JPS59188366A - Frequency generator of servo motor or the like - Google Patents

Frequency generator of servo motor or the like

Info

Publication number
JPS59188366A
JPS59188366A JP11229383A JP11229383A JPS59188366A JP S59188366 A JPS59188366 A JP S59188366A JP 11229383 A JP11229383 A JP 11229383A JP 11229383 A JP11229383 A JP 11229383A JP S59188366 A JPS59188366 A JP S59188366A
Authority
JP
Japan
Prior art keywords
pole
rotor
magnetic
magnetic flux
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11229383A
Other languages
Japanese (ja)
Other versions
JPH0254021B2 (en
Inventor
Wataru Kakigi
渉 柿木
Yoshitaro Wada
和田 義太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akai Electric Co Ltd
Original Assignee
Akai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akai Electric Co Ltd filed Critical Akai Electric Co Ltd
Priority to JP11229383A priority Critical patent/JPS59188366A/en
Publication of JPS59188366A publication Critical patent/JPS59188366A/en
Publication of JPH0254021B2 publication Critical patent/JPH0254021B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Linear Or Angular Velocity Measurement And Their Indicating Devices (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE:To obtain an accurate rotating frequency output even under inaccurate state by setting the times of variations in the periodic magnetic fluxes in the portion corresponding to a pole of a drive multipolar magnet to 2n (n=1, 2,...) times. CONSTITUTION:A magnetic unit such as a rotor 2' or the like is secured to a drive multipolar magnet, has a plurality of irregular surfaces formed via radial slots on an annular portion in such a manner that variations in the periodic magnetic fluxes of 2n (n=1, 2,...) occur in the portion corresponding to the pole of the multipolar magnet. A generating strand 3' is disposed to correspond by 1:1 to the variations in the magnetic flux due to the rotor 2' at the position opposed to the rotor 2'. With the boundary between the N-pole and the S-pole of the magnet as a reference the slot of the rotor 2 is displaced at 180 deg. of an electric angle. The variation in the magnetic flux is detected by the generating strand 3' to control the rotating speed of the rotor 2'.

Description

【発明の詳細な説明】 本発明は駆動用多極マグネツ、トと、該多極マグネット
によって周期的な磁束の変化をもたらす磁性体と、上記
磁束変化によって電圧が誘起される発電線素とによって
構成され、回転周波数に応じた周波数出力を検出するサ
ーボモータ等の周波数発電機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a driving multi-polar magnet, a magnetic material that causes periodic changes in magnetic flux by the multi-polar magnet, and a power generating line element in which a voltage is induced by the magnetic flux change. The present invention relates to a frequency generator such as a servo motor that is configured to detect a frequency output according to a rotational frequency.

一般にサーボモータ等においては、上記周波数発電機に
よシモークの回転周波数を検出し、これを電圧に変換(
F−v変換)し、該電圧を回転速度制量電圧としてモー
タの回転速度制御を行なうようにしたものが知られてい
る。
Generally, in servo motors, etc., the frequency generator described above detects the rotational frequency of the simoke and converts it into voltage (
It is known that the rotational speed of the motor is controlled using the voltage as a rotational speed limiting voltage.

第1図は駆動用多極マグネットと該多極マグネットによ
って周期的な8束変化をもたらす磁性体と、発電線素か
ら構成される周波数発電機の一例を示したものである。
FIG. 1 shows an example of a frequency generator composed of a driving multi-pole magnet, a magnetic material that causes periodic 8-flux changes by the multi-pole magnet, and a power generating line element.

