JPS6026480B2 - Nuclear power plant output control device - Google Patents

Nuclear power plant output control device

Info

Publication number
JPS6026480B2
JPS6026480B2 JP53130876A JP13087678A JPS6026480B2 JP S6026480 B2 JPS6026480 B2 JP S6026480B2 JP 53130876 A JP53130876 A JP 53130876A JP 13087678 A JP13087678 A JP 13087678A JP S6026480 B2 JPS6026480 B2 JP S6026480B2
Authority
JP
Japan
Prior art keywords
frequency
frequency signal
power plant
nuclear power
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53130876A
Other languages
Japanese (ja)
Other versions
JPS5557198A (en
Inventor
士郎 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP53130876A priority Critical patent/JPS6026480B2/en
Publication of JPS5557198A publication Critical patent/JPS5557198A/en
Publication of JPS6026480B2 publication Critical patent/JPS6026480B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】 本発明は原子力発電所の出力制御装置に係り、特に原子
炉炉心に前直された冷却材混合燈梓部を通して原子炉炉
心に冷却材を強制循環させる少なくとも2系統の再循環
系を備えた沸騰水型原子力発電所の再循環系の不安定領
域に於ける運転を行うに当って出力変動等を極小ならし
める新規の原子力発電所の出力制御装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an output control device for a nuclear power plant, and more particularly, to a power control device for a nuclear power plant, in particular at least two systems for forcibly circulating coolant into a nuclear reactor core through a coolant mixing lamp section installed in front of the reactor core. This invention relates to a new output control device for a nuclear power plant that minimizes output fluctuations when operating a boiling water nuclear power plant equipped with a recirculation system in an unstable region.

一般に沸騰水型原子力発電所の出力制御を行う場合は、
原子炉の炉心流量の再循環流量を可変とする事に依って
、これを行っている。第1図は一般的な沸騰水型原子力
発電所の再循環系機器と制御系の関係を示すブロック図
で、同図中1は原子炉、2A,2Bは再循環系配管、3
A,3Bは再循環ポンプ、4A,4Bは電動機、5A,
5Bは可変周波数電源、6A,6Bは前記可変周波数電
源5A,5Bの制御器、7A,7Bは周波数要求信号、
8は主制御器、10Aは主蒸気流量信号、10Bは負荷
設定信号、11は前記各信号LOA,10Bの偏差をと
って偏差信号11Aを出力する偏差器をそれぞれ示すも
のである。
Generally, when controlling the output of a boiling water nuclear power plant,
This is done by making the recirculation flow rate of the reactor core flow variable. Figure 1 is a block diagram showing the relationship between the recirculation system equipment and control system of a typical boiling water nuclear power plant. In the figure, 1 is the reactor, 2A and 2B are the recirculation system piping, and 3
A, 3B are recirculation pumps, 4A, 4B are electric motors, 5A,
5B is a variable frequency power supply; 6A and 6B are controllers for the variable frequency power supplies 5A and 5B; 7A and 7B are frequency request signals;
8 is a main controller, 10A is a main steam flow rate signal, 10B is a load setting signal, and 11 is a deviation device that takes the deviation of each of the signals LOA and 10B and outputs a deviation signal 11A.

第1図からも明らかな如く、原子炉1の再循環系配管2
A,2Bに設けた再循環ポンプ3A,3Bは電動機4A
,4Bで駆動され、前記電動機4A,4Bは可変周波数
電源5A,5Bからの供給電源周波数を可変制御する事
に依り、その回転数を可変制御される。
As is clear from Figure 1, the recirculation system piping 2 of the reactor 1
Recirculation pumps 3A and 3B installed in A and 2B are electric motors 4A
, 4B, and the rotational speed of the electric motors 4A, 4B is variably controlled by variably controlling the frequency of the power supplied from the variable frequency power sources 5A, 5B.

