JPS60264346A - Radiation-resistance optical fiber - Google Patents

Radiation-resistance optical fiber

Info

Publication number
JPS60264346A
JPS60264346A JP59117867A JP11786784A JPS60264346A JP S60264346 A JPS60264346 A JP S60264346A JP 59117867 A JP59117867 A JP 59117867A JP 11786784 A JP11786784 A JP 11786784A JP S60264346 A JPS60264346 A JP S60264346A
Authority
JP
Japan
Prior art keywords
optical fiber
radiation
geo2
glass
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59117867A
Other languages
Japanese (ja)
Inventor
Shuichi Shibata
修一 柴田
Motohiro Nakahara
基博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59117867A priority Critical patent/JPS60264346A/en
Publication of JPS60264346A publication Critical patent/JPS60264346A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To improve the radiation resistance of an optical fiber having a core made of an SiO2 glass doped with GeO2 at a molar ratio higher than a specific level, and to lower the increase in the optical transmission loss caused by irradiation, by using a halogen element as a component of the optical fiber. CONSTITUTION:An SiO2 glass doped with >=5mol% GeO2 and containing >=10ppm of a halogen element (e.g. Cl, F, etc.) is prepared by VAD process, etc. using SiCl4 and GeCl4, etc. as starting raw materials. The objective radiation- resistant optical fiber can be manufactured by using the above glass as a core. As an alternative method, a radiation-resistant optical fiber can be manufactured by using an SiO2 glass free from GeO2 or doped with <5mol% GeO2, and free from halogen element as the core.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は耐放射線光ファイバ、さらに詳しくは放射線、
特にγ−線の照射環境下、たとえば宇宙空間などにおい
て生じる光損失増加量が少なく、耐放射線特性に優れた
光ファイバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to radiation-resistant optical fibers, and more particularly to radiation-resistant optical fibers.
In particular, the present invention relates to an optical fiber that has excellent radiation resistance characteristics and has a small increase in optical loss that occurs in a γ-ray irradiation environment, for example, in outer space.

〔発明の背景〕[Background of the invention]

石英系ガラスにγ−線が照射された場合、紫外線吸収が
生じ光ファイバにおいても使用する波長域(0,6〜1
.7μl11)で、吸収のすそひきの影響から光損失が
増加することが知られている。これらのことに関しては
、たとえば、E、J、Fr1ebel とM、E、Gi
ngrichによって” Radiation−Ind
uced 0ptical Absorption B
ands in Low Loss 0ptical 
Fiber Waveguides ″ (J、Non
−Cryot、5olids vo138−39 P2
45 : 1980)なる論文に詳述されている。
When γ-rays are irradiated on silica glass, it absorbs ultraviolet rays, which extends to the wavelength range (0.6 to 1
.. It is known that at 7 μl (11), optical loss increases due to the effect of absorption skirting. Regarding these matters, see, for example, E. J. Fr1ebel and M. E. Gi
ngrich”Radiation-Ind
uced 0ptical absorption B
ands in Low Loss 0ptical
Fiber Waveguides'' (J, Non
-Cryot, 5olids vol138-39 P2
45: 1980).

上記論文においては、石英ガラスまたは種々のドーパン
トを添加した石英ガラスをコアとする低損失光ファイバ
に関して、放射線(T−線)による光損失増加量が比較
しである。
In the above paper, the increase in optical loss due to radiation (T-ray) is compared for low-loss optical fibers having a core made of quartz glass or quartz glass doped with various dopants.

これによると、光ファイバのなかでは、何も添加されて
いない純石英コア光ファイバが最も耐放射線に優れ、次
ぎにGeO2をドープした光ファイハが優れている。P
およびBを含む光ファイバは耐放射線特性に劣り、短波
長側だけでなく長波長側(1〜1.7μm)でも大きな
光損失増加量を示す。
According to this, among optical fibers, a pure silica core optical fiber without any additives has the best radiation resistance, followed by an optical fiber doped with GeO2. P
Optical fibers containing B and B have poor radiation resistance and show a large increase in optical loss not only on the short wavelength side but also on the long wavelength side (1 to 1.7 μm).

