JPH01122352A - Synchronous ac servomotor - Google Patents

Synchronous ac servomotor

Info

Publication number
JPH01122352A
JPH01122352A JP62278846A JP27884687A JPH01122352A JP H01122352 A JPH01122352 A JP H01122352A JP 62278846 A JP62278846 A JP 62278846A JP 27884687 A JP27884687 A JP 27884687A JP H01122352 A JPH01122352 A JP H01122352A
Authority
JP
Japan
Prior art keywords
pole
rotor
permanent magnets
winding
armature winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62278846A
Other languages
Japanese (ja)
Inventor
Toshio Hayashi
林 敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP62278846A priority Critical patent/JPH01122352A/en
Publication of JPH01122352A publication Critical patent/JPH01122352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To increase the rate of effective utilization of a permanent magnet, by a method wherein the N-poles and the S-poles of permanent magnets of a rotor are formed so as to have different central angles respectively and a pair of armature windings, which are corresponding to the permanent magnets of a pair of N-pole and S-pole, are connected so that the winding directions of them are opposed to each other. CONSTITUTION:Permanent magnets 12, constituting the pair of poles of a rotor 5, are attached to the peripheral surface of the shaft of the rotor 5. AC control current is supplied to an armature winding 18 synohrcnizing with the timing signal of the rotating angle of the rotor 5. The permanent magnets 12 for the opposing N-poles and S-poles are formed so as to have different central angles respectively while at least one set of armature windings 18, which are corresponding to the N-pole and S-pole of permanent magnets 12, are connected so that the winding directions thereof are opposed to each other.

Description

【発明の詳細な説明】 光班辺旦旬 [産業上の利用分野コ 本発明は回転子の軸周面に永久磁石を取り付けた同期式
交流サーボモータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a synchronous AC servo motor in which a permanent magnet is attached to the shaft circumferential surface of a rotor.

[従来の技術] 一般に、同期式交流サーボモータでは、固定子のスロウ
トに巻かれた電機子巻線に正弦波の制御電流を供給し、
かつ回転子の回転によって電機子巻線に誘起される電圧
が正弦波電圧となるよう構成すれば、回転子のトルクが
一定となって良好な回転が得られることが知られている
。このため、従来より、回転子の永久磁石と固定子ティ
ースとの間のエアギャップにおける磁束分布が回転子の
軸周に沿って正弦波分布となるように、さまざまの工夫
が施された同期式交流サーボモータが提案されている。
[Prior Art] Generally, in a synchronous AC servo motor, a sine wave control current is supplied to an armature winding wound around the throat of a stator.
It is also known that if the voltage induced in the armature winding by rotation of the rotor is a sinusoidal voltage, the torque of the rotor becomes constant and good rotation can be obtained. For this reason, conventionally, synchronous type AC servo motors have been proposed.

これらの中には、たとえは、第9図に示すように、回転
子aの軸を中心とした同心円に沿って均一な厚みを有す
る扇形の永久磁石Cを極対に4極形成したものがある。
Among these, for example, as shown in Fig. 9, there is one in which four poles are formed in pairs of sector-shaped permanent magnets C having uniform thickness along concentric circles centered on the axis of rotor a. be.

この永久磁石Cは扇形の中央部を飽和磁化まで着磁し、
中央部から外側に向かって徐々に磁化の度合を弱めて着
磁し、エアギャップdにおける磁束分布が正弦波分布と
なるよう考慮されている。また、第10図に示すように
、回転子fの永久磁石りの周方向端部の厚みが中央部よ
り薄<(R>r)形成されたものもある。この場合、永
久磁石りは総ての部分で飽和磁化まで着磁されているが
、中央部が周方向端部より厚くなっており、更にエアギ
ャップiは中央部で狭く周方向端部はと広くなっている
ので第9図の場合と同じようにエアギャップiでの磁束
分布は正弦波分布となる。
This permanent magnet C magnetizes the fan-shaped central part to saturation magnetization,
It is considered that the degree of magnetization is gradually weakened from the center toward the outside so that the magnetic flux distribution in the air gap d becomes a sinusoidal distribution. Furthermore, as shown in FIG. 10, there is also a rotor f in which the circumferential end portions of the permanent magnets are thinner than the center portion by <(R>r). In this case, the permanent magnet is magnetized to saturation magnetization in all parts, but the center part is thicker than the circumferential ends, and the air gap i is narrower in the center and thicker in the circumferential ends. Since the air gap i is wide, the magnetic flux distribution at the air gap i becomes a sine wave distribution as in the case of FIG.

