JPS6017078B2 - Reactor coolant recirculation flow control device - Google Patents

Reactor coolant recirculation flow control device

Info

Publication number
JPS6017078B2
JPS6017078B2 JP54137261A JP13726179A JPS6017078B2 JP S6017078 B2 JPS6017078 B2 JP S6017078B2 JP 54137261 A JP54137261 A JP 54137261A JP 13726179 A JP13726179 A JP 13726179A JP S6017078 B2 JPS6017078 B2 JP S6017078B2
Authority
JP
Japan
Prior art keywords
request signal
frequency
frequency request
flow rate
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54137261A
Other languages
Japanese (ja)
Other versions
JPS5661699A (en
Inventor
侑 住田
哲夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54137261A priority Critical patent/JPS6017078B2/en
Publication of JPS5661699A publication Critical patent/JPS5661699A/en
Publication of JPS6017078B2 publication Critical patent/JPS6017078B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 本発明は沸騰水型原子炉の冷却材再盾環流量制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coolant reshielding circulation flow rate control device for a boiling water nuclear reactor.

沸騰水型原子炉における従来の冷却材再循環流量制御装
置の概略的構成を第1図に示す。
FIG. 1 shows a schematic configuration of a conventional coolant recirculation flow rate control device for a boiling water reactor.

この図において、原子炉1は再循環系配管2A,28を
還流する冷却材により冷却される。上記冷却材の還流速
度は、電動機3A,381こよって駆動される再循環ポ
ンプ4A,4Bにより調節される。上記電動機3A,3
Bの回転数は可変周波数電源5A,5Bの供聯合電源周
波数を変えることにより可変制御される。上記可変周波
数電源5A,5Bは主制御器6から出力される周波数要
求信号RA,RBに基づいて作動する制御器7A,7B
によって制御される。上記主制御器6は、負荷設定信号
SLと主蒸気流量信号SFとの偏差を得る偏差器8から
の偏差信号SDに基づいて作動する。上記構成の従来装
置では、上記可変周波数電源5A,5Bが流体嬢手の結
合度合を制御する構造であるため、全ての周波数要求信
号に対して、結合度合を安定にすることは困難であり、
ある一定の周波数範囲において非線型特性を呈し、冷却
材の炉心流量に周期性の振動を誘引することがある。
In this figure, the nuclear reactor 1 is cooled by the coolant flowing back through the recirculation system piping 2A, 28. The recirculation speed of the coolant is regulated by recirculation pumps 4A, 4B driven by electric motors 3A, 381. The above electric motor 3A, 3
The rotation speed of B is variably controlled by changing the combined power supply frequency of variable frequency power supplies 5A and 5B. The variable frequency power supplies 5A and 5B are controllers 7A and 7B that operate based on frequency request signals RA and RB output from the main controller 6.
controlled by The main controller 6 operates based on a deviation signal SD from a deviation device 8 which obtains the deviation between the load setting signal SL and the main steam flow rate signal SF. In the conventional device with the above configuration, the variable frequency power supplies 5A and 5B are configured to control the degree of coupling between the fluid handles, so it is difficult to stabilize the degree of coupling for all frequency request signals.
It exhibits nonlinear characteristics in a certain frequency range and may induce periodic oscillations in the core coolant flow rate.