このように、ドーパントの種類としては大雑把に何が優
れているかが明らかになったが、同しドーパントにおい
ても、損失増加量は異なることが知られており、たとえ
ば5102コアやSiO2−Ge02コア光フアイバに
おいて具体的にどうすれば耐放射線に優れた光ファイバ
になるか不明であった。
In this way, it has become clear which type of dopant is better, but it is known that the amount of loss increase differs even for the same dopant. For example, 5102 core and SiO2-Ge02 core optical It was unclear how to specifically create an optical fiber with excellent radiation resistance.

〔発明の概要〕[Summary of the invention]

本発明は上述の点に鑑みなされたものであり、放射線を
照射したとき光損失増加量の少ない、すなわち耐放射線
に優れた光ファイバを提供することを目的とする。
The present invention has been made in view of the above points, and it is an object of the present invention to provide an optical fiber that exhibits a small increase in optical loss when irradiated with radiation, that is, has excellent radiation resistance.

したがって本発明による耐放射線光ファイバはSiO2
に5モル%以JIGe02をドープしたガラス11 を
1アとする光ファイバであ−て・少なくとも10ppm
以上のハロゲン元素を含有することを特徴とするもので
ある。
Therefore, the radiation-resistant optical fiber according to the present invention is made of SiO2
An optical fiber comprising glass 11 doped with 5 mol % or more of JIGe02, with a concentration of at least 10 ppm.
It is characterized by containing the above halogen elements.

また本発明による第二の耐放射線光ファイバばSiOQ
ガラスもしくはSjo 2に5モル%未満のGe01l
をドープしたガラスをコアとする光フ1イハであって、
ハロゲン元素を含有しないことを特徴とするものである
Moreover, a second radiation-resistant optical fiber according to the present invention is SiOQ.
Less than 5 mol% Ge01l in glass or Sjo 2
An optical film whose core is glass doped with
It is characterized by not containing a halogen element.

本発明者らはSi02およびSi02−Ge02 :7
ア光フアイバを対象にどのような組成のときに耐放射線
に優れた光ファイバになるかを種々検討し、本発明に至
ったものであり、特にハロゲン元素不純物の影響が大き
いことを明らかにしたものである。したがって、本発明
による耐放射線光ファイバによれば、放射線を照射した
とき光損失増加量の少ない、すなわち耐放射線が良好で
あるという利点がある。
We found that Si02 and Si02-Ge02:7
The present invention was arrived at after conducting various studies on the composition of optical fibers that would result in an optical fiber with excellent radiation resistance, and it was revealed that the influence of halogen element impurities is especially large. It is something. Therefore, the radiation-resistant optical fiber according to the present invention has the advantage that the increase in optical loss is small when irradiated with radiation, that is, it has good radiation resistance.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明による耐放射線光ファイバは、前述のようにSi
O2に5モル%以上GeO2をドープしたガラスをコア
とする光ファイバであって、少なくとも10ppm以上
のハロゲン元素を含有するものである。このようなハロ
ゲン元素としては塩素、フン素などを例として上げるこ
とができる。
The radiation-resistant optical fiber according to the present invention is made of Si as described above.
This optical fiber has a core made of glass in which O2 is doped with 5 mol% or more of GeO2, and contains at least 10 ppm or more of a halogen element. Examples of such halogen elements include chlorine and fluorine.

後述の実施例より明らかなように、SiO2にGeO2
を5モル%以上含む光ファイバにあっては、ハロゲン元
素を含有せしめることにより、放射線を照射したときの
光損失増加量を減少できるからである。
As is clear from the examples described later, GeO2 is added to SiO2.
This is because, in an optical fiber containing 5 mol% or more of halogen, the increase in optical loss when irradiated with radiation can be reduced by containing a halogen element.

