JPH0398445A - Rotary electric machine - Google Patents

Rotary electric machine

Info

Publication number
JPH0398445A
JPH0398445A JP23458889A JP23458889A JPH0398445A JP H0398445 A JPH0398445 A JP H0398445A JP 23458889 A JP23458889 A JP 23458889A JP 23458889 A JP23458889 A JP 23458889A JP H0398445 A JPH0398445 A JP H0398445A
Authority
JP
Japan
Prior art keywords
cogging
angle
magnet
poles
armature core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23458889A
Other languages
Japanese (ja)
Other versions
JPH0720361B2 (en
Inventor
Nobuhiro Hirashima
平島 伸浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP23458889A priority Critical patent/JPH0720361B2/en
Publication of JPH0398445A publication Critical patent/JPH0398445A/en
Publication of JPH0720361B2 publication Critical patent/JPH0720361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE:To reduce cogging regardless of the central angle of the salient pole of an armature core by a method wherein a central angle per one pole of the magnets of 4n poles is determined as a specified electric angle and two kinds of stop positions upon non-exciting are realized. CONSTITUTION:Respective central angles thetaM of four pieces of magnets 2, arranged equally on a yoke 1, are set so as to be 108 deg.+ or -10 deg. or about 108 deg. preferably in electric angle. The central angle thetaa of the salient pole 4 of an armature core 3 is set so as to be 120 deg.+ or -180 deg. in electric angle. According to this method, both of two kinds of stopping positions I, II in non-exciting of the armature core becomes easy to be appeared while the number of stops becomes more than 7 times/360 deg., which is larger than 6 times/360 deg. of so far. Both of the stop positions I, II are established at about 108 deg. regardless of the value of the central angle of the salient poles of the armature core whereby the stopping positions of cogging of two poles, which are provided with different phases, are realized alternately and the cogging is changed into another cogging having smaller amplitude and shorter wave length. According to this method, the cogging of a motor can be suppressed.