上述した非線型特性のパターンとしては、第2図aに示
すたステップ状のものと同図bに示したヒステリシス状
のものなどがある。第2図a,bは横軸に周波数要求信
号をとり、縦軸に可変周波数電源5A,5Bの周波数を
とった周波数特性曲線図であり、図中点P,は非線型領
域、すなわち、不安定領域の下限の周波数値であり、点
P2は上限の周波数値である。またQ,,Q2は上記P
,,P2に対応した上記可変周波数電源5A,5Bの周
波数値を示す。このような非線型特性を有する従来装置
の再循環還流量特性は第3図a,bに示すようなものと
なる。第3図aは、時間tを横軸にとり、周波数要求信
号RA、RBの可変周波数範囲0〜100%を縦軸にと
った周波数要求信号線を示し、第3図bは、時間tを横
軸にとり、冷却材の炉心流量の可変範囲0〜100%を
縦軸にとった炉心流量曲線を示す。上誌要求周波数信号
軸上の点P,,P2は第2図で説明した点P,,P2と
同じである。第3図a,bから明らかなように周波数要
求信号RへRBを時間とともに変化させると、不安定領
域P,〜P2に対応するL〜t2およびら〜t4におい
て可変周波数電源の周波数が周期性の振動を起こし、そ
の結果再循環流量が振動し、それによって第3図bに示
すような炉心流量の振動などの不安定な挙動を示す。こ
の炉0流量の振動によって、発電所の出力が予期しない
変動を起す恐れがある。この問題に対処するため、従来
は再循環の制御範囲を限定したり、発電所起動時の出力
上昇、出力減少操作を熟練した運転員によって行なって
いた。しかし、最近のように昼夜の電力需要の差が大き
くなると、原子力発電所の昼夜の出力の変動も大きく、
それを操作する運転員の負担も増加し、問題となってい
た。本発明は、以上の問題を解決するためになされたも
のであり、不安定領域の周波数要求信号に対しても炉心
流量が周期性の振動などの不安定な挙動を起こさない安
定した特性の冷却材再循環流量制御装置を提供すること
を目的とする。
Examples of the above-mentioned nonlinear characteristic patterns include a step-like pattern shown in FIG. 2a and a hysteresis-like pattern shown in FIG. 2b. Figures 2a and 2b are frequency characteristic curve diagrams in which the horizontal axis represents the frequency request signal and the vertical axis represents the frequencies of the variable frequency power supplies 5A and 5B, and the point P in the figure represents the nonlinear region, that is, the nonlinear region. This is the lower limit frequency value of the stable region, and point P2 is the upper limit frequency value. Also, Q,,Q2 are the above P
, , shows the frequency values of the variable frequency power supplies 5A and 5B corresponding to P2. The recirculation flow characteristics of a conventional device having such nonlinear characteristics are as shown in FIGS. 3a and 3b. Figure 3a shows a frequency request signal line with time t on the horizontal axis and the variable frequency range 0 to 100% of frequency request signals RA and RB on the vertical axis, and Figure 3b shows time t on the horizontal axis. The axis shows a core flow rate curve in which the variable range of the coolant core flow rate from 0 to 100% is taken as the vertical axis. The points P, , P2 on the above-mentioned required frequency signal axis are the same as the points P, , P2 explained in FIG. 2. As is clear from Fig. 3a and b, when the frequency request signal R changes RB over time, the frequency of the variable frequency power supply becomes periodic in L~t2 and La~t4 corresponding to the unstable regions P, ~P2. oscillations, resulting in oscillations in the recirculation flow rate, resulting in unstable behavior such as oscillations in the core flow rate as shown in Figure 3b. This oscillation of the zero flow rate in the furnace may cause unexpected fluctuations in the output of the power plant. In order to deal with this problem, conventional methods have been to limit the control range of recirculation, and to have skilled operators perform output increases and decreases at power plant start-up. However, as the difference in electricity demand between day and night has increased as seen recently, the fluctuations in the output of nuclear power plants between day and night also become large.
The burden on the operator who operates it also increases, which has become a problem. The present invention has been made to solve the above problems, and provides cooling with stable characteristics that do not cause unstable behavior such as periodic oscillations in the core flow rate even for frequency request signals in the unstable region. An object of the present invention is to provide a material recirculation flow rate control device.

以下、本発明の一実施例を図面を参照しながら説明する
An embodiment of the present invention will be described below with reference to the drawings.

第4図は本発明に係る冷却材再循環流量制御装置のパル
ス発生回路9の構成ブロック図である。なお第1図と同
一箇所には同一符号を付してある。この第4図において
、偏差信号SDは主制御器6によ周波数要求信号Rに変
換され、判断指令器10とパルス信号発生器11に送ら
れる。上記判断指令器10は、前記不安定領域を示す周
波数要求信号の下限P,と上限P2とを上記周波数要求
信号Rと比較しP,≦上記周波数要求信号R≦P2のと
きには、スイッチ12を開き、スイッチ13を閉じる。
このため上記パルス信号発生器11からパルスの波高値
の最小値を不安定領域P,〜P2の幅としたパルス性の
周波数要求信号RPが閉じたスイッチ13を介して前記
制御器7A,7Bに送られる。以下の構成は上述した従
来装置と同様なので説明は省略する。以上の構成におい
て、周波数要求信号Rを第5図aに示すように時間とと
もに変化させると、従来装置の不安定領域P,〜P2に
さしかかる時間t,〜らとt3〜t4において、判断指
令器1川こよってスイッチ12,13が切換わるの、上
記期間では閉じたスイッチ13を介して高速変動された
パルスス状周波数要求信号Rん RBがパルス信号発生
器11から制御器7A,7Bに送られる。
FIG. 4 is a block diagram of the pulse generation circuit 9 of the coolant recirculation flow rate control device according to the present invention. Note that the same parts as in FIG. 1 are given the same reference numerals. In FIG. 4, the deviation signal SD is converted into a frequency request signal R by the main controller 6, and sent to the judgment command unit 10 and the pulse signal generator 11. The judgment command unit 10 compares the lower limit P and upper limit P2 of the frequency request signal indicating the unstable region with the frequency request signal R, and opens the switch 12 when P≦the frequency request signal R≦P2. , close switch 13.
For this reason, a pulse frequency request signal RP with the width of the unstable region P, ~P2 having the minimum value of the pulse peak value from the pulse signal generator 11 is sent to the controllers 7A, 7B via the closed switch 13. Sent. The following configuration is the same as that of the conventional device described above, so a description thereof will be omitted. In the above configuration, when the frequency request signal R is changed over time as shown in FIG. During the above period, the switches 12 and 13 are switched, and the pulsed frequency request signal RRB, which is varied at high speed, is sent from the pulse signal generator 11 to the controllers 7A and 7B through the closed switch 13. .

上記周波数要求信号のパルス波は、不安定領域P,〜P
2に含まれる値をとらないので、第2図a,bに示した
ような可変周波数電源5A,5Bの非線型特性部を回避
でき、従来装置に見られる第3図bのような炉心流量の
振動は起こらない。さらに、電動機や再循環ポンプが有
する大きな慣性によって、上記時間ら〜t2とら〜t4
に出力される高速変動されたパルス状周波数要求信号R
A,RBに対しても流量はなめらかに変化する。特に、
第5図aにおいて、不安定領域に突入する時刻t.では
、第6図aのようなP2の信号を出す時間が長いパルス
を出力し、周波数要求信号Rが減少するにつれて第6図
のa→b→cのようにP2である幅を減少するようにし
、逆に再び不安定領域に突入する時刻t3では、cのよ
うなP2の信号を出す時間が短にパルスを出力し、周波
数要求信号Rが増加するにつれてc→b→aのようにP
2である幅を増加するようにパルス幅とパルス間隔を調
整すると、第5図bのような安定した炉心流量特性が得
られる。なお、パルスの基本周期は、電動機3A,3B
再循環ポンプ4A,4Bなどを含んだ再循環系の慣性定
数(たとえば再循環系MGセットの場合7〜10秒)よ
りも早くする必要があり、約1/1の華度を目標とすれ
ばよい。本実施例においては、周波数要求信号のパルス
幅とパルス間隔を第6図a→b→cおよびc→b→aの
ように変化させたが、これに波高値の調整を加えると第
5図bに示された炉心流量特性はなお一層階定したもの
となる。
The pulse wave of the frequency request signal described above is in the unstable region P, ~P
2, it is possible to avoid the nonlinear characteristics of the variable frequency power supplies 5A and 5B as shown in Figures 2a and 2b, and the core flow rate as shown in Figure 3b, which is seen in conventional equipment, can be avoided. vibration does not occur. Furthermore, due to the large inertia of the electric motor and recirculation pump, the above-mentioned time t2 and t4
A rapidly fluctuating pulsed frequency request signal R output to
The flow rates also change smoothly for A and RB. especially,
In FIG. 5a, the time t when entering the unstable region. Then, output a pulse with a long time to output the P2 signal as shown in Fig. 6a, and as the frequency request signal R decreases, the width of P2 decreases as shown in Fig. 6 from a → b → c. On the other hand, at time t3 when it enters the unstable region again, a pulse is output for a short period of time to output the P2 signal like c, and as the frequency request signal R increases, P like c → b → a
If the pulse width and pulse interval are adjusted to increase the width, which is 2, stable core flow characteristics as shown in FIG. 5b can be obtained. In addition, the basic period of the pulse is the electric motor 3A, 3B.
It needs to be faster than the inertia constant of the recirculation system including recirculation pumps 4A, 4B, etc. (for example, 7 to 10 seconds in the case of the recirculation system MG set), and if you aim for a temperature of about 1/1 good. In this example, the pulse width and pulse interval of the frequency request signal were changed as shown in Fig. 6 a→b→c and c→b→a. The core flow rate characteristics shown in b are even more defined.

なお、本発明は上述した一実施例に限定されるものでは
ない。たとえば前記実施例では主制御器として負荷設定
信号SLと主蒸気流量信号SFとの偏差信号SDに基い
て作動し、周波数要求信号Rを送出するものを示したが
、要は原子炉の熱出力に対応する周波数要求信号を送出
し得るものであればよい。この他、本発明の要旨を変え
ない範囲で種々変形実施できるのは勿論である。以上説
明したように、本発明に係る装置では、可変周波数電源
装置の不安定領域に対応した周波数要求信号が到来した
ときに、上記信号が判定器によって検出され切換スイッ
チにより上記信号の代りにパルス信号発生器からの上記
不安定領域を回避した波高値を有するパルス状周波数要
求信号が可変周波数電源制御用の制御器へ与えられるの
で、上記不安定領域の周波数要求信号に対しても上記可
変周波数電源装置は不安定な挙動を起さない。
Note that the present invention is not limited to the above-described embodiment. For example, in the above embodiment, the main controller operates based on the deviation signal SD between the load setting signal SL and the main steam flow rate signal SF, and sends out the frequency request signal R, but the point is that the thermal output of the reactor is Any device that can send out a frequency request signal corresponding to the above may be used. It goes without saying that various other modifications can be made without departing from the gist of the present invention. As explained above, in the device according to the present invention, when a frequency request signal corresponding to the unstable region of the variable frequency power supply device arrives, the signal is detected by the determiner, and the changeover switch replaces the signal with a pulse. Since a pulsed frequency request signal having a peak value that avoids the above-mentioned unstable region from the signal generator is given to the controller for controlling the variable frequency power supply, the above-mentioned variable frequency The power supply does not exhibit unstable behavior.

その結果、電動機、再循環ポンプ等を含む再循環系に不
安定な挙動が起こらず、それにともない炉心の流量も不
安定な挙動を起さず安定した特性を示す。さらに上記パ
ルス状周波数要求信号のパルス幅、パルス間隔、波高値
を適切に通整することによって炉○の流量特性を極めて
安定したものにすることができる。したがって、本発明
によれば周波数要求信号の全変化範囲に対して、冷却材
の炉心流量が安定した変化特性を示す冷却材再循環流量
制御装置を提供できる。
As a result, the recirculation system including electric motors, recirculation pumps, etc. does not exhibit unstable behavior, and accordingly, the flow rate of the reactor core does not exhibit unstable behavior and exhibits stable characteristics. Furthermore, by appropriately adjusting the pulse width, pulse interval, and peak value of the pulsed frequency request signal, the flow rate characteristics of the furnace can be made extremely stable. Therefore, according to the present invention, it is possible to provide a coolant recirculation flow rate control device in which the core flow rate of the coolant exhibits stable change characteristics over the entire change range of the frequency request signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従釆の冷却材再循環流量制御装置の構成を示す
ブロック図、第2図a,bは従来装置の周波数特性を示
す曲線図、第3図a,bは従来装置の再循環流量特性を
示す図、第4図は本発明の一実施例のパルス回路の構成
を示すブロック図、第5図a,bは同実施例の再循環流
量特性図、第6図a,b,cは同実施例のパルス状周波
数要求信号の波形図である。 1・・・・・・原子炉、3A,3B・・・・・・電動機
、4A,4B・・・・・・再循環ポンプ、5A,5B・
・・・・・可変周波数電源、6・・・・・・主制御器、
10・・・・・・判断指令器、11・・・・・・パルス
信号発生器。 第1図 第2図 第3図 第4図 第5図 第6図
Fig. 1 is a block diagram showing the configuration of the secondary coolant recirculation flow rate control device, Fig. 2 a and b are curve diagrams showing the frequency characteristics of the conventional device, and Fig. 3 a and b are the recirculation device of the conventional device. 4 is a block diagram showing the configuration of a pulse circuit according to an embodiment of the present invention. FIGS. 5a and 5b are recirculation flow characteristics of the same embodiment. FIGS. c is a waveform diagram of a pulsed frequency request signal of the same embodiment. 1... Nuclear reactor, 3A, 3B... Electric motor, 4A, 4B... Recirculation pump, 5A, 5B...
...Variable frequency power supply, 6...Main controller,
10... Judgment command device, 11... Pulse signal generator. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1 原子炉炉心に冷却材を強制循環させる再循環ポンプ
と、この再循環ポンプを駆動する電動機と、この電動機
の速度を制御する可変周波数電源装置と、前記原子炉の
熱出力に対応する周波数要求信号を出力する主制御器と
、この主制御器から出力する周波数要求信号が前記可変
周波数電源の不安定領域に対応する周波数要求信号であ
るか否かを判定する判定器と、この判定器が上記不安定
領域に対応する周波数要求信号であると判定したとき切
換動作する切換スイツチと、この切換スイツチの切換動
作に応じて前記主制御器からの周波数要求信号に代えて
前記不安定領域に対応する周波数要求信号の変化幅より
も大きな振幅で高速変動するパルスを送出するパルス信
号発生器と、このパルス信号発生器からのパルスおよび
前記主制御器からの周波数要求信号に応じて前記周波数
電源装置を制御する制御器とからなることを特徴とする
原子炉の冷却材再循環流量制御装置。 2 パルス信号発生器は少なくともオン・オフ比を可変
制御可能な矩形パルス発生器であることを特徴とする特
許請求の範囲第1項記載の原子炉の冷却材再循環流量制
御装置。
[Scope of Claims] 1. A recirculation pump that forcibly circulates coolant in a nuclear reactor core, an electric motor that drives this recirculation pump, a variable frequency power supply that controls the speed of this electric motor, and a a main controller that outputs a frequency request signal corresponding to the output; and a determiner that determines whether the frequency request signal output from the main controller is a frequency request signal corresponding to an unstable region of the variable frequency power supply. and a changeover switch that operates when the determiner determines that the frequency request signal corresponds to the unstable region; a pulse signal generator that sends out pulses that fluctuate at high speed with an amplitude larger than the variation width of the frequency request signal corresponding to the unstable region; A coolant recirculation flow rate control device for a nuclear reactor, comprising a controller that controls the frequency power supply device accordingly. 2. The coolant recirculation flow rate control device for a nuclear reactor according to claim 1, wherein the pulse signal generator is a rectangular pulse generator whose on/off ratio can be variably controlled.
JP54137261A 1979-10-24 1979-10-24 Reactor coolant recirculation flow control device Expired JPS6017078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54137261A JPS6017078B2 (en) 1979-10-24 1979-10-24 Reactor coolant recirculation flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54137261A JPS6017078B2 (en) 1979-10-24 1979-10-24 Reactor coolant recirculation flow control device

Publications (2)

Publication Number Publication Date
JPS5661699A JPS5661699A (en) 1981-05-27
JPS6017078B2 true JPS6017078B2 (en) 1985-04-30

Family

ID=15194524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54137261A Expired JPS6017078B2 (en) 1979-10-24 1979-10-24 Reactor coolant recirculation flow control device

Country Status (1)

Country Link
JP (1) JPS6017078B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889070A (en) * 1981-11-24 1983-05-27 Hitachi Ltd Pwm inverter
JP5806861B2 (en) * 2011-06-22 2015-11-10 株式会社沖データ Power supply device, image forming apparatus, and piezoelectric transformer control method

Also Published As

Publication number Publication date
JPS5661699A (en) 1981-05-27

Similar Documents

Publication Publication Date Title
DE3072129D1 (en) Load-control device for an asynchronous machine fed by a converter
Enjeti et al. A novel current controlled PWM inverter for variable speed AC drives
JPS6017078B2 (en) Reactor coolant recirculation flow control device
JPS59150982A (en) Generator protecting device for wind power plant
Vignesh et al. A revised RLS algorithm for low frequency electro mechanical oscillation
DE19519759C2 (en) Power converter
SU1027941A1 (en) Single-phase resistance welding machine
JPS6017077B2 (en) Output control device
SU966249A1 (en) Turbine controlling apparatus
RU2094941C1 (en) Method for induction motor control under condition of non-sine shape of supply voltage
El-Sousy et al. Design of one-degree and two-degrees of freedom controllers for indirect field orientation control induction machine drive system
SU748789A1 (en) Method of control of thyristorized inverter output power
JPS6026480B2 (en) Nuclear power plant output control device
CN116208013A (en) Silicon controlled rectifier series inverter power supply pure separate excitation control board
JPS623919B2 (en)
JPH09292901A (en) Controller
JP3378325B2 (en) Control device for electromagnetic pump
SU1617609A1 (en) Method of disconnecting stepping motor upon mechanical overload
Akhmadeev et al. Industrial implementation of a controlled sensorless synchronous drive with hard start conditions
Patzler Electronics enter the electric motor
JPH0621399U (en) Generator capacity limiter
JPH0533756A (en) Input control method during pumping operation of generator motor
JPS6022760B2 (en) Reactor coolant recirculation flow control device
JPH03284195A (en) Control device for synchronous machine
JPH05252798A (en) Speed controller for variable-speed power generating system