ハロゲン元素の含有量は1.Op p m以上であるが
、このハロゲン元素含有量が10ppm未満であると、
充分な耐放射線効果かえられないおそれがあるからであ
る。
The content of halogen elements is 1. Op p m or more, but this halogen element content is less than 10 ppm,
This is because there is a risk that sufficient radiation resistance effect may not be achieved.

また、本発明による第二の耐放射線光ファイバは、前述
のようにSi02ガラスもしくはSi09に5モル%未
満のGeOQをドープしたガラスをコアとする光ファイ
バであって、ハロゲン元素を含有しないものいである。
Further, the second radiation-resistant optical fiber according to the present invention is an optical fiber having a core of Si02 glass or glass doped with less than 5 mol% GeOQ in Si09, and does not contain a halogen element, as described above. be.

これは後述の実施例より明らかなように、5102ガラ
スないしSi02にGeOwが5モル%未満しか含まれ
ないときは、ハロゲン元素を含有するとき耐放射線効果
が低下するからでる。
This is because, as will be clear from the examples described later, when the 5102 glass or Si02 contains less than 5 mol% of GeOw, the radiation resistance effect decreases when it contains a halogen element.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

実施例1 下記の3種類の光ファイバを以下の方法で製造した。Example 1 The following three types of optical fibers were manufactured by the following method.

(A )塩素を含有しないSiO2−GeO9系光フア
イバ。
(A) SiO2-GeO9 optical fiber containing no chlorine.

特願昭58−213202号に詳述された方法により製
造した。すなわち、アルコキシドSi (OC2Hs 
)a 、Ge (OC911s )ル液体原料を所定の
比率に混合し、これを超音波振動により霧化して、酸水
素バーナに供給し、まずVAD法(vapor−pha
se axial deposition)と同様にス
ート母材を作製し、次ぎにこれを不活性ガス雰囲気下で
1500℃以上の温度で透明ガラス化し、光フアイバ用
母材を得る。
It was produced by the method detailed in Japanese Patent Application No. 58-213202. That is, alkoxide Si (OC2Hs
)a, Ge (OC911s) liquid raw materials are mixed at a predetermined ratio, atomized by ultrasonic vibration, and supplied to an oxyhydrogen burner.
A soot base material is prepared in the same manner as in the axial deposition process, and then this is transparently vitrified at a temperature of 1500° C. or higher in an inert gas atmosphere to obtain an optical fiber base material.

この母材を石英ガラスジャケット管に挿入して光ファイ
バに線引した。
This base material was inserted into a quartz glass jacketed tube and drawn into an optical fiber.

このような方法によって製造された光ファイバは出発原
料がアルコキシドであり、しがも途中に塩素系試薬を用
いる工程が何もないので、まったく塩素を含まないSi
 −GeO2系光フアイバを製造することができる。
The starting material for optical fibers manufactured by this method is alkoxide, and since there is no step using a chlorine-based reagent during the process, the optical fiber is made of Si, which does not contain any chlorine.
-GeO2-based optical fibers can be manufactured.

同様ニSi (OCII 3) 4、St (OCQI
I 5) 4を原オ;1とすることにより、純石英ガラ
スも製造するごとができ、このガラスはクランドに硼素
(B )やフッ素(F )を含有した石英ガラスを用い
ることにより光ファイバとすることができる。
Similarly NiSi (OCII 3) 4, St (OCQI
I5) By changing 4 to 1, pure silica glass can also be manufactured, and this glass can be used as an optical fiber by using quartz glass containing boron (B) or fluorine (F) in the crund. can do.

(B ) 10〜20ppm (D塩素を含有するSi
O2GeO2系光ファイバ。
(B) 10 to 20 ppm (Si containing D chlorine
O2GeO2 optical fiber.