Description

【発明の詳細な説明】 (産業上の利川分野) 本発明は、電動機あるいは発電機として使用される回転
電機に関する.更に詳述すると、本発明はコギングトル
クの低減を図った回転電機に関する. (従来の技術) 直流モータのような永久磁石界磁のモータにおいては、
鉄心によるレラクタンス変化と永久磁石の磁界分布の相
関によって発生するコギングトルクが問題となる.この
コギングトルクは回転の円滑を損う原因となることから
小さく抑えることが望まれる. 従来のコギングトルク低減方法の一つとしては、マグネ
ットの着磁条件を@磁器の電圧や容量等を制御すること
によって変化させ、コギングが小さく抑えられる最良点
を決めるようにしている.例えば、着磁条件を変化させ
てマグネット表面の磁化分布が正弦波状を示すように未
飽和着磁を行っている.この場合、コア突極部の中心角
に関係なくコギングの最良点を簡単に決めることができ
る.(発明が解決しようとずる課B) しかしながら、マグネットが未飽和着磁状態にあるため
個々のマグネットの磁化分布が微妙に異なってしまい、
モータ毎にコギングの大きさがばらついて安定した特性
が得られない問題を伴なう.また、マグネットが未飽和
着磁のため利用する磁束数が少なく出力トルクが低くな
る問題がある.換言すれば、コギングトルクを少なくす
るために、磁束の変化を正弦波様となるように未飽和着
磁するために、大きな出力トルクを.得るだけの磁束数
が得られないという欠点がある.加えて、未飽和着磁の
マグネットは電機子反作用磁界で減磁されるため、磁束
数が減少してやはり出力トルクが減少する問題がある. 本発明は、コギングトルクの小さな回転電機を提供する
ことを目的とする.更に、本発明は電機子コアの突極め
中心角とは無関係にコギングトルクを小さくできる回転
電機を提供することを目的とする. (課題を解決するための手段) かかる目的を達成するため、本発明の回転電機は、4n
(nは1以上の整数)極の磁極数を有するマグネットと
、3k(kは1以上の整数)極の突極致を有する電機子
コアとを備え、いずれか一方を他方に対して回転するよ
うに構成した回転電機であって、マグネットの1磁極当
りの中心角を電気角で108°±10@、好ましくは約
1084とし、無励磁時における静止位置を2!l!類
出現させるようにしている. (作用) したがって、マグネットあるいは電機子コアの無励磁に
おける2種類の静止位置(I).(II)が双方とも現
れ易くなり、静止回数が従来の6回/360゜よりも多
い7回/360’以上となる.そして、約108゜にお
いて、静止位置(I)と(II)の両方が電機子コアの
突極の中心角の大きさとは無関係に完全に成立し、位相
が異なる2種のコギングの静止位置が交互に表れ、振幅
が小さく波長も短かいコギングに変化する. (実施例) 以下、本発明の構成を図面に示す実施例に基づいて詳細
に説明する. 本発明をモータに適用したー実施例を第1図に示す.こ
のモータは4磁[!3突極楕成のアウターロータ形モー
タであって、モータケース・ヨーク1の内周面に4個の
円弧状マグネット2が等間隔をあけて均等配置されてい
る.各マグネット2は厚さ方向に着磁され1個のマグネ
ットが1磁極を楕成している.各マグネット2の中心角
θ画は電気角で108°±104、好ましくは約108
@に設定されている.また、ヨーク1にはその中心軸線
に沿って突極4を有するステータコア3が軸支され、各
突極4がマグネット2の内周面と対向するように配置さ
れている.ヨーク1及びマグネッ1・2はステータコア
3を中心に回転可能に設けられている.コア3の突極4
は3個であり各突極4毎にコイル5が巻回されている.
各突極4の中心角θaは任意の角度例えば電気角で約1
20゜〜180゜に設定されている.尚、本実施例の場
合、磁極対は2なので、電気角と機械角は一致せず、中
心角θヨは機械角で172となる.ここで、マグネット
2の1磁極当りの中心角θ.とは、マグネットの1つの
磁極を構成する着磁部位の円周上の両端・2点が中心O
を挾む角を意味し、1磁極当りの着磁角度を意味する.
マグネット2の1磁極当りの中心角θ.を電気角で約1
08゜に設定する場合、電機子コア3の突椹4の中心角
θaに関係なく最良のコギング特性が得られる.しかし
、コギングトルクを一般に実用的な小さなものと考えら
れているレベル(第4図に鎖線で示される範囲〉よりも
小さな領域内に単に抑える場合には、θ謔は厳密に約1
08゜に設定する必要はなく、突極4の中心角θaによ
っても若干異なるが、θaの大きさに比例して最大10
8°±10°の範囲に設定すれば支障がない.例えば、
電機子コア3の突極4の中心角θaを電気角でθa=1
20’あるいは180゛にとるとき、実用レベルのコギ
ングトルク特性を得るには、マグネットの中心角θ.は
電気角で少なくとも108@±106の範囲に設定すれ
ば足りる.この値は十分製作誤差に収まる値であると考
えられる.第2図(A).(B)に41iI1極3突極
横成のアウターロータ型モータあるいはステータマグネ
ット型の場合のマグネットとtea子コアの楕迫の一例
を示す.マグネット2は円筒形状のヨーク1の内周面に
等間隔をあけて固着され、’4 II子コアは軸部の周
面に外側に突出する円弧状の3つの突極を一体或形して
成る.この場合の中心角θ.,θaは図示の通りである
. 第3図(A).(B)に4磁極3突極梢成のインナーロ
ータ型モータの場合のマグネットと電機子コアの楕遣の
一例を示す.マグネット2はスピンドル形状のヨーク1
の周面に等間隔をあけて固着されている.また、電機子
コア3は円筒状コアの内側に突出する円弧状の3つの突
極4を有し各々に電機子コイルが巻回される.この場合
の中心角θ.,θaは図示の通りである. 以上のように構成した回転電機によると次のようにコギ
ングトルクが低減される. 第5図の特性図は実験結果であり、θヨとコギングとの
関係を、θaをパラメータとして示している.この実験
からも明らかなように、通常、4nWの磁極を有するマ
グネットと3k極の突極を有する電機子コアとから成る
4−3構成の回転電機においては、無励磁時に第6図(
A)に示す静止位置(I)若しくは第6図(B)に示す
静止位置(II)のいずれかを取る.この静止位置は、
マグネット2の中心角θ一が108゜よりも大きく離れ
ている場合(第4図中■,■で示す)に取る.そのとき
の、静止位IIのコギングトルク特性[第5図(A)1
と、静止位置(f[)のコギング特性[第5図(G〉]
とは、位相が異なるだけで共に6回/360゜の静止回
数を有する.そして、θM=108゜に近づくに従いあ
る角度においてその静止位置の転換が起る.その過渡領
域《第4図中■,■で示す)におけるコギングトルクは
第5図(B)及び第5図(F)で示されるように、振幅
が小さくなる。そこで、更にθ.を108゜に近づける
と、第5図(C)及び第5図(E)に示すように、静止
位置(I)のコギングトルク特性に静止位置(n)の特
性が若干出現し始め、あるいは静止位置(II)のコギ
ングトルク特性に静止位置(I)の特性が若干出現し始
め、振幅及び波長の圧縮が起る.即ち静止位置の転換の
過渡現象が生じている.そして、約108゜において静
止位置(I)と(IF)とが双方とも完全に成立し、位
相が異なる2種のコギングトルクの静止位置が交互に表
れ、振幅が小さく波長も頗かい第5図(D)のようなコ
ギングトルク特性に変化する.したがって、liii極
当りの中心角θ.が電気角で約108゜に設定するとき
、コギングはta子コア3の突極4の中心角θaの大き
さに関係なく最良となる.このとき、静止位置が6回/
360゜から12回/360゜と2倍になる.目視確認
ではコギングが減少しているため7〜l2回/360゜
の静止位置が確認できた.因みに、このときのコギング
トルクは、従来の着磁制御によるコギングトルク低減方
法の場合(5〜3 gcm )に比べて半分以下{1.
5〜1.0gcm)に低減することができた。尚、この
マグネット2の中心角θ.は厳密な意味で108゛に限
定されるものではなく、実用レベルにおいて若干の誤差
を許容し得る.例えばθa=120゜〜180゛の場合
を例にとって説明すると、θ.が少なくとも10包゜±
10゜の当りから第4図に鎖線で示される実用レベル(
図中■,■で示す)に収まる. 尚、上述の実施例は本発明の好適な実施の一例ではある
がこれに限定されるものではなく本発明の要旨を逸脱し
ない範囲において種々変形実施可能である.例えば、本
実施例ではマグネットは磁極毎に1つのブロックを形成
するようにしているが、全体を1つのブロックとするリ
ング状のマグネット材に所定電気角の81極を所定数形
成するように着磁によって形成しても良い. また、本発明はアウターロータ型あるいはインナーロー
タ型に限定されず、面対向(アキュシャル)型回転電機
にも適用することができる.また、本実施例では2極、
3突極の3相モータについて説明したが、これに限定さ
れるものではなく、8l極数:2P    突極数:k
a 86 12        9 16       12 20           15 24           18 28           21 32           24 等のいわゆる多極回転taにも応用可能である.尚、各
磁極数の括弧内には1磁極当りの中心角θ.が機械角で
表示されている. 更に、本実施例ではモータとして説明しているが、発電
機としても利用可能である.この場合、コギングトルク
が低減するため振動による騒音発生が抑制され、静かな
発tIlを提供できる.《発明の効果〉 以上の説明より明らかなように、本発明の回転電機は、
マグネットの中心角を電気角で108゜±10°に設定
しているので、無励磁時に2種類の静止位置が成立し、
従来の回転電機の2倍、即ち静止位置(I+[)の状態
となりコギングが小さく抑えられる.しかも、本発明は
、マグネットの中心角・着磁角度を一定の値に設定する
だけでコギングトルクを減少させているので、各磁極を
飽和着磁できる.したがって、本発明の回転電機は、磁
束の減少がなく、電機子反作用磁界によΔ減磁を受け難
く、モータとして使用する場合、出力トルクが従来より
も大きくできる.
