JPS6026603A - Amorphous alloy powder - Google Patents

Amorphous alloy powder

Info

Publication number
JPS6026603A
JPS6026603A JP58136607A JP13660783A JPS6026603A JP S6026603 A JPS6026603 A JP S6026603A JP 58136607 A JP58136607 A JP 58136607A JP 13660783 A JP13660783 A JP 13660783A JP S6026603 A JPS6026603 A JP S6026603A
Authority
JP
Japan
Prior art keywords
alloy powder
amorphous alloy
powder
crystalline oxide
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58136607A
Other languages
Japanese (ja)
Inventor
Koichiro Inomata
浩一郎 猪俣
Takao Sawa
孝雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58136607A priority Critical patent/JPS6026603A/en
Publication of JPS6026603A publication Critical patent/JPS6026603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the oxidation resistance and corrosion resistance of amorphous alloy powder and the wetting property to inorg. matter by forming an oxidized film contg. crystalline oxide on the surface of the alloy powder. CONSTITUTION:Amorphous alloy powder having a prescribed composition is treated with steam at high temp. and pressure in an autoclave or the like to form an oxidized film contg. crystalline oxide on the surface of the alloy powder. The crystalline oxide contains at least one among Co, Fe and Ni, and the preferred thickness of the oxidized film is about 0.05-5mum. The resulting amorphous alloy powder has superior oxidation resistance, corrosion resistance and an improved wetting property to inorg. matter, so it is very useful in the manufacture of magnetic core, etc.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非晶質合金粉末に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to amorphous alloy powder.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

液体状態から超急冷して作製される非晶質合金は従来、
テープ状のものがよく知られておシ、一部は既に実用化
されている。
Conventionally, amorphous alloys made by ultra-quenching from a liquid state are
Tape-shaped products are well known, and some have already been put into practical use.

一方、最近粉末状の非晶質合金も作製されるようになシ
、その応用が注目されている。こうした非晶質合金の粉
末は水アトマイズ法、溶射法、双ロール法などを用いて
作製することができる。また、テープ状非晶質合金を水
素ガス雰囲気中で熱処理して脆化させ、それを粉砕して
非晶質合金粉末を得る方法(水素脆化法)も知られてい
る。これらの粉末の形状は球状あるいはシん片状である
ことが多い。
On the other hand, powdered amorphous alloys have recently been produced, and their applications are attracting attention. Such amorphous alloy powder can be produced using a water atomization method, a thermal spraying method, a twin roll method, or the like. Also known is a method (hydrogen embrittlement method) in which a tape-shaped amorphous alloy is heat-treated in a hydrogen gas atmosphere to embrittle it, and then pulverized to obtain an amorphous alloy powder. The shape of these powders is often spherical or flaky.

上記非晶質合金粉末は触媒、磁気テープ用磁性粉、他材
料との混合による複合材料あるいは上記粉末を有機物、
無機物などと混合して固めた磁心材料などへの応用が期
待されている。しかし、上述のような方法で作製された
非晶質合金粉末は酸化され易く、耐食性に劣シ、しかも
無機物とのぬれ性が悪いため分散あるいは固化が充分に
できないという欠点があった。
The above amorphous alloy powder can be used as a catalyst, as a magnetic powder for magnetic tape, as a composite material by mixing with other materials, or as an organic material,
It is expected to be applied to magnetic core materials that are hardened by mixing with inorganic substances. However, the amorphous alloy powder produced by the method described above has the disadvantage that it is easily oxidized, has poor corrosion resistance, and has poor wettability with inorganic substances, so that it cannot be sufficiently dispersed or solidified.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消するためになされたものであシ
、耐酸化性、耐食性に優れ、かつ無機物とのぬれ性の良
好な非晶質合金粉末を提供しようとするものである。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and it is an object of the present invention to provide an amorphous alloy powder that has excellent oxidation resistance, corrosion resistance, and good wettability with inorganic substances.

〔発明の概要〕[Summary of the invention]

本発明の非晶質合金粉末は、表面に結晶性酸化物を含有
する酸化皮膜を形成してなるものである。こうした非晶
質合金粉末によれば、耐酸化性、耐食性に優れ、かつ無
機物とのぬれ性が良好となる。
The amorphous alloy powder of the present invention has an oxide film containing a crystalline oxide formed on its surface. Such amorphous alloy powder has excellent oxidation resistance and corrosion resistance, and has good wettability with inorganic substances.

本発明に用いられる非晶質合金としては、一般的には、
以下のような組成を有するものが用いられる。
Generally, the amorphous alloy used in the present invention is:
A material having the following composition is used.