塩化物5iCI 4およびGeCl4を出発原料として
、VAD法によりスート母材、透明ガラス母材を作製し
た。ただし、本製造方法においては塩素系脱水剤による
高温下での脱水処理をおこなっておらず塩素含有量は1
0〜20pPIIlである。塩素含有量の定量は、放射
下分析により行ったものである。
A soot base material and a transparent glass base material were produced by the VAD method using chloride 5iCI4 and GeCl4 as starting materials. However, in this manufacturing method, dehydration treatment at high temperatures using a chlorine-based dehydrating agent is not performed, and the chlorine content is 1.
0 to 20 pPIIl. The chlorine content was determined by radiation analysis.

(C) 500−1000ppm塩素を含有する5i0
2−Ge02系光フアイバ。
(C) 5i0 containing 500-1000 ppm chlorine
2-Ge02 optical fiber.

塩化物5iCI4 、GeCl4を出発材料としテVA
D法によりスート母材を製造した。次ぎに塩素系脱水剤
により脱水処理を行うと、500〜11000pp塩素
含有の光ファイバが得られた。
TeVA using chloride 5iCI4, GeCl4 as starting material
A soot base material was produced by method D. Next, dehydration treatment was performed using a chlorine-based dehydrating agent, and an optical fiber containing 500 to 11,000 ppp of chlorine was obtained.

以上の3種類の光ファイバの特性を下記の表に示す。The characteristics of the above three types of optical fibers are shown in the table below.

第1表 」−記3種類の光ファイバを用いて、T−線照射による
光損失増加実験を行った。第1図における照射率は5.
4 XIO” rads/hourであり、用いた光フ
ァイバは八〇 (コアとクラッドの屈折率)−1%、長
さ200〜250 m 、測定波長0.85μmであっ
た。
An experiment was conducted to increase optical loss by T-ray irradiation using three types of optical fibers shown in Table 1. The irradiation rate in Figure 1 is 5.
The optical fiber used was 80 (refractive index of core and cladding) -1%, length was 200 to 250 m, and measurement wavelength was 0.85 μm.

この第1図より明らかなように光ファイバBおよびCは
同程度の比較的低い損失増加を示しているのに対し、C
10を含有しない光ファイバAは高い損失増加量を示し
ている。
As is clear from FIG. 1, optical fibers B and C show a relatively low increase in loss at the same level, while C
Optical fiber A that does not contain 10 shows a high loss increase.

第2図に測定波長1.3μmでの全照射量に対するt0
失増加を示す。第1図の場合と比較すると小さい値であ
るが、光ファイバへの値が光ファイバB、Cに比べて大
きいのは同様の結果である。
Figure 2 shows t0 for the total irradiance at a measurement wavelength of 1.3 μm.
Indicates an increase in loss. Although the value is small compared to the case of FIG. 1, the value for the optical fiber is larger than that for optical fibers B and C, which is a similar result.

γ−線照射ではガラス中に欠陥が生じ、その欠陥に起因
する吸収が紫外線波長域に現れる。5iO2Ge02で
は波長0.26μmに吸収が生じており、第1図、第2
図に示したものはこの吸収のスソ引きと考えることがで
きる。長波長にいくほど、光損失の増加量が減少するの
はこのためである。
Gamma-ray irradiation causes defects in the glass, and absorption due to the defects appears in the ultraviolet wavelength range. In 5iO2Ge02, absorption occurs at a wavelength of 0.26 μm, as shown in Figures 1 and 2.
What is shown in the figure can be thought of as a subtraction of this absorption. This is why the increase in optical loss decreases as the wavelength becomes longer.

実施例2 GeOv ドーパントの量を変化させた実施例1で示し
た方法で製造された前記^、B、Cの3種類の光ファイ
バを多数本作製し光損失の増加■を測定した。
Example 2 A large number of optical fibers of the above three types ^, B, and C were produced by the method shown in Example 1 in which the amount of GeOv dopant was varied, and the increase in optical loss (2) was measured.

総照射量は10’ radsであり、光ファイバのパラ
メータ(長さ、コア径、ファイバi¥)は全て等しくし
である。
The total irradiance was 10' rads, and the optical fiber parameters (length, core diameter, fiber i) were all equal.