[発明が解決しようとする問題点コ しかしながら、以下に掲げる点において、猶−層の改善
が要望された。サーボモータの永久磁石として、最近、
希土類磁石(たとえばS m Co系永久磁石)がその
磁気的特性の点から多く利用され始めているが、希土類
磁石は資源に乏しくしかも高価であるためにその節減は
極めて大切である。
[Problems to be Solved by the Invention However, improvements in the margins were desired in the following points. Recently, as a permanent magnet for servo motors,
Rare earth magnets (for example, S m Co-based permanent magnets) have begun to be widely used because of their magnetic properties, but since rare earth magnets are scarce in resources and are expensive, it is extremely important to save them.

第9図に示す永久磁石Cの場合、扇形の永久磁石Cの中
央部では飽和磁化まで着磁されているが、その外側に向
かうにつれて着磁率を100[%コル数[%]まで低下
させているので有効利用率がと低くなってしまう。した
がって、材料を節減することはできない。また、第10
図に示す永久磁石りの場合、厚みの厚い中央部から比較
的厚みの薄い端部までの総ての部分に亘って飽和磁化ま
で着磁されているので有効利用率は極めて良いが、端部
ではエアギャップlが広いこともあり端部を薄く成形し
過ぎるとパーミアンス係数が下がり端部は減磁してしま
う。したがって、端部をあまり薄く成形することはでき
ず、全体として厚めに成形され、結果的に有効利用率は
低下し、材料の節減に対して有効でなくなってしまう。
In the case of the permanent magnet C shown in Fig. 9, the central part of the fan-shaped permanent magnet C is magnetized to saturation magnetization, but as it moves toward the outside, the magnetization rate decreases to 100 [% Cor number [%]. Therefore, the effective utilization rate becomes very low. Therefore, no material savings can be made. Also, the 10th
In the case of the permanent magnet shown in the figure, the effective utilization rate is extremely good because all parts from the thick central part to the relatively thin ends are magnetized to saturation magnetization. Since the air gap l is wide, if the end portion is formed too thin, the permeance coefficient will decrease and the end portion will be demagnetized. Therefore, the end portions cannot be formed too thin, and the entire structure is formed thicker, resulting in a lower effective utilization rate and an ineffective way to save material.

そこで、本発明の同期式交流サーボモータは電機子巻線
に誘起される電圧を正弦波形としつつ、永久磁石の有効
利用率を高め材料の節減を図ることを目的とする。
Therefore, an object of the synchronous AC servo motor of the present invention is to make the voltage induced in the armature winding a sinusoidal waveform, increase the effective utilization rate of the permanent magnets, and save materials.