Detailed Description of the Invention (Industrial field in Icheon) The present invention relates to a rotating electric machine used as an electric motor or a generator. More specifically, the present invention relates to a rotating electrical machine that reduces cogging torque. (Prior art) In a permanent magnet field motor such as a DC motor,
Cogging torque generated by the correlation between the reluctance change due to the iron core and the magnetic field distribution of the permanent magnet becomes a problem. It is desirable to keep this cogging torque to a small level as it can impair the smoothness of rotation. One of the conventional methods of reducing cogging torque is to change the magnetization conditions of the magnet by controlling the voltage and capacity of the porcelain to determine the best point where cogging can be kept small. For example, unsaturated magnetization is performed by changing the magnetization conditions so that the magnetization distribution on the magnet surface exhibits a sinusoidal waveform. In this case, the best point for cogging can be easily determined regardless of the central angle of the core salient pole. (Section B that the invention attempts to solve) However, since the magnets are in an unsaturated magnetized state, the magnetization distribution of each individual magnet is slightly different.
This causes the problem that stable characteristics cannot be obtained because the magnitude of cogging varies from motor to motor. In addition, since the magnet is unsaturated and magnetized, there is a problem that the number of magnetic fluxes used is small and the output torque is low. In other words, in order to reduce the cogging torque, a large output torque is required to achieve unsaturated magnetization so that the change in magnetic flux becomes sinusoidal. The drawback is that you cannot obtain as much magnetic flux as you want. In addition, since unsaturated magnetized magnets are demagnetized by the armature reaction magnetic field, there is a problem that the number of magnetic fluxes decreases and the output torque also decreases. An object of the present invention is to provide a rotating electrical machine with small cogging torque. A further object of the present invention is to provide a rotating electrical machine that can reduce cogging torque regardless of the central angle of the salient pole of the armature core. (Means for Solving the Problem) In order to achieve the above object, the rotating electric machine of the present invention has a 4n
(n is an integer of 1 or more) poles and an armature core with 3k (k is an integer of 1 or more) salient poles, one of which rotates relative to the other. It is a rotating electrical machine configured as follows: the center angle of each magnetic pole of the magnet is 108°±10@, preferably about 1084 in electrical angle, and the rest position when not energized is 2! l! I am trying to make it appear like this. (Function) Therefore, there are two types of rest positions (I) of the magnet or armature core when the magnet or armature core is not energized. (II) both become more likely to appear, and the number of stops becomes 7 times/360' or more, which is higher than the conventional 6 times/360°. Then, at approximately 108°, both resting positions (I) and (II) are completely established regardless of the size of the central angle of the salient pole of the armature core, and the resting positions of two types of cogging with different phases are obtained. It appears alternately and changes to cogging with small amplitude and short wavelength. (Example) Hereinafter, the configuration of the present invention will be explained in detail based on an example shown in the drawings. An example in which the present invention is applied to a motor is shown in Figure 1. This motor has 4 magnetic [! It is an outer rotor type motor with three salient poles and an oval structure, and four arcuate magnets 2 are evenly spaced on the inner peripheral surface of a motor case/yoke 1. Each magnet 2 is magnetized in the thickness direction, and one magnet forms one magnetic pole. The central angle θ of each magnet 2 is 108°±104 in electrical angle, preferably about 108
It is set to @. Further, a stator core 3 having salient poles 4 is supported along the central axis of the yoke 1, and each salient pole 4 is arranged to face the inner peripheral surface of the magnet 2. The yoke 1 and the magnets 1 and 2 are rotatably provided around the stator core 3. salient pole 4 of core 3
There are three poles, and a coil 5 is wound around each salient pole 4.
The central angle θa of each salient pole 4 is an arbitrary angle, for example, approximately 1 in electrical angle.