第3図に波fio、85μmにおける損失増加量とGe
O2含有量(八〇 (%))の関係を示す。ここでGe
02含有量を屈折率との関係ばY、Y、IIuang等
によって、J、Non−Cr1stalline 5o
lids vo127. (+978) P29〜37
に発表されており、約Δn−1%で10モル%のGeO
2に対応していることがわがっている。第4図にSiO
2−GeO22成分径における八〇 (%)とGeO2
モル%との関係を示す。第5図に波長1.3μmにおけ
る損失増加量とGeO2含有量(Δn (%))の関係
を示す。
Figure 3 shows the wave fio, the amount of loss increase at 85 μm, and Ge
The relationship between O2 content (80%) is shown. Here Ge
If the relationship between the 02 content and the refractive index is Y, Y, IIuang, etc., J, Non-Cr1stalline 5o
lids vo127. (+978) P29-37
10 mol% GeO at about Δn-1%.
I know that it corresponds to 2. Figure 4 shows SiO
80 (%) in 2-GeO2 component diameter and GeO2
The relationship with mol% is shown. FIG. 5 shows the relationship between loss increase and GeO2 content (Δn (%)) at a wavelength of 1.3 μm.

第3図および第5図より明らかなように、GeO2含有
量が多い組成(たとえばΔn =0.5%以上、GeO
Q濃度5モル%以上)では優れていることがわかる。一
方、GeO2が少ない組成(Δn =0.5%未満)領
域では、塩素を含有しない光ファイバが耐放射線性に優
れている。さらに直線をGeO90モル%、すなわち純
SiOeガラスに外挿して考えると、SiO2ガラスコ
ア光フアイバでは、塩素を含有しないものが優れている
ことがわかる。
As is clear from FIGS. 3 and 5, compositions with a high GeO2 content (for example, Δn = 0.5% or more, GeO
It can be seen that Q concentration of 5 mol % or higher) is excellent. On the other hand, in a composition region with a small amount of GeO2 (Δn = less than 0.5%), an optical fiber that does not contain chlorine has excellent radiation resistance. Further extrapolating the straight line to 90 mol% GeO, that is, pure SiOe glass, it can be seen that SiO2 glass core optical fibers that do not contain chlorine are superior.

CI2およびGeOp、がSiO2中で共存する場合、
耐放射線特性に優れる現象に対して、必ずしも明確な説
明は現在においてなされていない。しかし上記3M類の
光ファイバのESR(電子スピン共鳴)測定により、た
とえばΔn =1%のSi09−GeO2コア光ファイ
バではGe欠陥濃度に対応するESR吸収強度がA >
B >Cの順になっていることから、CI2はGeが関
与する欠陥を減少させる働きをしていることが発明者ら
の実験により明らかである。
When CI2 and GeOp coexist in SiO2,
At present, no clear explanation has been given for the phenomenon of excellent radiation resistance. However, ESR (electron spin resonance) measurements of the above-mentioned 3M class optical fibers show that, for example, in a Si09-GeO2 core optical fiber with Δn = 1%, the ESR absorption intensity corresponding to the Ge defect concentration is A >
Since the order is B>C, it is clear from experiments conducted by the inventors that CI2 functions to reduce defects involving Ge.