この図において、1はN極部と8極部が円周方向に分割
着磁された駆動用多極マグネット、2は該多極マグネッ
ト1に固着し環状部に放射状の溝部2Aヲ有する磁性体
よシなるロータ、6は上記溝部夙による磁束変化と1対
1に対応する様に配設され該磁束変化を検出する発電線
素であシ、この発電線素3と同心にロータ2が回転する
ことによフ、該発電線素3上に磁束密度の変化が生じ、
この発電線素3に電圧が誘起され、回転周波数として検
出される。このときの磁束変化は上記駆動用多極マグネ
ット1の1個の磁極に対応する部分において、一般的に
は2n+1(n−1,2,3,・)回の周期的な磁束変
化を生ずる。尚、第1図に示した一例においては、11
回の周期的な磁束変化を生ずる。
In this figure, 1 is a driving multipolar magnet in which the N-pole part and the 8-pole part are separately magnetized in the circumferential direction, and 2 is a magnetic body that is fixed to the multipolar magnet 1 and has radial grooves 2A in the annular part. A good rotor 6 is a power generating line element which is arranged in one-to-one correspondence with the magnetic flux change caused by the groove part and detects the magnetic flux change, and the rotor 2 rotates concentrically with this power generating line element 3. As a result, a change in magnetic flux density occurs on the power generation line element 3,
A voltage is induced in this power generating line element 3 and detected as a rotation frequency. The magnetic flux change at this time generally causes 2n+1 (n-1, 2, 3, .) periodic magnetic flux changes in a portion corresponding to one magnetic pole of the multi-pole driving magnet 1. In addition, in the example shown in FIG.
This causes periodic changes in magnetic flux.

次に、第2図を用いて一第1図に示したものの動作を詳
細に説明する。第2図において囚及び(@は発電線素3
及びロータ2の円周方向断面図、(Qは上記発電線素6
を透過する磁束変化の様子を簡略化し、スイッチング動
作に置きかえて示した図である。尚、第2図の(Alに
おいて、誘起される電圧の方向な■(図面の前方から後
方の方向)あるい(ま■(図面の後方から前方の方向〕
で示した。
Next, the operation shown in FIG. 1 will be explained in detail using FIG. 2. In Figure 2, prison and (@ are power generation line elements 3
and a circumferential sectional view of the rotor 2, (Q is the power generation line element 6
FIG. 3 is a diagram illustrating a simplified state of changes in magnetic flux passing through the magnetic flux, replacing it with a switching operation. In addition, the direction of the induced voltage in (Al) in Figure 2 is (direction from the front to the rear of the drawing) or
It was shown in

ここで、上記ロータ2は一上記1駆動用多極マグネット
1の磁極に対応して帯磁し−1つの磁極に対応する部分
において2n+1 (n−1、2、3・・・)回の周期
的な磁束変化をもたらす様に等ピンチで溝が切られ隣接
する磁極に対応する部分では前記のピッチに対して電気
角で位相が180゛ずらしである。したがって、上記ロ
ータ2が矢印方向に回転すると、フレミングの右手の法
則によって、上記発電線素6には第2図の(Alで・示
した方向に電圧が誘起され、この誘起された電圧が回転
周波数出力として出力される。
Here, the rotor 2 is magnetized in correspondence with the magnetic poles of the single driving multi-pole magnet 1, and is periodically magnetized 2n+1 (n-1, 2, 3...) times in a portion corresponding to one magnetic pole. Grooves are cut with an equal pinch so as to bring about a change in magnetic flux, and the phase in the portions corresponding to adjacent magnetic poles is shifted by 180 degrees in electrical angle with respect to the above-mentioned pitch. Therefore, when the rotor 2 rotates in the direction of the arrow, according to Fleming's right-hand rule, a voltage is induced in the power generating line element 6 in the direction indicated by (Al) in FIG. Output as frequency output.