It is set between 20° and 180°. In the case of this embodiment, since there are two magnetic pole pairs, the electrical angle and the mechanical angle do not match, and the central angle θyo is 172 in mechanical angle. Here, the central angle θ per magnetic pole of the magnet 2. means that two points on the circumference of the magnetized part that constitute one magnetic pole of the magnet are at the center O
It means the angle between the two, and it means the angle of magnetization per magnetic pole.
Central angle θ per magnetic pole of magnet 2. is approximately 1 in electrical angle
When set to 08°, the best cogging characteristics can be obtained regardless of the central angle θa of the protrusion 4 of the armature core 3. However, if the cogging torque is simply kept within a range smaller than the level that is generally considered to be small for practical use (the range shown by the chain line in Figure 4), θ is strictly about 1.
There is no need to set it to 08°, and it varies slightly depending on the central angle θa of the salient pole 4, but it can be set at a maximum of 10° in proportion to the size of θa.
There is no problem if you set it within the range of 8°±10°. for example,
The central angle θa of the salient pole 4 of the armature core 3 is expressed as electrical angle θa=1
20' or 180°, in order to obtain practical level cogging torque characteristics, the center angle of the magnet θ. It is sufficient to set it within the range of at least 108@±106 in electrical angle. This value is considered to be well within the manufacturing error. Figure 2 (A). (B) shows an example of the ellipse of the magnet and tea child core in the case of a 41iI one-pole, three-salient-pole outer rotor type motor or stator magnet type. The magnets 2 are fixed to the inner circumferential surface of the cylindrical yoke 1 at equal intervals, and the '4 II child core has three salient arc-shaped poles that protrude outward on the circumferential surface of the shaft part. Become. In this case, the central angle θ. , θa are as shown. Figure 3 (A). (B) shows an example of the elliptical arrangement of the magnet and armature core for an inner rotor type motor with 4 magnetic poles and 3 salient poles. Magnet 2 is spindle-shaped yoke 1
are fixed at equal intervals on the circumferential surface of the Further, the armature core 3 has three arc-shaped salient poles 4 protruding inside the cylindrical core, and an armature coil is wound around each of the salient poles 4. In this case, the central angle θ. , θa are as shown. According to the rotating electric machine configured as above, cogging torque is reduced as follows. The characteristic diagram in Figure 5 is the experimental result, and shows the relationship between θyo and cogging, with θa as a parameter. As is clear from this experiment, normally in a rotating electrical machine with a 4-3 configuration consisting of a magnet with a 4nW magnetic pole and an armature core with a 3k salient pole, when not energized, the
Take either the rest position (I) shown in A) or the rest position (II) shown in Figure 6 (B). This resting position is
This is used when the center angle θ of the magnet 2 is separated by more than 108° (indicated by ■ and ■ in Figure 4). At that time, the cogging torque characteristics at rest position II [Fig. 5 (A) 1
and the cogging characteristics of the rest position (f[) [Figure 5 (G)]
Both have a number of stops of 6 times/360°, only the phase is different. Then, as θM approaches 108°, the rest position changes at a certain angle. The amplitude of the cogging torque in the transient region (indicated by ■ and ■ in FIG. 4) becomes small as shown in FIGS. 5(B) and 5(F). Therefore, further θ. When the angle approaches 108°, as shown in Figures 5(C) and 5(E), the characteristics of the static position (n) begin to appear slightly in the cogging torque characteristics of the static position (I), or The characteristics of the stationary position (I) begin to appear slightly in the cogging torque characteristics of position (II), and compression of amplitude and wavelength occurs. In other words, a transient phenomenon of change in rest position is occurring. Then, at about 108 degrees, the rest positions (I) and (IF) are both completely established, and the rest positions of two types of cogging torques with different phases appear alternately, and the amplitude is small and the wavelength is large. The cogging torque characteristics change as shown in (D). Therefore, the central angle θ per liii pole. When is set to about 108 degrees in electrical angle, cogging is best regardless of the size of the central angle θa of the salient pole 4 of the ta-child core 3. At this time, the rest position is 6 times/