すなわち、原子チ表示で示すと、 次式:(C01−x−y−WF0xN′WMy几G10
0−z 又は(C01−x−ylFeXNIWMy)u
Tloo−0(式中、MはTi * V e Cr +
 Mn + Cu + Zr * Nb 。
That is, when expressed in atomic units, the following formula: (C01-x-y-WF0xN'WMy几G10
0-z or (C01-x-ylFeXNIWMy)u
Tloo-0 (where M is Ti*VeCr+
Mn + Cu + Zr * Nb.

Mo+Ru+Rh+Pd、Ag+Hf+Ta+W+Re
+Pt+Au 、 Y及び希土類元素からなる群から選
ばれ少なくとも一種の元素、GはB、C,81,P及び
Geからなる群から選ばれる少なくとも1種の元素、T
はTi tZr tHf +V+Nb tTa +W+
Mo +Y及び希土類元素からなる群から選ばれる少な
くとも1種の元素ヲそれぞれ表わし、X17.W12及
びUはそれぞれ、0≦X≦i、o≦y≦0.2゜O≦W
≦0.8.65≦2≦90及び85≦U≦95の関係を
満足する数を表わす。) で示される非晶質合金が用いられる。
Mo+Ru+Rh+Pd, Ag+Hf+Ta+W+Re
+Pt+Au, at least one element selected from the group consisting of Y and rare earth elements, G is at least one element selected from the group consisting of B, C, 81, P and Ge, T
is Ti tZr tHf +V+Nb tTa +W+
each represents at least one element selected from the group consisting of Mo + Y and rare earth elements, and X17. W12 and U are respectively 0≦X≦i, o≦y≦0.2゜O≦W
It represents a number that satisfies the relationships: ≦0.8.65≦2≦90 and 85≦U≦95. ) is used.

このような非晶質合金の粉末を製造する方法は水アトマ
イズ法、溶射法、双ロール法あるいは水素脆化法のいず
れであってもよい。
The method for producing such amorphous alloy powder may be any of the water atomization method, thermal spraying method, twin roll method, and hydrogen embrittlement method.

こうした非晶質合金粉末の表面に結晶性酸化物を含有す
る酸化皮膜を形成するには、高温、高圧下において酸化
処理を行なうことが必要である。
In order to form an oxide film containing a crystalline oxide on the surface of such amorphous alloy powder, it is necessary to perform oxidation treatment at high temperature and high pressure.

この時の温度はなるべく高い方が短時間で結晶性酸化物
が形成されるが、あまシ温度が高すぎると非晶質合金が
結晶化するという問題が発生するので結晶化温度以下で
あることが望ましい。具体的には150〜500℃であ
ることが好ましく、250〜450℃であることが更に
望ましい。
The temperature at this time should be as high as possible to form a crystalline oxide in a short time, but if the temperature is too high, the problem of crystallization of the amorphous alloy will occur, so it should be below the crystallization temperature. is desirable. Specifically, the temperature is preferably 150 to 500°C, and more preferably 250 to 450°C.

高圧化の手段としては、ガス、液体のいずれを用いても
よいが、加える圧力は40〜200気圧であることが好
ましく、60〜100気圧であることが更に好ましい。
As a means for increasing the pressure, either gas or liquid may be used, but the applied pressure is preferably 40 to 200 atm, more preferably 60 to 100 atm.

処理時間は、処理温度及び処理圧力にょシ異なるが、一
般的には0.5〜100時間であシ、特に5〜24時間
であることが好ましい。一般的な手段としてはオートク
レーブ等を用い、高温の水蒸気中で処理するのが簡便な
方法である。
Although the treatment time varies depending on the treatment temperature and treatment pressure, it is generally 0.5 to 100 hours, preferably 5 to 24 hours. As a general method, a simple method is to use an autoclave or the like and treat in high-temperature steam.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例に基づいて更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail based on examples.

まず、単ロール法を用いて幅10m、厚さ20 μmの
(Fe0.95””Q、Q5)85s’5B+2非晶質
合金を作表した。これを水素中400℃で30分間加熱
した後、ボールミルを用いて粉砕した。得られた粉末の
粒度は約10μmであった。
First, a (Fe0.95""Q, Q5) 85s'5B+2 amorphous alloy with a width of 10 m and a thickness of 20 μm was tabulated using a single roll method. This was heated in hydrogen at 400°C for 30 minutes and then ground using a ball mill. The particle size of the powder obtained was approximately 10 μm.