Lかし、実際には精度上、上記溝部ハの回転の中心と上
記ロータ2の回転の中心とを一致させることは困難であ
る。以下、上記溝部ハの中心と上記ロータ2の回転の中
心とが若干ずれている場合を前提とする。、マた、ここ
で、上記境界に対応する磁束変化に着目してみると、こ
の部分における磁束変化は第2図の(qのC1+C2で
示した様に、同一極内の他の部で発電線素6までの距離
の変化によシ起こる磁束変化と比べて非常に太きい。し
たがって上記[−た前提におい、て、上記駆動用多極マ
グネット1の取っ付げ位置に誤差を生じたち、上記駆動
用多極マグネット1の着磁にばらつきを生じたシして一
上記駆動用多極マグネソト1のN極部とS極部との境界
と溝部ハの位相がずれてしまい発電線素6に本来出力さ
れるべき回転周波数出力に変調が大きくかかつてしまう
と言う欠点を生じてしまう。また、上記駆動用多極マグ
ネット1が精度よく所定の位置に取シ付げられておち、
かつ該多極マグネット1の着磁のばらつぎかない場合で
も、上記発電線素3の中心と、ロータの回転の中心がず
れていれば上記した様な欠点を生じてしまう。上記した
欠点は、上記発電線素3の中心とロータ2の回転の中心
がくるっているほど度合は大きく、精度があまシ出せな
い場合においては、特に大きな欠点となってしまう。
Actually, it is difficult to make the center of rotation of the groove portion C coincide with the center of rotation of the rotor 2 due to accuracy reasons. Hereinafter, it is assumed that the center of the groove C and the center of rotation of the rotor 2 are slightly deviated from each other. , Now, if we pay attention to the magnetic flux change corresponding to the above boundary, we can see that the magnetic flux change in this part is due to the power generation in other parts within the same pole, as shown by C1 + C2 in (q) in Figure 2. This is very large compared to the magnetic flux change caused by a change in the distance to the wire element 6. Therefore, under the above-mentioned assumption, an error occurs in the mounting position of the driving multi-pole magnet 1. As a result of variations in the magnetization of the driving multi-pole magnet 1, the phase of the boundary between the N and S pole parts of the driving multi-pole magnet 1 and the groove part C is shifted, and the power generation line element 6 This results in a drawback that the rotational frequency output that should originally be output is greatly modulated or distorted.Also, the driving multi-pole magnet 1 is not mounted in a predetermined position with high precision.
Even if there is no variation in the magnetization of the multipolar magnet 1, if the center of the power generating line element 3 and the center of rotation of the rotor are misaligned, the above-mentioned drawbacks will occur. The above-mentioned drawbacks become more serious as the center of the power generating line element 3 and the rotation center of the rotor 2 are closer to each other, and become a particularly large drawback when accuracy cannot be maintained.

本発明は上記の欠点を除去するためになされたもので、
駆動用多極マグネット1個の磁極に対応する部分におけ
る周期的な磁束変化の回数を2n(n=1.2.3・・
)回とすることによって、ある程度精度が悪い状態下に
おいても正確な回転周波数出力を得ることのできる周波
数発電機を提供することを目的としている。
The present invention has been made to eliminate the above-mentioned drawbacks.
The number of periodic magnetic flux changes in the part corresponding to the magnetic poles of one multi-pole drive magnet is 2n (n=1.2.3...
) times, it is an object of the present invention to provide a frequency generator that can obtain accurate rotational frequency output even under conditions where accuracy is poor to some extent.

以下、本発明の一実施例を図面を用いて動作説明する。Hereinafter, the operation of an embodiment of the present invention will be explained using the drawings.