九脈q講戒 [問題点を解決するための手段] 本発明の同期式交流サーボモータは、極対を構成する永
久磁石が軸周面に取り付けられた回転子と、該回転子の
回転角を検出する回転角検出部と、前記回転子の周囲の
固定子に前記極対に対向して取り付けられ、前記回転角
検出部からの回転角のタイミング信号に同期して交流の
制御電流が供給される電機子巻線と、を備えた同期式交
流サーボモータであって、前記極対の少なくとも一対の
N極およびS極の永久磁石を、それぞれ異なる中心角の
大きさに形成し、該N極およびS極の永久磁石に応じた
少なくとも一組の前記電機子巻線を巻線方向が互いに反
対となるよう接続したことを特徴とする。
Nine pulses q lecture [Means for solving the problem] The synchronous AC servo motor of the present invention has a rotor in which permanent magnets constituting a pole pair are attached to the circumferential surface of the shaft, and a rotation angle of the rotor. a rotation angle detection unit that detects the rotation angle, and a rotation angle detection unit that is attached to a stator around the rotor to face the pole pair, and supplies an alternating current control current in synchronization with a rotation angle timing signal from the rotation angle detection unit. a synchronous AC servo motor, comprising: an armature winding in which at least one pair of N-pole and S-pole permanent magnets of the pole pair are formed with different center angle sizes; The present invention is characterized in that at least one set of the armature windings corresponding to the pole and south pole permanent magnets are connected so that the winding directions are opposite to each other.

[作用] 上記構成を有する本発明の同期式交流サーボモータでは
、回転子の軸周面に取り付けられた少なくとも一対のN
極およびS極の永久磁石が異なる中心角の大きさに形成
され少なくとも一対のN極およびS極の永久磁石乞こ応
じた電機子巻線の巻線方向が互いに反対に接続されてい
ることから、回転角検出部からのタイミング信号に同期
して電機子巻線に交流の制御電流が供給され回転子が回
転すると固定子の電機子巻線に誘起される電圧が近似的
に正弦波形となってトルクの変動は抑えられる。このと
き、電機子巻線に誘起される電圧を第1図を用いて詳し
く説明する。
[Function] In the synchronous AC servo motor of the present invention having the above configuration, at least one pair of N
The pole and south pole permanent magnets are formed with different center angle sizes, and at least one pair of the north pole and south pole permanent magnets are connected so that the winding directions of the armature windings are opposite to each other. When an alternating current control current is supplied to the armature winding in synchronization with the timing signal from the rotation angle detection section and the rotor rotates, the voltage induced in the stator armature winding has an approximately sinusoidal waveform. Torque fluctuations can be suppressed. The voltage induced in the armature winding at this time will be explained in detail with reference to FIG.

第1図(A)はS極、N極の永久磁石およびこれに対向
する電機子巻線の一部を展開して表し、第1図(B)は
各電機子巻線に誘起される電圧を表す。図示するよう・
に、S極、N極に応じた一組の電機子巻線P、  Qは
図中矢印に示すように巻線方向をそれぞれ反対巻きにし
て接続されている。
Figure 1 (A) shows the S-pole and N-pole permanent magnets and a part of the armature windings facing them, and Figure 1 (B) shows the voltage induced in each armature winding. represents. As shown in the diagram
A pair of armature windings P and Q corresponding to the S and N poles are connected with the winding directions opposite to each other as shown by the arrows in the figure.

始めに、回転する回転子の永久磁石と電機子巻線Pとの
相対位置が一点鎖線■の状態にあるとき、電機子巻線P
の一方の巻線部分PLはN極の永久磁石に対向する位置
にあり大きな誘導起電力を生ずるが、反対側の巻線部分
PRはN極の永久磁石とS極の永久磁石との隙間に対向
する位置にありほとんど誘導起電力を生じない。つぎに
、永久磁石と電機子巻線Pとの相対位置が実線■の状態
まで進んだとき、巻線部分PLはN極に位置し、巻線部
分PRはS極に対向する位置にくる。このとき、それぞ
れ巻線部分PL、  PRに同位相の大きな誘導起電力
が発生する。さらに、永久磁石と電機子巻線Pとの相対
位置が破線■の状態にまで至ると、巻線部分PLは依然
としてN極に位置したままだが、再び巻線部分PRはS
極とN極との隙間に位置してほとんど誘導起電力を生じ
なくなり、巻線全体としての誘導起電力は小さくなる。
First, when the relative position between the permanent magnets of the rotating rotor and the armature winding P is as shown by the dashed line ■, the armature winding P
The winding part PL on one side is located opposite the N-pole permanent magnet and generates a large induced electromotive force, but the winding part PR on the opposite side is located in the gap between the N-pole permanent magnet and the S-pole permanent magnet. They are located opposite each other and generate almost no induced electromotive force. Next, when the relative position between the permanent magnet and the armature winding P advances to the state indicated by the solid line ■, the winding portion PL is located at the north pole, and the winding portion PR is at a position opposite to the south pole. At this time, large induced electromotive forces having the same phase are generated in the winding portions PL and PR, respectively. Furthermore, when the relative position between the permanent magnet and the armature winding P reaches the state shown by the broken line ■, the winding portion PL remains at the N pole, but the winding portion PR again becomes S.
Located in the gap between the pole and the N pole, almost no induced electromotive force is generated, and the induced electromotive force of the entire winding becomes small.

この結果、第1図(B)に示すように、電機子巻線Pに
誘起される電圧波形は凸型の電圧波形Vρ1となる。さ
らに電機子巻線Pと永久磁石との相対位置が進むと、つ
ぎに電機子巻線Pに誘起される電圧は位相の反転した凸
型の電圧波形Vρ2どなる。
As a result, as shown in FIG. 1(B), the voltage waveform induced in the armature winding P becomes a convex voltage waveform Vρ1. As the relative position between the armature winding P and the permanent magnet further advances, the voltage induced in the armature winding P next becomes a convex voltage waveform Vρ2 with an inverted phase.

一方、電機子巻線Qは、電機子巻線Pの対向する永久磁
石の極性と反対の極性の永久磁石と対向するよう設けら
れており、しかも電機子巻線Pの巻線方向と反対に巻か
れていることから、電機子巻線Pに誘起される電圧と同
位相の誘起電圧VQI。
On the other hand, the armature winding Q is provided so as to face a permanent magnet having a polarity opposite to that of the facing permanent magnet of the armature winding P, and furthermore, the armature winding Q is provided so as to face a permanent magnet having a polarity opposite to that of the permanent magnet facing the armature winding P, and furthermore, the armature winding Q is provided so as to face a permanent magnet having a polarity opposite to that of the permanent magnet facing the armature winding P. Because it is wound, the induced voltage VQI is in the same phase as the voltage induced in the armature winding P.

VO2を生ずる。したがって、電機子巻線Pと電機子巻
線Qとが接続される一組の電機子巻線から誘起される電
圧は重なり合った凸型の電圧波形となって、正弦波形に
近いものとなる。
Produces VO2. Therefore, the voltage induced from a pair of armature windings to which armature winding P and armature winding Q are connected has an overlapping convex voltage waveform, which is close to a sine waveform.

[実施例コ 以下に、本発明の同期式交流サーボモータの実施例につ
いて説明する。第2図は同期式交流サーボモータの回転
子周辺の構造を概略的に示す。第3図は同期式交流サー
ボモータの全体の構造を表す。第4図は電機子巻線に制
御電流を供給する駆動部の回路を示す。
[Embodiment] An embodiment of the synchronous AC servo motor of the present invention will be described below. FIG. 2 schematically shows the structure around the rotor of a synchronous AC servo motor. FIG. 3 shows the overall structure of a synchronous AC servo motor. FIG. 4 shows the circuit of the drive section that supplies the control current to the armature winding.

図示するように、同期式交流サーボモータ1は、回転子
が制御電流の周波数、垢幅にしたがって回転する同期式
のものであり、回転子5の軸7に取り付けられたヨーク
9の上に永久磁石12が4極貼付され、この永久磁石1
2と向かい合う固定子14のスロットには電機子巻線1
日が巻かれた構造を有する。また、回転子5の一方の端
部には回転角を検出するレゾルバ21が取り付けられて
おり、検出される回転角に同曲して周知のインバータ回
路として構成された駆動giPJ22は電機子巻線1日
に正弦波の制御電流を供給する。
As shown in the figure, the synchronous AC servo motor 1 is a synchronous type in which the rotor rotates according to the frequency and width of the control current, and is permanently mounted on a yoke 9 attached to the shaft 7 of the rotor 5. A magnet 12 is attached with four poles, and this permanent magnet 1
The armature winding 1 is placed in the slot of the stator 14 opposite to the armature winding 1.
It has a sun-wound structure. Further, a resolver 21 that detects the rotation angle is attached to one end of the rotor 5, and the drive giPJ 22, which is configured as a well-known inverter circuit, is connected to the armature winding. A sinusoidal control current is supplied per day.

