JPS6026451A - Frequency generator of servo motor or the like - Google Patents

Frequency generator of servo motor or the like

Info

Publication number
JPS6026451A
JPS6026451A JP13477983A JP13477983A JPS6026451A JP S6026451 A JPS6026451 A JP S6026451A JP 13477983 A JP13477983 A JP 13477983A JP 13477983 A JP13477983 A JP 13477983A JP S6026451 A JPS6026451 A JP S6026451A
Authority
JP
Japan
Prior art keywords
magnetic flux
magnet
pole
boundary
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13477983A
Other languages
Japanese (ja)
Inventor
Wataru Kakigi
渉 柿木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akai Electric Co Ltd
Original Assignee
Akai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akai Electric Co Ltd filed Critical Akai Electric Co Ltd
Priority to JP13477983A priority Critical patent/JPS6026451A/en
Publication of JPS6026451A publication Critical patent/JPS6026451A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Abstract

PURPOSE:To obtain an accurate rotating frequency output by varying the number of one variation of periodic magnetic frequencies in poles of a drive multipolar magnet to 2n times. CONSTITUTION:A frequency generator is formed of a drive multipolar magnet 1' having an irregular portion and a generating coil 5' having generating strands 4'a, 4'b for detecting a periodic change of a magnetic flux. A radial slot 2' is formed on the magnetizing surface of this magnet 1'. In this case, the magnet 1' is formed with slots at an equal pitch so that periodic variations in the magnetic flux of 2n times (n=1,2,...) occur in one pole together with the slots 2', and 180 deg. of an electric angle is displaced to the pitch in the adjacent pole with the boundary of the pole as a reference. Thus, the voltages induced at the strands 4'a, 4'b cancel to each other in the boundary, and only the voltage except the boundary is outputted as a rotating frequency output.

Description

【発明の詳細な説明】 本発明は周期的な磁束の変化をもたらす溝部を有する駆
動用多極マグネットと、上記磁束変化によって電圧が誘
起される発電線素からなる発電コイルとによって構成さ
れ回転周波数に応じた周波数出力を検出するサーボモー
タ等の周波数発電機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is comprised of a driving multi-pole magnet having grooves that cause periodic changes in magnetic flux, and a power generation coil consisting of a power generation line element in which a voltage is induced by the change in magnetic flux. This invention relates to a frequency generator such as a servo motor that detects a frequency output according to the frequency.

一般にサーボモータ等においては、上記周波数発電機に
よシモータの回転周波数を検出しこれを電圧に変換(F
−V変換)し、該電aEヲ回転速度制ja11電圧とし
てモータの回転速度制御を行なうようにしたものが知ら
れている。
Generally, in servo motors, etc., the frequency generator detects the rotational frequency of the servo motor and converts it into voltage (F
-V conversion), and the rotational speed of the motor is controlled by using the electric current aE as the rotational speed control voltage.

第1図は周期的な磁束変化をもたらす凹凸部を有する駆
動用多極マグネットと、該磁束部、化を検出する発電線
素からなる発電コイルとから構成される周波数発電機の
△例を示したものである。
Figure 1 shows an example of a frequency generator consisting of a driving multi-pole magnet having an uneven portion that causes periodic changes in magnetic flux, and a generating coil made of a generating line element that detects the magnetic flux portion. It is something that

第1図において、1はN極部とS休部が円周方向に分υ
1着磁された駆動用多極マグネット、2は該多極マグネ
ットの着磁面上にほどこされた周期的な磁束変化をもた
らす放射状の溝部、6は該多極マグネット1に固着した
磁性鉢よシなるロータ、4は上記溝部2による磁束変化
と1対1に対応する様に配置され該磁束変化を検出する
発電線素であシ、5は発電線素4から構成される発電コ
イルであり、この発電コイル5と同心に多極マグネソ1
−2及びロークロが回転することにより、該発電線素4
上に磁束の変化が生じ、この発電線素4に電圧が誘起さ
れ、全周積分されて、回転周波数として発電コイル5よ
シ検出される。このときの磁束変化は上記駆動用多極マ
グネット1の1磁極内で、一般的に2n+1 (n=1
.2.3・・)回の周期的な磁束変次に、第2図ン用い
て、第1図に示したものの動作を詳細に説明する。第2
図において(5)及び(13jは発電コイル5及び多極
マグネット1における溝部2の円周方向展開図、((−
1は上記発電コイル5におけるそれぞれの発電線素4を
透過する磁束変化の様子を簡略化し、スイッチング動作
に置き換えて示した図である。尚、第2図の(5)にお
いて−誘起されるVtEの方向を■(紙面の前方から後
方の方向〕あるいは■(紙面の後方から前方の方向)で
示した。ここで、上記多極マグネットの溝部は1磁極内
で10回の周期的な磁束変化をもたらす様に等ピンチ′
t″瀦が切られ一磁極の境界部を基準に前記のピンチに
対l−で電気角で位相が180°ずらしである。磁束変
化は1磁極内を基準にすると、磁極の反転も磁束変化と
してこの場合11回となる。
In Figure 1, 1 is the distance between the N pole part and the S rest part in the circumferential direction υ
1 is a magnetized multi-polar magnet for driving, 2 is a radial groove provided on the magnetized surface of the multi-polar magnet to cause periodic magnetic flux changes, and 6 is a magnetic pot fixed to the multi-polar magnet 1. 4 is a power generation line element arranged in one-to-one correspondence with the change in magnetic flux caused by the groove 2 and detects the change in magnetic flux; 5 is a power generation coil composed of the power generation line element 4; , a multipolar magneto 1 concentrically with this generating coil 5
-2 and the rotor rotate, the power generation line element 4
A change in magnetic flux occurs above, and a voltage is induced in the power generating line element 4, which is integrated all around and detected by the power generating coil 5 as a rotational frequency. The magnetic flux change at this time is generally 2n+1 (n=1
.. 2.3...) times, the operation of the device shown in FIG. 1 will be explained in detail using FIG. 2. Second
In the figures, (5) and (13j are developed views in the circumferential direction of the groove portions 2 in the generating coil 5 and the multipolar magnet 1, ((-
1 is a diagram illustrating the change in magnetic flux passing through each power generation line element 4 in the power generation coil 5 in a simplified manner and replacing it with a switching operation. In (5) of Fig. 2, the direction of -induced VtE is indicated by ■ (direction from the front to the rear of the paper) or ■ (direction from the rear to the front of the paper). The grooves are equally pinched so as to cause 10 periodic magnetic flux changes within one magnetic pole.
t'' is cut, and the phase is shifted by 180 degrees in electrical angle with respect to the pinch l- with respect to the boundary of one magnetic pole as a reference. Magnetic flux change is based on one magnetic pole, and reversal of magnetic poles is also a change in magnetic flux. In this case, it will be 11 times.

磁束変化と発′亀線素は1対1に対応しているので、上
記多極マグネット1が矢印方向に回転すると、フレミン
グ右手の法則によって上記発′i4L線素4には第2図
の(Alで示した方向に電圧が誘起され、この誘起され
た電圧が回転周波数出力として出力される。
Since there is a one-to-one correspondence between the magnetic flux change and the emitting element, when the multipolar magnet 1 rotates in the direction of the arrow, Fleming's right-hand rule causes the emitting element 4 to change as shown in Figure 2. A voltage is induced in the direction indicated by Al, and this induced voltage is output as a rotational frequency output.

しかし、契際には、精度上、上記溝部2の中心と上記多
極マグネット1の回転の中心、発電コイルの中心を完全
に一致させることは困難である。
However, in terms of accuracy, it is difficult to completely align the center of the groove 2 with the center of rotation of the multipolar magnet 1 and the center of the power generation coil.

以下、上記溝部の中心と上記多極マグネットの回転の中
心と、発電コイルの中心とが、それぞれ若干ずれている
場合を前提とする。また、ここで−上記境界部に対応す
る磁束変化に着目りでみると−この部分における磁束変
化は第2図の(Q OJ C+ 、 C2で示した様に
、多極マグネットの溝部2よシもたらされる磁束変化と
比較して太きい。したがって上記した前提において、上
記駆動用多極マグネット1の多極着磁の中心・がロータ
の回転の中心とずれたり、該着磁にムラが生じる様な精
度の悪い場合、この様な精度の悪さにともなって上記C
I+02における磁束変化による誘起′電圧が発′1に
コイル5の出力にそのままあられれて来る。また、上記
駆動用多極マグネツl−1のN極部とS極部の境界部と
溝部2の位相が全体的に若干のずれを生じた場合、その
ことによって発電コイル5の出力に変調がかかカやすく
なるという欠点を生じてしまう。
Hereinafter, it is assumed that the center of the groove, the center of rotation of the multipolar magnet, and the center of the power generation coil are each slightly shifted from each other. Also, if we pay attention to the magnetic flux change corresponding to the above-mentioned boundary part, the magnetic flux change in this part is similar to that of the groove part 2 of the multipolar magnet, as shown by (Q OJ C+, C2 in Fig. 2). Therefore, under the above-mentioned premise, there is a possibility that the center of the multi-polar magnetization of the multi-polar driving magnet 1 deviates from the center of rotation of the rotor, or that the magnetization becomes uneven. If the accuracy is poor, the above C
The induced voltage due to the magnetic flux change at I+02 is directly applied to the output of the coil 5 at the source 1. Furthermore, if there is a slight overall phase shift between the boundary between the N and S poles of the driving multi-pole magnet l-1 and the groove 2, this may cause modulation in the output of the power generating coil 5. This has the disadvantage that it becomes easy to bend.

上記した欠点は、それぞれの精度が悪ければ悪いほど大
きくあられれて来て精度があま9出せない場合には大き
な欠点となって1.まう。
The above-mentioned drawbacks become more severe as each accuracy gets worse, and if the accuracy cannot be improved to 9, it becomes a big drawback.1. Mau.

本発明は上記の欠点を除去するためになされたもので1
、駆動用多極マグネットの1個の磁極内の周期的な磁束
変化の画数を2n(n−1,2,3・・)回とすること
によって−ある程度精度が悪い状態下においでも正確な
回転周波数出力を得ることのできる周波数発電機を提供
すること7目的としている。
The present invention has been made to eliminate the above-mentioned drawbacks.
By setting the number of strokes of periodic magnetic flux changes in one magnetic pole of the driving multi-pole magnet to 2n (n-1, 2, 3...) times - accurate rotation even under conditions with a certain degree of precision It is an object of the present invention to provide a frequency generator capable of obtaining frequency output.

以下、本発明の一実施例を図面を用いて動作説明する。Hereinafter, the operation of an embodiment of the present invention will be explained using the drawings.

第3図において、(Al及び(13]は発電コイル5′
及び多極マグネット1′の円周方向展開図、(Q(ま発
電コイル5′を透過する磁束の変化の様子を簡略化し、
スイッチング動作に置きかえて示した図である。尚、2
′は上記多極マグネット1′の着磁面に放射状に設けら
れた溝部である。第3図の(13)から明らかな様に、
上記多極マグネット1′は一満部2′とともに1磁極内
で12回(n=6 )の周期的な磁束変化をもたらす様
に等ピンチで溝が切られ、磁極の境界部を基準に隣接す
る磁極では前記のピ、lンチに対して電気角で位相b’
−180’ずらしである。いま、この多極マグネット1
′が矢印方向に回転しているとした場合、磁極の境界部
に位置する発電線素4’aに注目丈ると、この発電線素
4’aはS極部からN極部に進丞する瞬間であるので、
磁束の変化方向ケ図面における上方向とし、矢印に示さ
れた多極マグネット1の回転方向から相対的に得られた
導体(発進コイル5′)の移動方向を図面における右方
向とし、フレミング右手の法則を適用させると、この発
電線素4’aに誘起される電圧の方向は図面における前
方から後方の方向となる。また磁極のもう一方の境界部
に位置する発電コイル5′の1部である発電線素4’b
に注目すると、この発電線素4’bはN極部からS極部
に進入する瞬間であるので、同様にフレミング右手の法
則を適用させると、発電線素4’bに誘起される電圧の
方向は図面における後方から前方の方向となる。ここで
、上記発電線素4’bに誘起される電圧と上記磁極の境
界部以外の多極マグネット1′の溝部2′によって誘起
される′電圧の方向は、発電コイルにおいて同一方向と
なるが、上記発霜;線素4’bに誘起される電圧のみが
逆方向となる。したがって、磁極の境界部のみに着目す
ると、上記発°砥線素4’aに誘起される′電圧と発電
線素4’bに誘起される電圧は互いに打ち消し合って、
はとんど出力としてあられれて来す、上記磁極の境界部
以外のマグネット1′の溝部2′によって誘起される電
圧のみが回転周波数出力として出力され、全周にわたっ
て同様のことがいえる、 上記した如く、本発明は円周方向に分割着磁されその着
出面上に放射状の溝部2′によって形成された複数の凹
凸部を有する駆動用多極マグネット1′と、該多極マグ
ネット1′の凹凸部に対面する位置に上記凹凸部による
磁束変化に1対1に対応する様に配設された発電線素4
′からなる発電コイル5′を備えた周波数発電機におい
て、上記凹凸部は上記多極マグネット1′の1個の磁極
に対応する部分において2n(n=1.2.3・・)回
の周期的な磁束変化をもたらす様に構成実るとともに上
記多極マグネット1′のN極部とS極部との各々の境界
部な基準に上記凹凸部欠電気角で180°ずらして構成
す1.することによシ、上記発電コイル5′によって上
記磁束変化を周波数変化として検出し、回転速度を制御
するようにしたので、精度上、上記溝部2′の中、し、
と上記多極マグネット1′の回転の中心が多少でもずれ
ている場合に、上記多極マグネット1′の着磁の[1コ
心のずれ上記多極マグネット1′のMeのG王らつき、
上記磁極の境界部と溝部2′の位相ずれ等によって回転
周波数信号に重畳されて来る成分(磁極の境界部によっ
て発電線素に誘起される電圧成分)をキャンセルするこ
とができ精度のよい周波数発電機を提供できる。
In FIG. 3, (Al and (13) are the generator coil 5'
and a developed diagram in the circumferential direction of the multipolar magnet 1',
It is a diagram shown in place of a switching operation. In addition, 2
' is a groove provided radially on the magnetized surface of the multipolar magnet 1'. As is clear from (13) in Figure 3,
The above-mentioned multi-pole magnet 1', together with the full part 2', has grooves cut with equal pinches so as to bring about 12 periodic magnetic flux changes (n=6) within one magnetic pole, and are adjacent to each other with reference to the boundary between the magnetic poles. At the magnetic pole, the phase b' in electrical angle is
-180' shift. Now, this multipolar magnet 1
' is rotating in the direction of the arrow, and if we pay attention to the generating line element 4'a located at the boundary of the magnetic poles, this generating line element 4'a will advance from the S pole to the N pole. Because it is the moment to
The direction of change in magnetic flux is defined as the upward direction in the drawing, and the direction of movement of the conductor (starting coil 5') obtained relative to the direction of rotation of the multipolar magnet 1 shown by the arrow is defined as the rightward direction in the drawing. When the law is applied, the direction of the voltage induced in the power generating line element 4'a is from the front to the rear in the drawing. Also, the power generation line element 4'b, which is a part of the power generation coil 5' located at the other boundary of the magnetic poles.
If we pay attention to this, this is the moment when the power generation line element 4'b enters the S pole from the N pole, so if Fleming's right-hand rule is similarly applied, the voltage induced in the power generation line 4'b will be The direction is from the rear to the front in the drawing. Here, the direction of the voltage induced in the power generating line element 4'b and the voltage induced by the groove 2' of the multipolar magnet 1' other than the boundary between the magnetic poles are in the same direction in the power generating coil. , the above-mentioned frost formation; only the voltage induced in the line element 4'b is in the opposite direction. Therefore, if we focus only on the boundary between the magnetic poles, the voltage induced in the generating abrasive wire element 4'a and the voltage induced in the generating line element 4'b cancel each other out.
Only the voltage induced by the groove 2' of the magnet 1' other than the boundary between the magnetic poles, which mostly appears as an output, is output as a rotational frequency output, and the same can be said for the entire circumference. As described above, the present invention provides a driving multipolar magnet 1' which is dividedly magnetized in the circumferential direction and has a plurality of uneven parts formed by radial grooves 2' on the magnetization surface, and a driving multipolar magnet 1'. A power generation line element 4 is disposed at a position facing the uneven portion so as to correspond one-to-one to the change in magnetic flux due to the uneven portion.
In a frequency generator equipped with a generating coil 5' consisting of a generator coil 5', the uneven portion has a period of 2n (n=1.2.3...) times in a portion corresponding to one magnetic pole of the multipolar magnet 1'. 1. The structure is constructed so as to bring about a magnetic flux change, and the irregularities are shifted by 180 degrees with respect to the respective boundaries between the north and south poles of the multipolar magnet 1'.1. By doing so, the magnetic flux change is detected as a frequency change by the generating coil 5' and the rotational speed is controlled.
If the center of rotation of the multipolar magnet 1' is slightly deviated, the magnetization of the multipolar magnet 1' may be affected by the following:
The component superimposed on the rotational frequency signal due to the phase shift between the magnetic pole boundary and the groove 2' (voltage component induced in the power generation line by the magnetic pole boundary) can be canceled, resulting in accurate frequency power generation. We can provide equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は周波数発電機の一例を示す構成図、第2図の(
八及び(匂は第1図で示した一例における発電コイル及
び多極マグネットの円周方向展開図、第2図の(qは同
じく第1図で示した一例における発進コイルを透過する
磁束の変化を簡略化して示した磁束分布図、第6図の(
Al及び(均は本発明の一実施例における発電コイル及
びロータの円周方向展開図、第6図の(qは同じく本発
明の一実施例における発電線素を透過する磁束の変化乞
簡略化して示した磁束分布図である。 1′・・多極マグネット、2′多極マグネツト上の溝部
、4′・発電線素、5′・・発′−コイル。 第 1 図
Figure 1 is a configuration diagram showing an example of a frequency generator, and Figure 2 (
8 and (o) are circumferential development diagrams of the generating coil and multipolar magnet in the example shown in Figure 1, and (q in Figure 2) are changes in magnetic flux passing through the starting coil in the example shown in Figure 1. A simplified magnetic flux distribution diagram, Figure 6 (
In FIG. 6, (q) is a simplified diagram of the change in magnetic flux passing through the power generating line element in an embodiment of the present invention. Fig. 1 is a magnetic flux distribution diagram shown in Fig. 1. 1': multipolar magnet, 2': groove on the multipolar magnet, 4': generating line element, 5': generating coil.

Claims (1)

【特許請求の範囲】[Claims] 円周方向に分割着磁されその着磁面上に放射状の溝部に
よって形成された複数の凹凸部を有する駆動用多極マグ
ネットと、該多極マグネットの凹凸部に対面する位置に
上記凹凸部による磁束変化に1対1に対応する様に配設
された発電線素からなる発電コイルを備えた周波数発電
機において、上記凹凸部は上記多極マグネットの1個の
研極に対応する部分において2n(n=1.2.3・・
)回の周期的な磁束変化をもたらす様に構成するととも
に上記多極マグネットのN極部とS極部との各々の境界
部を基準に上記凹凸部を電気角で180′すらし℃構成
することによフ、上記発電コイルによって上記磁束変化
を周波数変化として検出し、回転速度を制御するように
したことを特徴とするサーボモータ等の周波数発電機。
A driving multi-polar magnet that is divided into magnets in the circumferential direction and has a plurality of uneven parts formed by radial grooves on the magnetized surface, and a driving multi-polar magnet having a plurality of uneven parts formed at positions facing the uneven parts of the multi-polar magnet. In a frequency generator equipped with a power generation coil made of power generation wire elements arranged in a one-to-one correspondence with changes in magnetic flux, the uneven portion has a 2n height in a portion corresponding to one sharpened pole of the multipolar magnet. (n=1.2.3...
) is configured to bring about a periodic change in magnetic flux, and the uneven portion is configured to have an electrical angle of 180°C with reference to each boundary between the N-pole portion and the S-pole portion of the multipolar magnet. Particularly, a frequency generator such as a servo motor, characterized in that the above-mentioned magnetic flux change is detected as a frequency change by the above-mentioned power generation coil, and the rotational speed is controlled.
JP13477983A 1983-07-22 1983-07-22 Frequency generator of servo motor or the like Pending JPS6026451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13477983A JPS6026451A (en) 1983-07-22 1983-07-22 Frequency generator of servo motor or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13477983A JPS6026451A (en) 1983-07-22 1983-07-22 Frequency generator of servo motor or the like

Publications (1)

Publication Number Publication Date
JPS6026451A true JPS6026451A (en) 1985-02-09

Family

ID=15136357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13477983A Pending JPS6026451A (en) 1983-07-22 1983-07-22 Frequency generator of servo motor or the like

Country Status (1)

Country Link
JP (1) JPS6026451A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498905A (en) * 1978-01-20 1979-08-04 Matsushita Electric Ind Co Ltd Motor with frequency generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498905A (en) * 1978-01-20 1979-08-04 Matsushita Electric Ind Co Ltd Motor with frequency generator

Similar Documents

Publication Publication Date Title
US4644157A (en) Optical rotation detecting apparatus
US7872439B2 (en) Motor driving apparatus
JP2597617B2 (en) Rotation converter
US3809936A (en) Brushless generator
US4659953A (en) Magnetic structure for synchro and tachometer
JPS6157859A (en) Magnetic structure of synchro and tachometer
EP0365689A1 (en) Synchronous motor
KR900005759B1 (en) Electrical motor with improved tachometer generator
JPH0524759B2 (en)
JPS6026451A (en) Frequency generator of servo motor or the like
US4382214A (en) Direct current motor
GB2056073A (en) DC tachogenerators
JPS5958314A (en) Digital rotation detector
JPS59113568A (en) Rotation driving motor of recording disc
JPS59188366A (en) Frequency generator of servo motor or the like
JPH01110085A (en) Motor controller
JPH01122352A (en) Synchronous ac servomotor
JPS6260457A (en) Flat type motor
JPH04197071A (en) Dc brushless motor
JPS6021347B2 (en) Motor position and speed detection device
JPS60234452A (en) Tachometer generator
JPS59188365A (en) Frequency generator of servo motor or the like
JP3439874B2 (en) DC motor
JPH0819238A (en) Position detector for motor
KR950007108Y1 (en) Apparatus of signal generator for velouty control