電圧。 第1図 第2図 第3図 スパンタイ寸層晴間(ゲ) 第4図 スバ・/タイ寸、11日り開はン
FIG. 1 is a schematic diagram for explaining a conventional thin film manufacturing method, FIG. 2 is a schematic diagram for explaining an embodiment of the thin film manufacturing method of the present invention, and FIG. 3 is a schematic diagram for explaining an example of the thin film manufacturing method of the present invention. Figure 4 shows an example of the relationship between the thickness of the ZnO thin film that adheres to the substrate surface and the deposition time when the ZnO thin film is deposited on the substrate surface. It is a figure which shows an example of the relationship between thickness and adhesion time. 21...High frequency power supply, 22...Ar+plasma, 2
3...Target, 24...Substrate, 25...Thin film, 26...DC bias voltage. Fig. 1 Fig. 2 Fig. 3 Spantai sun layer clear space (ge) Fig. 4 Suva/Tai sun, opening on the 11th

Claims (2)

【特許請求の範囲】[Claims] (1)酸化亜鉛と酸化硅素を任意の混合比で混合したタ
ーゲットと基板間に高周波電圧を印加してこの両者間に
Ar+プラズマを発生させ、このAr+プラズマによシ
上記ターゲットから酸化亜鉛と酸化硅素を放出させて上
記基板に酸化亜鉛と酸化硅素の混合薄膜を形成するとと
もに上記Ar+プラズマによシ上記混合薄膜に再スパツ
タリングを行なうことを特徴とする薄膜の製造方法。
(1) A high frequency voltage is applied between a target containing zinc oxide and silicon oxide mixed at an arbitrary mixing ratio and a substrate to generate Ar+ plasma between the two, and this Ar+ plasma is used to transfer zinc oxide and oxide from the target. A method for producing a thin film, comprising: releasing silicon to form a mixed thin film of zinc oxide and silicon oxide on the substrate; and re-sputtering the mixed thin film using the Ar+ plasma.
(2)再スパツタリングは基板に直流ノ(イアスミ圧を
印加して発生することを特徴とする特許請求の範囲第1
項記載の薄膜の製造方法。
(2) The re-sputtering is generated by applying direct current (Iasumi pressure) to the substrate.
2. Method for producing a thin film described in Section 1.
JP10913783A 1983-06-20 1983-06-20 Production of thin film Granted JPS602663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10913783A JPS602663A (en) 1983-06-20 1983-06-20 Production of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10913783A JPS602663A (en) 1983-06-20 1983-06-20 Production of thin film

Publications (2)

Publication Number Publication Date
JPS602663A true JPS602663A (en) 1985-01-08
JPS6320302B2 JPS6320302B2 (en) 1988-04-27

Family

ID=14502525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10913783A Granted JPS602663A (en) 1983-06-20 1983-06-20 Production of thin film

Country Status (1)

Country Link
JP (1) JPS602663A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194809A (en) * 1985-02-25 1986-08-29 Toshiba Corp Thin film forming apparatus
JPS62287071A (en) * 1986-06-06 1987-12-12 Tadahiro Omi Semiconductor producing apparatus
WO2005111257A2 (en) * 2004-04-27 2005-11-24 Ppg Industries Ohio, Inc. Effects of methods of manufacturing sputtering targets on characteristics of coatings
JP2007238107A (en) * 2006-03-06 2007-09-20 Kyodo Printing Co Ltd Auxiliary band for opening

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194809A (en) * 1985-02-25 1986-08-29 Toshiba Corp Thin film forming apparatus
JPS62287071A (en) * 1986-06-06 1987-12-12 Tadahiro Omi Semiconductor producing apparatus
WO1987007651A1 (en) * 1986-06-06 1987-12-17 Tadahiro Ohmi Semiconductor manufacturing apparatus
US4874494A (en) * 1986-06-06 1989-10-17 Tadahiro Ohmi Semiconductor manufacturing apparatus
JPH0359986B2 (en) * 1986-06-06 1991-09-12 Tadahiro Oomi
WO2005111257A2 (en) * 2004-04-27 2005-11-24 Ppg Industries Ohio, Inc. Effects of methods of manufacturing sputtering targets on characteristics of coatings
WO2005111257A3 (en) * 2004-04-27 2007-11-15 Ppg Ind Ohio Inc Effects of methods of manufacturing sputtering targets on characteristics of coatings
US9051211B2 (en) 2004-04-27 2015-06-09 Ppg Industries Ohio, Inc. Effects of methods of manufacturing sputtering targets on characteristics of coatings
JP2007238107A (en) * 2006-03-06 2007-09-20 Kyodo Printing Co Ltd Auxiliary band for opening

Also Published As

Publication number Publication date
JPS6320302B2 (en) 1988-04-27

Similar Documents

Publication Publication Date Title
EP0198459A3 (en) Thin film forming method through sputtering and sputtering device
CA2214546A1 (en) Method and apparatus for the high rate automated manufacture of thin films
US3945902A (en) Metallized device and method of fabrication
JPS602663A (en) Production of thin film
US3986944A (en) Method for obtaining adhesion of multilayer thin films
JPS61235560A (en) Magnetron sputtering device
JPH01195273A (en) Method and device for sputtering
JP3639453B2 (en) Compound semiconductor thin film manufacturing apparatus and compound semiconductor thin film manufacturing method using the same
US3630871A (en) Cathodic sputtering method
JP3506782B2 (en) Manufacturing method of optical thin film
JPS61250166A (en) Production of multi-component thin film
JPS61261472A (en) Bias sputtering method and its apparatus
JPH02236277A (en) Sputtering method
US4040927A (en) Cadmium tellurite thin films
JP2526295B2 (en) How to make an exposure mask
JPH02125862A (en) Formation of oxide superconducting film
JPS60194069A (en) Sputter target and sputtering method
JPH0967671A (en) Production of titanium nitride film
JPS599169A (en) Production of thin film
GB1145348A (en) Improvements in and relating to sputtering
JP2524179B2 (en) Sputtering method
JPS5538947A (en) Forming method of metallic compound coating
JPS61243171A (en) Multi-element sputtering device
JPS61240661A (en) Forming method of thick film metal pattern
JPS5952526A (en) Method for sputtering metal oxide film