回転子5の永久磁石12はヨーク9を挟んでS極および
N極がそれぞれ対向した2極対をなしているが、この永
久磁石12は軸7の軸方向に沿った長手状のものであり
、電気角120°弱(軸を中心としたときに中心角60
°弱)の均一な厚みのS極12aと電気角180°弱(
中心角90゜弱)の均一な厚みのN極12bとからなる
。この永久磁石12は総ての部分で飽和磁化まで着磁さ
れている。
The permanent magnets 12 of the rotor 5 form a pair of two poles with S and N poles facing each other with the yoke 9 in between, and the permanent magnets 12 are longitudinal along the axial direction of the shaft 7. , electric angle slightly less than 120° (center angle 60° when centering on the axis)
The S pole 12a has a uniform thickness with an electrical angle of just under 180° (
The N-pole 12b has a uniform thickness and a center angle of a little less than 90°. This permanent magnet 12 is magnetized to saturation magnetization in all parts.

また、S極12aおよびN極12bに向い合う固定子1
4のスロットは24個設けられている。
Also, the stator 1 facing the S pole 12a and the N pole 12b
There are 24 number 4 slots provided.

各スロットに巻かれる電機子巻線18の巻線方向を説明
するために、各スロットの位置を便宜的に制御電流のU
相、■相、W相に対応してU1〜U8、■1〜VB、W
l〜W8とする。電機子巻線1日は第4図に示すように
中性点をもつ星型に結線されており、電気的に隣合う位
置(第4図参照)の電機子巻線18は巻線方向を反対に
して直列接続されている。つまり、スロットU1.U2
間の巻線方向とスロワ[J3.04間の巻線方向とは互
いに反対に直列接続されている。尚、スロットU1.U
2間の巻線とスロットU3.U4間の巻線とは巻線方向
が互いに反対であれば並列に接続されていても良い。
In order to explain the winding direction of the armature winding 18 wound in each slot, the position of each slot is conveniently shown as U of the control current.
U1~U8, ■1~VB, W corresponding to phase, ■phase, W phase
1 to W8. The armature windings 18 are connected in a star shape with a neutral point as shown in Figure 4, and the armature windings 18 in electrically adjacent positions (see Figure 4) are connected in the winding direction. They are connected in series in reverse. In other words, slot U1. U2
The winding direction between the thrower and the winding direction between the thrower [J3.04 and the thrower [J3.04] are opposite to each other and are connected in series. Note that slot U1. U
2 winding and slot U3. The winding between U4 and the winding may be connected in parallel as long as the winding directions are opposite to each other.

このような構成を有する同量式交流サーボモータ1に駆
動部22から制御電流を供給すると、回転子5は回転す
る。このとき、回転子50回転に際して電機子巻線1日
に誘起される電圧を第5図。
When a control current is supplied from the drive section 22 to the equal amount AC servo motor 1 having such a configuration, the rotor 5 rotates. At this time, FIG. 5 shows the voltage induced in the armature winding per day when the rotor rotates 50 times.

第6図および第7図を用いて模式的に説明する。This will be schematically explained using FIGS. 6 and 7.

第5図は回転子の軸周囲に貼付された永久磁石の配置を
直線状に展開して示し、第6図はこの永久磁石に対向す
る電機子巻線の配置を直線状に展開して示す。S極およ
びN極に対向する電機子巻線は互いに反対方向に巻かれ
ていることから、回転子が回転したときに電機子巻線に
誘起される電圧は第7図に示すように、それぞれの電機
子巻線に誘起される電圧を重ねたものとなる。したがっ
て、電機子巻線に誘起される電圧は階段状の波形となり
正弦波形に近いものとなる。
Fig. 5 shows the arrangement of permanent magnets attached around the rotor axis developed in a linear manner, and Fig. 6 shows the arrangement of the armature windings facing the permanent magnets developed in a linear form. . Since the armature windings facing the S and N poles are wound in opposite directions, the voltages induced in the armature windings when the rotor rotates are as shown in Figure 7, respectively. It is a superposition of the voltages induced in the armature winding. Therefore, the voltage induced in the armature winding has a stepped waveform, which is close to a sine waveform.

第8図に実際に電機子巻線1日に誘起される電圧波形を
測定した結果を示す。永久磁石12の端部からの漏れ磁
束などによる効果も加わって、誘起される電圧波形は階
段状の波形とならず、角がとれたほぼ完全な正弦波形と
なる。電気角180°のN極と電気角120°のS極と
の永久磁石5は総ての部分に亘って飽和磁化まで着磁さ
れているので、少なくとも有効利用率は0.8[=(6
0+60)/ (90+60)コ以上となり、従来の有
効利用率0.64と較べて大きくなる。実際に、本実施
例の永久磁石12の誘起電圧定数および第9図の永久磁
石Cを総ての部分に亘って飽和磁化まで着磁させた場合
の誘起電圧定数を求めると、それぞれ59.9 [mm
V/rpmコ、61.5 [mmV/rpmコとなり、
有効利用率は0.974 (=59.9/61.5)と
極めて大きな値となっている。
FIG. 8 shows the results of actually measuring the voltage waveform induced in the armature winding in one day. In addition to the effect of leakage magnetic flux from the end of the permanent magnet 12, the induced voltage waveform does not have a step-like waveform, but has an almost perfect sinusoidal waveform with rounded corners. Since the permanent magnet 5 with the N pole of 180° electrical angle and the S pole of 120° electrical angle is magnetized to saturation magnetization over all parts, the effective utilization rate is at least 0.8 [=(6
0+60)/(90+60) or more, which is larger than the conventional effective utilization rate of 0.64. Actually, the induced voltage constant of the permanent magnet 12 of this embodiment and the induced voltage constant when the permanent magnet C shown in FIG. 9 is magnetized to saturation magnetization over all parts are found to be 59.9. [mm
V/rpm, 61.5 [mmV/rpm,
The effective utilization rate is 0.974 (=59.9/61.5), which is an extremely large value.

以上示したように、本実施例の同量式交流サーボモータ
1によれば、電機子巻線1日に誘起される電圧の正弦波
形を損なうことなく、磁石の有効利用率を高めて材料の
節減を図ることができる。
As shown above, according to the equal quantity type AC servo motor 1 of this embodiment, the effective utilization rate of the magnet is increased and the material is You can save money.

また、永久磁石の形状を簡単にでき、しかも総ての部分
の磁化を飽和磁化まで着磁させればよいので、製造工数
を減らすことができる。
In addition, the permanent magnet can be made in a simple shape, and all parts need to be magnetized to saturation magnetization, so the number of manufacturing steps can be reduced.

さらに、回転子5のイナーシャを低減でき、サーボモー
タとしての起動、加速、減速、停止などの応答性を高め
ることができる。
Furthermore, the inertia of the rotor 5 can be reduced, and the responsiveness of the servo motor in starting, accelerating, decelerating, stopping, etc. can be improved.

尚、本発明の同期式交流サーボモータはこうした実施例
に同等限定されるものではなく、例えは、回転角検出部
としてレゾルバの代わりにロータリエンコーダを用いた
構成や、回転子の永久磁石を4極に限らず2極、6極に
した構成など種々なる態様で実施できることは勿論であ
る。
Note that the synchronous AC servo motor of the present invention is not limited to these embodiments; for example, a rotary encoder may be used instead of a resolver as the rotation angle detection section, or a rotor may have four permanent magnets. Of course, it can be implemented in various forms such as not only the pole structure but also two-pole and six-pole structures.

九咀曳効呈 以上詳述したように、本発明の同期式交流サーボモータ
によれば、電機子巻線に誘起される電圧の正弦波形を損
なうことなく、磁石の有効利用率を高めて材料の節減を
図ることができるという優れた効果を奏する。
As described in detail above, according to the synchronous AC servo motor of the present invention, the effective utilization rate of the magnets is increased without impairing the sinusoidal waveform of the voltage induced in the armature windings. This has the excellent effect of reducing the amount of waste.

また、永久磁石の形状を簡単にでき、しかも総ての部分
の磁化を飽和磁化まで着磁させればよいので、製造工数
を減らすことができる。
In addition, the permanent magnet can be made in a simple shape, and all parts need to be magnetized to saturation magnetization, so the number of manufacturing steps can be reduced.

さらに、回転子のイナーシャを低減でき、サーボモータ
としての起動、加速、減速、停止などの応答性を高める
ことができる。
Furthermore, the inertia of the rotor can be reduced, and the responsiveness of the servo motor, such as starting, accelerating, decelerating, and stopping, can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)はS極、N極の永久磁石およびこれに対向
する電機子巻線の一部を展開して表す説明図、第1図(
B)は各電機子巻線に誘起される電圧を表す説明図、第
2図は実施例の同期式交流サーボモータの回転子周辺の
構造を概略的に表す説明図、第3図は同期式交流サーボ
モータの全体の構造を表す説明図、第4図は電機子巻線
に制御電流を供給する駆動部を表す回路図、第5図は回
転子の軸周囲に貼付された永久磁石の配置を直線状に表
す展開図、第6図は固定子の電機子巻線の配置を直線状
に表す展開図、第7図は電機子巻線に誘起される電圧の
時間変化を表すグラフ、第8図は実測した電機子巻線に
誘起される電圧の時間変化を表すグラフ、第9図及び第
10図は従来の回転子の構造を表す説明図である。 1 ・・・ 同期式交流サーボモータ 5 ・・・ 回転子 12 ・・・ 永久磁石 1日 ・・・ 電機子巻線 21 ・・・ レゾルバ 22 ・・・ 駆動部
Figure 1 (A) is an explanatory diagram showing the S-pole and N-pole permanent magnets and a part of the armature winding facing them.
B) is an explanatory diagram showing the voltage induced in each armature winding, Fig. 2 is an explanatory diagram schematically showing the structure around the rotor of the synchronous AC servo motor of the example, and Fig. 3 is an explanatory diagram showing the structure around the rotor of the synchronous AC servo motor. An explanatory diagram showing the overall structure of an AC servo motor. Figure 4 is a circuit diagram showing the drive unit that supplies control current to the armature winding. Figure 5 is the arrangement of permanent magnets attached around the rotor shaft. Figure 6 is a developed diagram showing the arrangement of the armature windings of the stator in a straight line. Figure 7 is a graph showing the time change of the voltage induced in the armature windings. FIG. 8 is a graph showing the actual measured change in voltage induced in the armature winding over time, and FIGS. 9 and 10 are explanatory diagrams showing the structure of a conventional rotor. 1... Synchronous AC servo motor 5... Rotor 12... Permanent magnet 1 day... Armature winding 21... Resolver 22... Drive section

Claims (1)

【特許請求の範囲】 極対を構成する永久磁石が軸周面に取り付けられた回転
子と、 該回転子の回転角を検出する回転角検出部と、前記回転
子の周囲の固定子に前記極対に対向して取り付けられ、
前記回転角検出部からの回転角のタイミング信号に同期
して交流の制御電流が供給される電機子巻線と、 を備えた同期式交流サーボモータであって、前記極対の
少なくとも一対のN極およびS極の永久磁石を、それぞ
れ異なる中心角の大きさに形成し、 該N極およびS極の永久磁石に応じた少なくとも一組の
前記電機子巻線を巻線方向が互いに反対となるよう接続
したこと を特徴とする同期式交流サーボモータ。
[Scope of Claims] A rotor in which permanent magnets constituting a pair of poles are attached to a circumferential surface of a shaft; a rotation angle detection unit that detects a rotation angle of the rotor; Installed opposite to the pole pair,
A synchronous AC servo motor comprising: an armature winding to which an AC control current is supplied in synchronization with a rotation angle timing signal from the rotation angle detection section; Pole and S pole permanent magnets are formed with different center angle sizes, and at least one set of armature windings corresponding to the N and S pole permanent magnets have winding directions opposite to each other. A synchronous AC servo motor characterized by being connected as follows.
JP62278846A 1987-11-04 1987-11-04 Synchronous ac servomotor Pending JPH01122352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62278846A JPH01122352A (en) 1987-11-04 1987-11-04 Synchronous ac servomotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62278846A JPH01122352A (en) 1987-11-04 1987-11-04 Synchronous ac servomotor

Publications (1)

Publication Number Publication Date
JPH01122352A true JPH01122352A (en) 1989-05-15

Family

ID=17602961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62278846A Pending JPH01122352A (en) 1987-11-04 1987-11-04 Synchronous ac servomotor

Country Status (1)

Country Link
JP (1) JPH01122352A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396137A (en) * 1992-09-04 1995-03-07 Matsushita Electric Industrial Co., Ltd. Brushless motor
US5886440A (en) * 1994-05-02 1999-03-23 Aisin Aw Co., Ltd. Electric motor with plural rotor portions having pole members of different widths
US7095149B2 (en) * 2004-05-26 2006-08-22 Mitsumi Electric Co., Ltd. Magnetization pattern of rotor magnet for stepping motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220783A (en) * 1985-07-20 1987-01-29 本田技研工業株式会社 Rear fork of cantilever structure of motorcycle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220783A (en) * 1985-07-20 1987-01-29 本田技研工業株式会社 Rear fork of cantilever structure of motorcycle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5396137A (en) * 1992-09-04 1995-03-07 Matsushita Electric Industrial Co., Ltd. Brushless motor
US5886440A (en) * 1994-05-02 1999-03-23 Aisin Aw Co., Ltd. Electric motor with plural rotor portions having pole members of different widths
US7095149B2 (en) * 2004-05-26 2006-08-22 Mitsumi Electric Co., Ltd. Magnetization pattern of rotor magnet for stepping motor

Similar Documents

Publication Publication Date Title
EP0204289B1 (en) Permanent magnet rotor
JP3772115B2 (en) Brushless motor
JPH0614514A (en) Permanent magnet type stepping motor
JPS6271465A (en) Brushless motor
JPH10127024A (en) Motor structure
JPH10225089A (en) Motor structure
JPH0279738A (en) Rotor for synchronous type ac servomotor
JPH01122353A (en) Synchronous ac servomotor
JP3302283B2 (en) Rotating electric machine, generator and electric motor using the rotating electric machine
JPH0638475A (en) Permanent magnet rotary electric machine, controlling method therefor, controller and electric motor vehicle using the same
JPH01122352A (en) Synchronous ac servomotor
JPS6244057A (en) Brushless motor
JP2620110B2 (en) Brushless motor
JPH0398449A (en) Rotary electric machine
JPH0398445A (en) Rotary electric machine
JPS54121914A (en) Dc brushless motor
JPH01259748A (en) Stepping motor
JPH0417557A (en) Single-phase brushless motor having iron core
JPS60234452A (en) Tachometer generator
JPS56117570A (en) Brushless direct current motor
JPS6181161A (en) 2-phase brushless motor
SU1124406A1 (en) Synchronous electric machine
CN114400854A (en) Homopolar four-phase brushless alternating-current generator
JPS61214764A (en) Flat motor
JPH01255462A (en) Motor