再循環ポンプ3A,3Bから原子炉1内に送り込まれた
冷却材は炉内において炉心の外周に配置されたジェット
ポンプを通り、さらに炉心下部に形成された共通のプレ
ナムで十分混合渡洋された後、炉心に通される。周波数
要求信号7A,7Bは主蒸気流量信号10Aと負荷設定
信号10Bの偏差1 1Aに基き、主制御器8から与え
られる。しかしながら、従来かかる再循環系の運転領域
に於いて、機器の特性に依っては、再循環流量にある流
量範囲内で、ある周期の振動が生じる事が明らかになっ
た。
The coolant sent into the reactor 1 from the recirculation pumps 3A and 3B passes through jet pumps placed around the outer periphery of the reactor core, and after being thoroughly mixed in a common plenum formed at the bottom of the core, the coolant is mixed across the ocean. , passed through the reactor core. The frequency request signals 7A, 7B are given from the main controller 8 based on the deviation 11A between the main steam flow rate signal 10A and the load setting signal 10B. However, in the operating range of conventional recirculation systems, it has become clear that, depending on the characteristics of the equipment, oscillations with a certain period occur within a certain flow rate range of the recirculation flow rate.

この再循環流量の振動は炉心流量の振動を生み、その結
果発電所の出力が変動したり、原子炉機器、たとえばジ
ェットポンプを含む炉内線造物に振動に依る高サイクル
被労を生じたりする可能性がある為、従来は再循環系の
制御範囲を限定したり、発電所起動時の出力上昇に当っ
ては、運転員の熟練操作に頼る等の対策を要していた。
従って、本発明の目的は上記従来技術の欠点を無くし、
再循環流量が振動を起す様な再循環系の不安定領域に相
当する原子炉出力を出す場合にも、再循環流量の振動を
伴わない運転を可能とし、出力振動や機器の高サイクル
疲労を解消し得る新規の原子力発電所の出力制御装置を
提供するにある。
This recirculation flow rate oscillations can create core flow rate oscillations, which can result in fluctuations in power plant output and high-cycle vibration-induced stress on reactor components, such as the jet pumps, in the reactor wirework. Conventionally, this required measures such as limiting the control range of the recirculation system and relying on the skilled operation of operators when increasing the output at power plant start-up.
Therefore, the object of the present invention is to eliminate the drawbacks of the above-mentioned prior art,
Even when producing reactor output that corresponds to the unstable region of the recirculation system where the recirculation flow rate oscillates, it is possible to operate without oscillations in the recirculation flow rate, reducing output oscillations and high cycle fatigue of equipment. An object of the present invention is to provide a new output control device for a nuclear power plant that can solve the problem.

第2図は本発明の一実施例に係る原子力発電所の出力制
御装置の部分ブロック図で、第1図の構成と異なる点は
、主制御器8の出力である周波数要求信号8Aを運転装
置201こ与え、その出力として別の周波数要求信号2
0A,208を得て、これを制御器6A,6Bに与えて
いる事である。
FIG. 2 is a partial block diagram of an output control device for a nuclear power plant according to an embodiment of the present invention. The difference from the configuration shown in FIG. 201 and another frequency request signal 2 as its output.
0A, 208 is obtained and given to the controllers 6A, 6B.

第3図は第2図の運転装置20の詳細な構成を示す概略
構成図で、同図中21‘ま主制御器8からの周波数要求
信号8Aを受けて、再循環系の不安定領域に当る周波数
の下限PIと上限P2と突き合せ、PI≦8ASP2の
時に信号21Bの出力を行う判断指令器、23,24は
前記判断指令器21の出力信号21Bに依ってオンする
スイッチリレー、22はP2−PIに相当するバイアス
信号22Aを発生するバイアス信号発生器、25は入力
された周波数要求信号8Aから前記バイアス信号22A
を減算して、周波数要求信号20Bを出力する減算器、
26は入力された周波数要求信号8Aに前記バイアス信
号22Aを加算して、周波数要求信号20Aを出力する
加算器である。以上述べた如き構成に於いて、以下その
動作を第4図の特性図に従って説明する。
FIG. 3 is a schematic configuration diagram showing the detailed configuration of the operating device 20 in FIG. A judgment command device compares the lower limit PI and upper limit P2 of the applicable frequency and outputs a signal 21B when PI≦8ASP2; 23 and 24 are switch relays that are turned on depending on the output signal 21B of the judgment command device 21; 22 is a A bias signal generator 25 generates a bias signal 22A corresponding to P2-PI, and 25 generates the bias signal 22A from the input frequency request signal 8A.
a subtracter that subtracts and outputs a frequency request signal 20B;
26 is an adder that adds the bias signal 22A to the input frequency request signal 8A and outputs the frequency request signal 20A. The operation of the configuration as described above will be explained below with reference to the characteristic diagram shown in FIG.