From 360°, it doubles to 12 times/360°. Visual confirmation showed that cogging was reduced, and a stationary position of 7 to 12 times/360° was confirmed. Incidentally, the cogging torque at this time is less than half that of the conventional cogging torque reduction method using magnetization control (5 to 3 gcm) {1.
5 to 1.0 gcm). Note that the central angle θ of this magnet 2 is θ. is not limited to 108゛ in a strict sense, and some errors may be allowed on a practical level. For example, to explain the case where θa=120° to 180°, θ. is at least 10 packages゜±
From around 10° to the practical level (shown by the chain line in Figure 4)
(indicated by ■ and ■ in the figure). It should be noted that although the above-described embodiment is an example of a preferred embodiment of the present invention, the present invention is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, in this embodiment, the magnet is formed so that one block is formed for each magnetic pole, but it is arranged so that a predetermined number of 81 poles of a predetermined electrical angle are formed on a ring-shaped magnet material that makes the entire block into one block. It may also be formed by magnetism. Further, the present invention is not limited to outer rotor type or inner rotor type, but can also be applied to surface-facing (accurial) type rotating electric machines. In addition, in this example, two poles,
Although a three-phase motor with three salient poles has been described, the motor is not limited to this; 8l Number of poles: 2P Number of salient poles: k
It can also be applied to so-called multi-pole rotations ta such as a 86 12 9 16 12 20 15 24 18 28 21 32 24. In addition, the central angle θ per magnetic pole is shown in parentheses for each number of magnetic poles. is displayed in mechanical angles. Furthermore, although this embodiment is described as a motor, it can also be used as a generator. In this case, since the cogging torque is reduced, the generation of noise due to vibration is suppressed, and quiet generation can be provided. <<Effects of the Invention>> As is clear from the above explanation, the rotating electric machine of the present invention has the following effects:
Since the center angle of the magnet is set to 108° ± 10° in electrical angle, two types of static positions are established when not energized.
The position is twice that of a conventional rotating electric machine, that is, the stationary position (I+[), and cogging can be suppressed to a small level. Furthermore, the present invention reduces the cogging torque simply by setting the center angle and magnetization angle of the magnet to constant values, so each magnetic pole can be magnetized to saturation. Therefore, the rotating electric machine of the present invention has no decrease in magnetic flux, is less susceptible to Δ demagnetization due to the armature reaction magnetic field, and when used as a motor, can output torque larger than that of the conventional machine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の回転電機を4磁極3突@構成のモータ
に適用した実施例を示す概略構成図、第2図(A)及び
(B)は本発明の回転電機を構成するアウターロー夕型
ないしステータマグネット型のマグネットと電機子コア
の一例を示す正面図、第3図(A),(B)は本発明の
回転電機のインナーロータ型のマグネット及びtm子コ
アの一実施例を示す正面図、第4図は本発明の回転電機
のマグネット中心角とコギングトルクとのrIlitx
を電機子コアの中心角をパラメータとして示すグラフで
ある.第5図(A)〜(G)は第4図の■〜■の状態に
おけるコギングトルク特性図、第6図は4−3構成の回
転t機の無励磁時における静止位置を示す正面図で、(
A)は回転位置I、(B)は回転位置■を示す.
Fig. 1 is a schematic configuration diagram showing an embodiment in which the rotating electric machine of the present invention is applied to a motor with 4 magnetic poles and 3 protrusions, and Fig. 2 (A) and (B) are outer rollers constituting the rotating electric machine of the present invention. FIGS. 3A and 3B are front views showing an example of an evening type or stator magnet type magnet and an armature core, and FIGS. The front view shown in FIG. 4 shows rIlitx of the magnet center angle and cogging torque of the rotating electric machine of the present invention.
This is a graph showing the central angle of the armature core as a parameter. Figures 5 (A) to (G) are cogging torque characteristic diagrams in the states of ■ to ■ in Figure 4, and Figure 6 is a front view showing the stationary position of the rotary t-machine with a 4-3 configuration when not energized. ,(
A) shows the rotational position I, and (B) shows the rotational position ■.