1、・□ (11) 〔発明の効果〕 以」二説明したように本発明による耐放射線光ファイバ
によれば、放射線が照射されたとき光損失増加量の小さ
いので、放射線の多い宇宙空間などに放置される機具な
どの光ファイバとして使用できるという利点がある。
1.・□ (11) [Effects of the Invention] As explained below, the radiation-resistant optical fiber according to the present invention has a small increase in optical loss when irradiated with radiation, so it can be used in places such as outer space where there is a lot of radiation. It has the advantage that it can be used as an optical fiber for equipment that is left unattended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は全照射量に対して3種類の光ファイバの損失増
加量(波長0.85μm)を示した図、第2図は測定波
長1.3μmでの全照射量に対する増加損失を示す図、
第3図は波長0.85μmにおける増加損失とGe02
の含有量(Δn (%)で示す)との関係を示す図、第
4図はSiO2−GeO2系における八〇 (%)とG
eOp、モル%との関係をしめず図、第5図は波長1.
3μmにおける増加損失とGeO2含有量(八〇 (%
))の関係を示す図である。 出願人代理人 雨 宮 正 季 (12)
Figure 1 shows the increase in loss of three types of optical fibers (wavelength 0.85 μm) with respect to the total irradiance, and Figure 2 shows the increase in loss with respect to the total irradiance at a measurement wavelength of 1.3 μm. ,
Figure 3 shows the increased loss and Ge02 at a wavelength of 0.85 μm.
Figure 4 shows the relationship between the content of G (indicated by Δn (%)) and the content of G
Figure 5 shows the relationship between eOp and mol% at wavelength 1.
Increased loss at 3 μm and GeO2 content (80 (%
)) is a diagram showing the relationship. Applicant's agent Masaki Amemiya (12)

Claims (1)

【特許請求の範囲】 (113iOLlに5モル%以上Ge09をドープした
ガラスをコアとする光ファイバであって、少なくとも1
0ppm以上のハロゲン元素を含有することを特徴とす
る耐放射線光ファイバ。 +21 8i02ガラスもしくはSi02に5モル%未
満のGeOQをドープしたガラスをコアとする光ファイ
バであって、ハロゲン元素を含有しないことを特徴とす
る耐放射線光ファイバ。
[Scope of Claims] (An optical fiber having a core of glass doped with 5 mol% or more of Ge09 in 113iOLl,
A radiation-resistant optical fiber characterized by containing 0 ppm or more of a halogen element. A radiation-resistant optical fiber having a core made of +21 8i02 glass or glass doped with less than 5 mol % of GeOQ in Si02, and containing no halogen element.
JP59117867A 1984-06-08 1984-06-08 Radiation-resistance optical fiber Pending JPS60264346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59117867A JPS60264346A (en) 1984-06-08 1984-06-08 Radiation-resistance optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59117867A JPS60264346A (en) 1984-06-08 1984-06-08 Radiation-resistance optical fiber

Publications (1)

Publication Number Publication Date
JPS60264346A true JPS60264346A (en) 1985-12-27

Family

ID=14722249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59117867A Pending JPS60264346A (en) 1984-06-08 1984-06-08 Radiation-resistance optical fiber

Country Status (1)

Country Link
JP (1) JPS60264346A (en)

Similar Documents

Publication Publication Date Title
CA2630557C (en) Single mode optical fiber with improved bend performance
EP1875284B1 (en) Alkali and fluorine doped optical fiber
CN103217735B (en) Optical fiber and fibre-optical preform
EP1663890B1 (en) Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
US10259742B2 (en) Optical fiber with low loss and nanoscale structurally homogeneous core
US20070297735A1 (en) Optical fiber containing alkali metal oxide
US5681365A (en) Radiation resistant optical waveguide fiber
TW483204B (en) Optical fiber with absorbing overclad glass layer
JPH0214850A (en) Radiation-resistant multiple fiber
Tajima et al. Low Rayleigh scattering P/sub 2/O/sub 5/-F-SiO/sub 2/glasses
US4327965A (en) Single mode fibre and method of manufacture
JPH0416427B2 (en)
JP2542356B2 (en) Radiation resistant method for silica optical fiber glass
JPS60264346A (en) Radiation-resistance optical fiber
JPS61191544A (en) Quartz base optical fiber
JPH0665613B2 (en) Quartz glass tube
JPS62283845A (en) Doped quartz-base optical fiber
JPS6096545A (en) Optical fiber
US20230167002A1 (en) Optical fibers and method of making the same
JPS6313946B2 (en)
JPS61251539A (en) Optical fiber
JPH0362659B2 (en)
JPH02302339A (en) Optical fiber
JPS61117128A (en) Preparation of parent material for optical fiber
JP2699117B2 (en) Radiation resistant multiple fiber