ところで、第4図a,bは縦軸に可変周波数電源5A,
5Bの可変周波数範囲の0〜100%をとり、機軸に時
刻tをとったもので、同図aは周波数要求信号8Aを、
bは周波数要求信号20A,20Bをそれぞれ示すもの
である。なお、縦軸周波数のうちPI〜P2%の範囲が
再循環系の不安定領域である。今、原子炉1の出力制御
を行うに当って、主蒸気流量10Aと負荷設定信号10
Bを偏差器11に入力して得られる偏差信号11Aに基
いて主制御器8で制御演算を行い、得られた周波数要求
信号8Aが時刻tと共に第4図aに示す如く変化するも
のとする。この様な場合、第1図に示す如き従釆の出力
制御装置に於いては、周波数要求信号がP2に達する時
刻t,からPI以下になる時刻t2までの間並びに、同
信号が再びPIに達する時刻t3からP沙〆上になる時
刻Lまでの間は、再循環系は不安定な挙動を示して、種
々の弊害を生じる訳である。
By the way, in FIGS. 4a and 4b, the vertical axis shows the variable frequency power supply 5A,
5B is taken from 0 to 100% of the variable frequency range, and time t is taken as the axis, and the figure a shows the frequency request signal 8A,
b indicates the frequency request signals 20A and 20B, respectively. Note that the range of PI to P2% of the vertical axis frequency is an unstable region of the recirculation system. Now, when controlling the output of the reactor 1, the main steam flow rate is 10A and the load setting signal is 10A.
It is assumed that the main controller 8 performs control calculations based on the deviation signal 11A obtained by inputting B into the deviation device 11, and the obtained frequency request signal 8A changes as shown in FIG. 4a with time t. . In such a case, in the slave output control device as shown in FIG. The recirculation system exhibits unstable behavior during the period from time t3, which is reached, to time L, which is above P-shape, causing various problems.

これに対して、第2図、第3図の構成に依れば、周波数
要求信号8AがP2とPIの間にある間は、信号8Aに
対して、バイアス信号発生器22からのバイアス信号2
2Aがスイッチリレー23、加算器26を通じて加算さ
れ、同時にスイッチリレー24、減算器25を通じて減
算され、第4図bに示す如く、周波数P2とPIの範囲
にはかからない周波数要求信号20A,20Bが各可変
周波数電源5A,5Bの制御器6A,68に与えられる
。両再循環ポンプ3A,3Bは互いに等速で運転する、
いわゆる対称運転を行うのが一般的には望ましいが、運
転条件によっては、極端な速度差を持つことになる禁止
範囲を除いて、所定の範囲内の速度差を持つことになる
許容範囲が存在する。2つの要求信号20A,20Bは
一般に、その許容範囲内の速度差に対応する値となる。
On the other hand, according to the configurations shown in FIGS. 2 and 3, while the frequency request signal 8A is between P2 and PI, the bias signal 2 from the bias signal generator 22 is applied to the signal 8A.
2A is added through the switch relay 23 and the adder 26, and simultaneously subtracted through the switch relay 24 and the subtracter 25, and as shown in FIG. It is applied to controllers 6A and 68 of variable frequency power supplies 5A and 5B. Both recirculation pumps 3A, 3B operate at constant speed with respect to each other.
Although it is generally desirable to perform so-called symmetrical driving, depending on the driving conditions, there may be a permissible range in which speed differences are within a predetermined range, excluding prohibited ranges in which extreme speed differences may occur. do. The two request signals 20A, 20B generally have values corresponding to a speed difference within their allowable range.

再循環ポンプ3A,3Bから速度差をもって供給された
冷却材は原子炉1内の炉心下部プレナムで混合蝿拝され
、炉心に循環される。2つの周波数要求信号20A,2
0BはP2とPIの間の不安定領域ではステップ的に変
化する事となる為、可変周波数電源5A,5Bの最高応
答速度で再循環系は不安定領域を通過する事となる。従
って、再循環系機器の特性に依る不安定性の影響を最小
限にとどめる事が出釆る。以上述べた如く、本発明に依
れば、原子力発電所の再循環系機器の不安定特性を最小
とする事が出来る為、電力系統に与える発電所出力の不
安定現象並びに原子炉機器の高サイクル疲労を最小とす
る事が出来るばかりでなく、再循環系の運転範囲拡大に
依る原子力発電所の運転性能の向上、運転員の負担転減
等を図る上で効果的な原子力発電所の出力制御装置を得
る事が出来るものである。
The coolants supplied at different speeds from the recirculation pumps 3A and 3B are mixed in the lower core plenum in the reactor 1 and circulated into the reactor core. Two frequency request signals 20A, 2
Since 0B changes stepwise in the unstable region between P2 and PI, the recirculation system passes through the unstable region at the maximum response speed of the variable frequency power supplies 5A and 5B. Therefore, it is possible to minimize the influence of instability caused by the characteristics of the recirculation system equipment. As described above, according to the present invention, the unstable characteristics of the recirculation system equipment of a nuclear power plant can be minimized, thereby reducing the instability of the power plant output that is applied to the power system and the high level of reactor equipment. The output of a nuclear power plant is effective in minimizing cycle fatigue, improving the operating performance of the nuclear power plant by expanding the operating range of the recirculation system, and reducing the burden on operators. It is possible to obtain a control device.

図面の簡単な説明第1図は一般的な沸騰水型原子力発電
所の再循環系機器と制御系の関係を示すブロック図、第
2図は本発明の一実施例に係る原子力発電所の出力制御
装置の部分ブロック図、第3図は第2図の運転装置の詳
細な構成を示す概略構成図、第4図a,bは第2図、第
3図の動作を説明する為の特性図である。
Brief Description of the Drawings Fig. 1 is a block diagram showing the relationship between recirculation system equipment and control system of a general boiling water nuclear power plant, and Fig. 2 shows the output of a nuclear power plant according to an embodiment of the present invention. A partial block diagram of the control device, FIG. 3 is a schematic configuration diagram showing the detailed configuration of the operating device in FIG. 2, and FIGS. 4a and 4b are characteristic diagrams for explaining the operation of FIGS. It is.

1…・・・原子炉、3A,3B・…・・再循環ポンプ、
5A,5B.・・・・・可変周波数電源、6A,6B.
・・.・・制御器、8・・・・・・主制御器、11・・
・・・・偏差器、20・・・・・・運転装置、22・・
…・バイアス信号発生器。
1... Nuclear reactor, 3A, 3B... Recirculation pump,
5A, 5B. ...Variable frequency power supply, 6A, 6B.
・・・. ...Controller, 8...Main controller, 11...
... Deviation device, 20 ... Operating device, 22 ...
...・Bias signal generator.

多Z囚多Z囚 多a図 多4図Many Z prisoners Many Z prisoners multi-a diagram Multi 4 figures

Claims (1)

【特許請求の範囲】 1 原子炉炉心に前置された冷却材混合撹拌部を通して
前記原子炉炉心に冷却材を強制循環させる少なくとも2
系統の再循環系と、この再循環系を駆動すべく各再循環
系ごとに設けられた再循環ポンプと、この再循環ポンプ
を駆動する電動機と、前記再循環系の流量と負荷要求か
ら前記電動機に対する要求周波数信号を発生する第1の
制御手段と、前記要求周波数信号が予め定められた特定
の周波数領域に含まれない時は前記要求周波数信号をそ
のまま各電動機に対応する制御周波数信号とし、前記要
求周波数信号が前記周波数領域に含まれる時は前記要求
周波数信号を片均値として、かつ前記周波数領域に含ま
れない少なくとも2つの制御周波数信号に変換し、これ
を各電動機ごとに対応して出力する第2の制御手段と、
この第2の制御手段の出力に基づき前記各電動機を周波
数制御する装置とを備えたことを特徴とする原子力発電
所の出力制御装置。 2 特許請求の範囲第1項に記載の原子力発電所の出力
制御装置において、前記第2の制御手段は、前記要求周
波数信号が予め定められた周波数領域にある時、前記要
求周波数信号に対して前記周波数領域を外れるように、
総和が零となるような少なくとも2つの適宜バイアスを
加算し、これを制御周波数信号として出力する演算手段
から成ることを特徴とする原子力発電所の出力制御装置
[Scope of Claims] 1. At least 2 forcible circulation of coolant into the reactor core through a coolant mixing and stirring section disposed in front of the reactor core.
The recirculation system of the system, the recirculation pump provided for each recirculation system to drive this recirculation system, the electric motor that drives this recirculation pump, and the flow rate and load requirements of the recirculation system. a first control means for generating a required frequency signal for the electric motor; and when the required frequency signal is not included in a predetermined specific frequency range, the required frequency signal is directly used as a control frequency signal corresponding to each electric motor; When the requested frequency signal is included in the frequency domain, the requested frequency signal is converted into a one-sided average value and at least two control frequency signals not included in the frequency domain, and these signals are converted into at least two control frequency signals that are not included in the frequency domain. a second control means for outputting;
An output control device for a nuclear power plant, comprising a device for controlling the frequency of each of the electric motors based on the output of the second control means. 2. In the output control device for a nuclear power plant according to claim 1, the second control means is configured to control the required frequency signal when the required frequency signal is in a predetermined frequency range. out of the frequency range,
1. An output control device for a nuclear power plant, comprising an arithmetic means for adding at least two appropriate biases such that the sum becomes zero, and outputting the result as a control frequency signal.
JP53130876A 1978-10-24 1978-10-24 Nuclear power plant output control device Expired JPS6026480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53130876A JPS6026480B2 (en) 1978-10-24 1978-10-24 Nuclear power plant output control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53130876A JPS6026480B2 (en) 1978-10-24 1978-10-24 Nuclear power plant output control device

Publications (2)

Publication Number Publication Date
JPS5557198A JPS5557198A (en) 1980-04-26
JPS6026480B2 true JPS6026480B2 (en) 1985-06-24

Family

ID=15044752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53130876A Expired JPS6026480B2 (en) 1978-10-24 1978-10-24 Nuclear power plant output control device

Country Status (1)

Country Link
JP (1) JPS6026480B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015599A (en) * 1983-07-08 1985-01-26 株式会社日立製作所 Method of controlling flow rate of recirculation of nuclear reactor
JP2007192671A (en) * 2006-01-19 2007-08-02 Toshiba Corp Internal pump operation method of boiling water reactor

Also Published As

Publication number Publication date
JPS5557198A (en) 1980-04-26

Similar Documents

Publication Publication Date Title
Shin New antiwindup PI controller for variable-speed motor drives
Cheng et al. Fuzzy optimization techniques applied to the design of a digital PMSM servo drive
Zhen et al. On-line fuzzy tuning of indirect field-oriented induction machine drives
Mahmoudi et al. A new multiobjective modulated model predictive control method with adaptive objective prioritization
CA2001854C (en) Control apparatus of dc power coupling system
US3787724A (en) Voltage control of an a.c. drive system during motor starting
JPS6026480B2 (en) Nuclear power plant output control device
Cupertino et al. A new fuzzy logic-based controller design method for DC and AC impressed-voltage drives
Nguyen et al. The power-sharing system of DFIG-based shaft generator connected to a grid of the ship
Xu et al. Bus utilization of discrete CRPWM inverters for field-oriented drives
JP2006081285A (en) Control method for static reactive power compensator
JP2594976B2 (en) Function hierarchy configuration output control system
JP4533690B2 (en) Governor for hydroelectric power generation, speed control device for hydroelectric power generation including the governor, and hydroelectric power plant
Park et al. Anti-windup integral-proportional controller for variable-speed motor drives
Patil et al. Fuzzy Logic Controller Implementation for BLDC Drive Speed Control Using FOC Approach and SVPWM Based VSI Technique
US8078327B2 (en) Control method of a hydraulic machine for saving energy or improving efficiency
JPS6017077B2 (en) Output control device
JPH09292901A (en) Controller
JPS6017078B2 (en) Reactor coolant recirculation flow control device
Ramadhan et al. Voltage Booster for Optimizing Scalar Control Methods on Single Passenger Electric Vehicles
Espinoza et al. A novel control strategy for modular multilevel-based drives considering the system operating point
Panda et al. Weak Gird Control using Globally Non-overshooting/Undershooting Controller
JPS60168092A (en) Method of starting internal pump for reactor
JPH0950882A (en) Output control method of inverter for high frequency induction furnace
JPH037100A (en) Controller of hydraulic power generator