Claims (2)

【特許請求の範囲】[Claims] (1)4n(nは1以上の整数)極の磁極数を有するマ
グネットと、3k(kは1以上の整数)極の突極数を有
する電機子コアとを備え、いずれか一方を他方に対して
回転するように構成された回転電機であつて、上記マグ
ネットの1磁極当りの中心角を電気角で108゜±10
゜とし、上記マグネットと上記電機子コアとの無励磁時
における静止位置を2種類出現させることを特徴とする
回転電機。
(1) Equipped with a magnet having a number of magnetic poles of 4n (n is an integer of 1 or more) and an armature core having a number of salient poles of 3k (k is an integer of 1 or more) poles, one of which is connected to the other. A rotating electrical machine configured to rotate relative to the magnet, the central angle of each magnetic pole of the magnet being 108°±10 in electrical angle.
A rotating electric machine characterized in that the magnet and the armature core have two types of resting positions when not energized.
(2)請求項1記載のマグネットの1磁極当りの中心角
を電気角で約108゜としたことを特徴とする回転電機
(2) A rotating electrical machine characterized in that the central angle of each magnetic pole of the magnet according to claim 1 is approximately 108 degrees in electrical angle.
JP23458889A 1989-09-12 1989-09-12 Rotating electric machine Expired - Fee Related JPH0720361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23458889A JPH0720361B2 (en) 1989-09-12 1989-09-12 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23458889A JPH0720361B2 (en) 1989-09-12 1989-09-12 Rotating electric machine