第3図において、(A及び(131は発電線素3′及び
ロータ2′の円周方向断面図、(Qは発電線素6′を透
過する磁束の変化の様子を簡略化し、スイッチング動作
に置きかえて示した図である。尚、2′Aは上記ロータ
2′の環状部に放射状に設けられた溝部である。第6図
の(Blから明らかな様に、上記ロータ2′は、駆動用
多極マグネット1′(図示せず)の磁極に対応して帯磁
し、1つの磁極に対応する部分において2n(n=1.
2.3・・)回の周期的な磁束変化をもたらす様に等ピ
ッチで溝が切られ隣接する磁極に対応する部分では前記
のピンチに対して電気角で位相が180°ずらしである
。こ・ま、このロータ2′が矢印方向に回転していると
した場合、磁極の境に位置する発電線素3′の断面の1
部である発電線素3’aに注目すると、この発電線素3
hはS極部からN極部に進入する瞬間であるので、磁束
の変化方向を図面における上方向とし、矢印に示された
磁性体(ロータ2〕の回転方向から相対的に得られた導
体(発電線素3′)の移動方向を図面における右方向と
しフレミングの右手の法則を適用させると、この発電線
素伍に誘起される電圧の方向は図面における前方から後
方の方向となる。また磁極のもう一方の境に位置する発
電線素6′の断面の1部である発電線素31)に注目す
ると、この発電線素6′l)はN極部からS極部に進入
する瞬間であるので、同様にフレミングの右手の法則を
適用させると、発電線素3tに誘起される電圧の方向は
図面における後方から前方の方向となる。ここで、上記
発電線素3hに誘起される電圧と上記磁極の境以外のロ
ータ2′の溝部2八によって誘起される電圧の方向は、
発電線素6′のったがシを考えると、同一方向となるが
、上記発電線素3’bに誘起される電圧のみが逆方向と
なる。したがって、上記発電線素3/ aに誘起される
電圧と発電線素ろ侶に誘起される電圧は互いに打ち消し
合ってこれらの発電線素6′a。
In FIG. 3, (A and (131) are circumferential cross-sectional views of the power generating line element 3' and the rotor 2', (Q is a simplified view of changes in the magnetic flux passing through the power generating line element 6', and a switching operation is shown. This is a replaced view. Note that 2'A is a groove provided radially in the annular part of the rotor 2'.As is clear from (Bl) in FIG. It is magnetized in correspondence with the magnetic poles of a multi-pole magnet 1' (not shown), and 2n (n=1.
Grooves are cut at equal pitches so as to cause a periodic change in magnetic flux of 2.3...) times, and in the portions corresponding to adjacent magnetic poles, the phase is shifted by 180 degrees in electrical angle with respect to the above-mentioned pinch. Well, if this rotor 2' is rotating in the direction of the arrow, 1 of the cross section of the power generation line element 3' located at the boundary of the magnetic poles.
If we pay attention to the power generation line element 3'a, which is the
Since h is the moment when the magnetic flux enters the N-pole from the S-pole, the direction of change in the magnetic flux is set upward in the drawing, and the conductor is obtained relative to the rotation direction of the magnetic body (rotor 2) indicated by the arrow. If the moving direction of the power generation line element 3' is to the right in the drawing and Fleming's right-hand rule is applied, the direction of the voltage induced in this power generation line element will be from the front to the rear in the drawing. Focusing on the power generation line element 31), which is a part of the cross section of the power generation line element 6' located at the other boundary of the magnetic poles, the moment when this power generation line element 6'l) enters from the N pole part to the S pole part. Therefore, if Fleming's right-hand rule is similarly applied, the direction of the voltage induced in the power generating line element 3t will be from the rear to the front in the drawing. Here, the direction of the voltage induced in the power generating line element 3h and the voltage induced by the groove portion 28 of the rotor 2' other than the boundary between the magnetic poles is as follows.
Considering the length of the power generation line element 6', the directions are the same, but only the voltage induced in the power generation line element 3'b is in the opposite direction. Therefore, the voltage induced in the power generation line element 3/a and the voltage induced in the power generation line element 6'a cancel each other out.

6tで誘起される電圧はほとんど上記回転周波数出力と
して出力されず、上記磁極の境以外のロータ2′の溝部
2人によって誘起される電圧のみが回転周波数出力とし
て出力される。
6t is hardly outputted as the rotational frequency output, and only the voltage induced by the two grooves of the rotor 2' other than the boundaries of the magnetic poles is outputted as the rotational frequency output.

上記した如く、本発明は円周方向に分割着磁された駆動
用多極マグネット1′と、該多極マグネツト1′に固着
され環状部に放射状の溝部2人によって形成された複数
の凹凸部を有し上記多極マグネット1′の1個の磁極に
対応する部分において2n(n=1.2.3・・)回の
周期的な磁束変化をもたらすロータ2′等の磁性体と、
該磁性体に対面する位置に上記磁性体による磁束変化に
1対1に対応する様に配設された発電線素6′ヲ備え、
上記多極マグネット1′のN極部とS極部との各々の境
界部を基準に上記磁性体の溝部2八を電気角で180′
ずらし、上記発電線素6′によって上記磁束変化を検出
し回転速度を制御するようにしたので、精度上上記溝部
2’Aの中心と上記ロータ2′の回転の中心とが多少で
もずれている場合に、上記多極マグネット1′の取り付
は位置の誤差、上記多極マグネット1′の着磁のばらつ
き1発電線素3′の中心のずれ等によって住する回転周
波数出力の変調を防止することができる。
As described above, the present invention includes a driving multi-pole magnet 1' that is magnetized separately in the circumferential direction, and a plurality of concavo-convex portions fixed to the multi-polar magnet 1' and formed by two radial grooves in an annular portion. A magnetic body such as a rotor 2' that has a magnetic flux and causes 2n (n=1.2.3...) periodic magnetic flux changes in a portion corresponding to one magnetic pole of the multipolar magnet 1';
A power generation line element 6' is provided at a position facing the magnetic body so as to correspond one-to-one to the change in magnetic flux due to the magnetic body,
The groove part 28 of the magnetic material is 180' in electrical angle with reference to each boundary between the N pole part and the S pole part of the multipolar magnet 1'.
Since the rotational speed is controlled by detecting the change in the magnetic flux using the power generating line element 6', the center of the groove 2'A and the center of rotation of the rotor 2' are shifted even slightly for accuracy reasons. In this case, the installation of the multi-pole magnet 1' prevents modulation of the rotational frequency output due to positional errors, variations in magnetization of the multi-pole magnet 1', deviation of the center of the generating line element 3', etc. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は周波数発電機の一例を示す構成図、第2図の(
5)及び(Blは第1図で示した一例における発電線素
及びロータの円周方向断面図、第2図の(Qは同じく第
1図で示した一例における発電線素を透過する磁束の変
化を簡略化して示した磁束分布図、第6図の(At及び
旧は本発明の一実施例における発電線素及びロータの円
周方向断面図−第6図の(Qは同じく本発明の一実施例
における発電線素を透過する磁束の変化を簡略化して示
した磁束分布図である。 1′・・・多極マグネット−2′・・ロータ、2A・・
・溝部、6′・・・発電線素。 35 第1図 第2図 4 第3図 354
Figure 1 is a configuration diagram showing an example of a frequency generator, and Figure 2 (
5) and (Bl is the circumferential cross-sectional view of the power generation line element and rotor in the example shown in Figure 1, and (Q in Figure 2 is the magnetic flux passing through the power generation line element in the example shown in Figure 1). A magnetic flux distribution diagram showing the changes in a simplified manner; (At and old in FIG. 6 are circumferential cross-sectional views of the power generating line element and rotor in an embodiment of the present invention; Q in FIG. 6 is also a diagram of the It is a magnetic flux distribution diagram which simplified the change of the magnetic flux which passes through the power generation line element in one example.1'...Multi-pole magnet-2'...Rotor, 2A...
・Groove, 6'...Power generation wire element. 35 Figure 1 Figure 2 Figure 4 Figure 3 354

Claims (1)

【特許請求の範囲】[Claims] 円周方向に分割着磁された駆動用多極マグネットと、該
多極マグネットに固着され環状部に放射状の溝部によっ
て形成された複数の凹凸部を有し上記多極マグネットの
1個の磁極に対応する部分において2n(n=1.2.
3・・)回の周期的な磁束変化をもたらす磁性体と、該
磁性体に対面する位置に上記磁性体による8束変化に1
対1に対応する様に配設された発電線素を備え、上記多
極マグネットのN極部とS極部との各々の境界部を基準
に上記磁性体の溝部を電気角で180°ずらし、上記発
電線素によって上記磁束変化を検出し回転速度を制御す
るようにしたことを特徴とするサーボモータ等の周波数
発電機。
A driving multi-polar magnet that is magnetized in sections in the circumferential direction, and a plurality of uneven parts fixed to the multi-polar magnet and formed by radial grooves in an annular part, and one magnetic pole of the multi-polar magnet. 2n (n=1.2.
A magnetic body that causes periodic magnetic flux changes of 3...) times, and a magnetic body that causes 8 flux changes due to the magnetic body at a position facing the magnetic body, and 1
The groove part of the magnetic material is shifted by 180 degrees in electrical angle with respect to each boundary between the N-pole part and the S-pole part of the multipolar magnet. , A frequency generator such as a servo motor, characterized in that the rotational speed is controlled by detecting the magnetic flux change using the power generation line element.
JP11229383A 1983-06-22 1983-06-22 Frequency generator of servo motor or the like Granted JPS59188366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11229383A JPS59188366A (en) 1983-06-22 1983-06-22 Frequency generator of servo motor or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11229383A JPS59188366A (en) 1983-06-22 1983-06-22 Frequency generator of servo motor or the like

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6193083A Division JPS59188365A (en) 1983-04-07 1983-04-07 Frequency generator of servo motor or the like

Publications (2)

Publication Number Publication Date
JPS59188366A true JPS59188366A (en) 1984-10-25
JPH0254021B2 JPH0254021B2 (en) 1990-11-20

Family

ID=14583060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11229383A Granted JPS59188366A (en) 1983-06-22 1983-06-22 Frequency generator of servo motor or the like

Country Status (1)

Country Link
JP (1) JPS59188366A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115012A (en) * 1977-03-18 1978-10-07 Matsushita Electric Ind Co Ltd Motor with frequency generator
JPS5498905A (en) * 1978-01-20 1979-08-04 Matsushita Electric Ind Co Ltd Motor with frequency generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115012A (en) * 1977-03-18 1978-10-07 Matsushita Electric Ind Co Ltd Motor with frequency generator
JPS5498905A (en) * 1978-01-20 1979-08-04 Matsushita Electric Ind Co Ltd Motor with frequency generator

Also Published As

Publication number Publication date
JPH0254021B2 (en) 1990-11-20

Similar Documents

Publication Publication Date Title
US4644157A (en) Optical rotation detecting apparatus
JPS5953503B2 (en) rotation detection device
US4862044A (en) Method for adjusting encoder in a brushless motor-encoder combination
US4096419A (en) Electric motors
US4701650A (en) Brushless motor with phase cancelling leads for rotational speed detector pattern
JPS59188366A (en) Frequency generator of servo motor or the like
JPH0731119A (en) Electromagnetic limited rotation motor
US4701649A (en) Brushless motor with symmetrical leads for preventing signal distortion
US4382214A (en) Direct current motor
JP4150133B2 (en) Multipolar rotating electrical machine and its sensing method
JPS6246811B2 (en)
JPS6026451A (en) Frequency generator of servo motor or the like
JPS6219094Y2 (en)
SU1358047A1 (en) A.c.tachogenerator as analog transmitter
JPS59188365A (en) Frequency generator of servo motor or the like
KR0160900B1 (en) Drum motor device for vcr
JPS6134872Y2 (en)
JPS60170456A (en) Brushless motor having frequency generator
SE451356B (en) DEVICE AT A TEMPORARY MAGNET
JPS5844375Y2 (en) Motor rotation speed detection device
JPS6230462Y2 (en)
JPS5926788Y2 (en) Rotation state detection device
JPH0974782A (en) Control apparatus for motor
JPS6260457A (en) Flat type motor
JPH0556617A (en) Stator for synchronous motor