次に、この粉末をオートクレーブを用いて400℃、1
05気圧の条件下に12時時間−た。取出したサンプル
は表面が黒色になっていた。走査型電子顕微鏡(SEM
)を用いて表面状態を観察したところ、非晶質合金相内
に約1μmの結晶性酸化物が微細に析出していた。X線
を用いてこの結晶性酸化物を同定したところFe3O4
であることが判明した。
Next, this powder was heated at 400°C for 1 hour using an autoclave.
It was kept for 12 hours under the condition of 0.5 atmospheres. The surface of the sample taken out was black. Scanning electron microscope (SEM)
) was used to observe the surface condition, and it was found that crystalline oxides of about 1 μm were finely precipitated within the amorphous alloy phase. This crystalline oxide was identified using X-rays and was Fe3O4.
It turned out to be.

上記オートクレーブ処理した非晶質合金粉末(以下、オ
ートクレーブ処理粉と略記する)と、オートクレーブ処
理をしていない同一組成の非晶質合金粉末(以下、未処
理粉と略記する)とからそれぞれ3gを採取し、PbO
81,4チー820310、5%−ZnO5%−8in
22.3%−AtOl、2%−G+1022−3%から
なる低融点ガラ3 ス(軟化点360℃) 0.5 gとともに混合し、加
熱してガラスを溶融させた。この結果、オートクレーブ
処理粉はガラスとよくぬれ、切断しても粉末が脱落する
ことはなかったのに対し、未処理粉は切断すると粉末が
脱落し、ガラスとのぬれ性が非常に悪かった。
3 g each of the autoclaved amorphous alloy powder (hereinafter abbreviated as autoclave-treated powder) and the amorphous alloy powder of the same composition that was not autoclaved (hereinafter abbreviated as untreated powder). collected and PbO
81,4 Qi 820310, 5%-ZnO5%-8in
The mixture was mixed with 0.5 g of low melting point glass (softening point: 360°C) consisting of 22.3%-AtOl, 2%-G+1022-3%, and heated to melt the glass. As a result, the autoclave-treated powder wetted well with glass and did not fall off even when cut, whereas the untreated powder fell off when cut and had very poor wettability with glass.

また、オートクレーブ処理粉と未処理粉とを0、 I 
N −NaC1水溶液中に放置した後、取出して乾燥し
、重量減を測定したところ、オートクレーブ処理粉はほ
とんど重量減が認められず、耐食性が良好であったが、
未処理粉は1喘/年の腐食速度に相当する重量減が認め
られ、耐食性が悪かった。
In addition, autoclaved powder and untreated powder were 0, I
After being left in the N-NaCl aqueous solution, it was taken out and dried, and the weight loss was measured. The autoclaved powder showed almost no weight loss and had good corrosion resistance.
In the untreated powder, a weight loss corresponding to a corrosion rate of 1 breath/year was observed, and the corrosion resistance was poor.

なお、上記実施例と同様な処理をすることによシ形成さ
れる酸化皮膜及びそれに含有される結晶性酸化物は、上
記実施例のようにFeが主成分の非晶質合金にあっては
Fe3O4あるいはr−Fe20.等が、coが主成分
である非晶質合金にあっではCooあるいはCo3O4
が、Niが主成分である非晶質合金にあってはNiOが
それぞれ形成されることが多いが、これらは製造条件に
よシ異なる。また、CoとFe * CoとNiあるい
はFeとNi fともに含有する非晶質合金にあっては
、それぞれCoFe2O4、CoNi204. FaN
i204等の酸化物が形成される。上記のいずれの結晶
性酸化物が形成された場合であっても、著しく耐酸化性
、耐食性および無機物とのねれ性が改善されていること
が判明した。
Note that the oxide film formed by the same treatment as in the above example and the crystalline oxide contained therein are Fe3O4 or r-Fe20. etc. are found in amorphous alloys whose main component is Co or Co3O4.
However, in amorphous alloys containing Ni as a main component, NiO is often formed, but these differ depending on the manufacturing conditions. Furthermore, in the case of amorphous alloys containing both Co and Fe*Co and Ni or Fe and Nif, CoFe2O4 and CoNi204. FaN
Oxides such as i204 are formed. It has been found that oxidation resistance, corrosion resistance, and playability with inorganic materials are significantly improved regardless of which of the above crystalline oxides is formed.

また、本発明の非晶質合金粉末の表面に形成される酸化
皮膜の厚さは0.05〜5μmであるものが好ましく、
0.1〜1μmであるものが更に好ましい。これは厚さ
が0.05μm未満であると、結晶性酸化物の成長が少
なく、無機物とのぬれ性の向上があまり見られないため
であシ、一方、5μmf超えると、結晶質の割合が増大
して非晶質合金の特長が低下するためである。
Further, the thickness of the oxide film formed on the surface of the amorphous alloy powder of the present invention is preferably 0.05 to 5 μm,
More preferably, the thickness is 0.1 to 1 μm. This is because when the thickness is less than 0.05 μm, the growth of crystalline oxide is small and the wettability with inorganic substances is not improved much. On the other hand, when the thickness exceeds 5 μm, the proportion of crystalline material This is because the characteristics of the amorphous alloy deteriorate as the amorphous alloy increases.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明の非晶質合金粉末によれば、
耐酸化性、耐食性及び無機物とのぬれ性が著しく改善さ
れ、磁心材料等の製造に極めて有用性が高いものである
As detailed above, according to the amorphous alloy powder of the present invention,
The oxidation resistance, corrosion resistance, and wettability with inorganic substances are significantly improved, making it extremely useful for manufacturing magnetic core materials.

Claims (2)

【特許請求の範囲】[Claims] (1)表面に結晶性酸化物全含有する酸化皮膜を形成し
てなるフ1品質合金粉末。
(1) F1 quality alloy powder formed with an oxide film containing all crystalline oxides on the surface.
(2)結晶性酸化物がコバルト、鉄、ニッケルのうち少
なくとも1種類の元素を主成分とすることを特徴とする
特許請求の範囲第1項記載の非晶質合金粉末っ
(2) The amorphous alloy powder according to claim 1, wherein the crystalline oxide mainly contains at least one element among cobalt, iron, and nickel.
JP58136607A 1983-07-26 1983-07-26 Amorphous alloy powder Pending JPS6026603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58136607A JPS6026603A (en) 1983-07-26 1983-07-26 Amorphous alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58136607A JPS6026603A (en) 1983-07-26 1983-07-26 Amorphous alloy powder

Publications (1)

Publication Number Publication Date
JPS6026603A true JPS6026603A (en) 1985-02-09

Family

ID=15179247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58136607A Pending JPS6026603A (en) 1983-07-26 1983-07-26 Amorphous alloy powder

Country Status (1)

Country Link
JP (1) JPS6026603A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353204A (en) * 1986-08-23 1988-03-07 Nippon Steel Corp Production of amorphous alloy powder
US4919734A (en) * 1984-09-29 1990-04-24 Kabushiki Kaisha Toshiba Compressed magnetic powder core
CN113481458A (en) * 2021-07-08 2021-10-08 中国人民解放军陆军装甲兵学院 Wear-resistant particle wear-resistant powder core wire material and preparation method thereof, wear-resistant particle wear-resistant coating and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919734A (en) * 1984-09-29 1990-04-24 Kabushiki Kaisha Toshiba Compressed magnetic powder core
JPS6353204A (en) * 1986-08-23 1988-03-07 Nippon Steel Corp Production of amorphous alloy powder
JPH0457721B2 (en) * 1986-08-23 1992-09-14 Nippon Steel Corp
CN113481458A (en) * 2021-07-08 2021-10-08 中国人民解放军陆军装甲兵学院 Wear-resistant particle wear-resistant powder core wire material and preparation method thereof, wear-resistant particle wear-resistant coating and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
CN114555264B (en) Preparation method and application of high-purity powder material and two-phase powder material
Giri Nanocrystalline materials prepared through crystallization by ball milling
JPH0774419B2 (en) Method for producing Fe-based soft magnetic alloy
JP2019203150A (en) Soft magnetic powder, green compact and magnetic component
JP6256647B1 (en) Soft magnetic alloys and magnetic parts
US4840925A (en) Compositions of transition metal manganites in the form of particles or ceramics, their preparation and their use in the production of thermistors
CN112207285A (en) Preparation method and application of powder material
CN112276101A (en) Preparation method and application of high-purity powder material and alloy strip
JP2019073436A5 (en)
CA3194475A1 (en) Alloy powder, preparation method therefor, and use therefor
JP2019123894A (en) Soft magnetic alloy and magnetic component
JPH01208401A (en) Roduction of secondary powder particle having sealed particle surface and nano crystallizable structure, secondary powder and molded body having texture of nano crystallizable structure
JP2019123930A (en) Soft magnetic alloy and magnetic component
JPH0681086A (en) Alloy having ultrafine crystalline-grained structure excellent in corrosion resistance
JPH0645842B2 (en) Low magnetostrictive amorphous alloy
JPS6026603A (en) Amorphous alloy powder
JP2002226926A (en) Composite functional material and its manufacturing method
JPH0448005A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
JPS59179729A (en) Magnetic core of amorphous alloy powder compact
KR101309516B1 (en) Preparation method for magnetic metallic glass nano-powder
JP3561008B2 (en) Method for producing high specific surface area composite oxide
DE3343019C2 (en)
JP2019123929A (en) Soft magnetic alloy and magnetic component
JP2019094551A (en) Manufacturing method of soft magnetic powder magnetic core and soft magnetic powder magnetic core