Publications (2)

Publication Number Publication Date
JPH0398445A true JPH0398445A (en) 1991-04-24
JPH0720361B2 JPH0720361B2 (en) 1995-03-06

Family

ID=16973376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23458889A Expired - Fee Related JPH0720361B2 (en) 1989-09-12 1989-09-12 Rotating electric machine

Country Status (1)

Country Link
JP (1) JPH0720361B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001089066A1 (en) * 2000-05-17 2001-11-22 Kabushiki Kaisha Sankyo Seiki Seisakusho Small power generating device and water faucet device
EP1306963A1 (en) * 2001-10-29 2003-05-02 Kabushiki Kaisha Moric Permanent magnet type rotary electric device
WO2007034633A1 (en) * 2005-09-22 2007-03-29 Honda Motor Co., Ltd. Rotary electric machine
US7795751B2 (en) 2001-05-03 2010-09-14 Aloys Wobben Wind power installation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001089066A1 (en) * 2000-05-17 2001-11-22 Kabushiki Kaisha Sankyo Seiki Seisakusho Small power generating device and water faucet device
US6876100B2 (en) 2000-05-17 2005-04-05 Kabushiki Kaisha Sankyo Seiki Seisakusho Small power generating device and water faucet device
US7795751B2 (en) 2001-05-03 2010-09-14 Aloys Wobben Wind power installation
EP1306963A1 (en) * 2001-10-29 2003-05-02 Kabushiki Kaisha Moric Permanent magnet type rotary electric device
WO2007034633A1 (en) * 2005-09-22 2007-03-29 Honda Motor Co., Ltd. Rotary electric machine
JP2007089303A (en) * 2005-09-22 2007-04-05 Honda Motor Co Ltd Dynamo-electric machine
US7948144B2 (en) 2005-09-22 2011-05-24 Honda Motor Co., Ltd. Electrical rotary machine

Also Published As

Publication number Publication date
JPH0720361B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
JP2695332B2 (en) Permanent magnet field type rotor
JP2007236073A (en) Hybrid rotary electric machine
JPH05304737A (en) Permanent magnet type motor
KR20170091527A (en) Single phase motor and rotor of the same
JPS61254054A (en) Motor
JPS6223536B2 (en)
JPH11136893A (en) Permanent magnet motor
JPH0398445A (en) Rotary electric machine
JPH0398449A (en) Rotary electric machine
JPH07222385A (en) Reverse salient cylindrical magnet synchronous motor
JPH0398446A (en) Rotary electric machine
JPH048154A (en) Single-phase cored brushless motor
JP2584543Y2 (en) Low cogging brushless motor
JPS63157646A (en) Magnetization of motor
JPH0680372U (en) Rotating electric machine
JPH034133Y2 (en)
JPH05176509A (en) Rotary electric machine
JPH05219701A (en) Variable reluctance motor with two salient-pole type rotor
JPH0438157A (en) Core-type single-phase brushless motor
JPS5963964A (en) Permanent magnet rotor type synchronous motor
JPH01122352A (en) Synchronous ac servomotor
JP2558514Y2 (en) Rotating electric machine
JPS6188751A (en) Permanent magnet rotary machine
JPH0417557A (en) Single-phase brushless motor having iron core
JPH04248359A (en) Step motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees