JPH0362659B2 - - Google Patents

Info

Publication number
JPH0362659B2
JPH0362659B2 JP58115435A JP11543583A JPH0362659B2 JP H0362659 B2 JPH0362659 B2 JP H0362659B2 JP 58115435 A JP58115435 A JP 58115435A JP 11543583 A JP11543583 A JP 11543583A JP H0362659 B2 JPH0362659 B2 JP H0362659B2
Authority
JP
Japan
Prior art keywords
fluorine
core
quartz
optical fiber
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58115435A
Other languages
Japanese (ja)
Other versions
JPS60255646A (en
Inventor
Kazuaki Yoshida
Hiroshi Takahashi
Katsuhiko Ookubo
Nobuo Inagaki
Motohiro Nakahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Furukawa Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Furukawa Electric Co Ltd
Priority to JP58115435A priority Critical patent/JPS60255646A/en
Publication of JPS60255646A publication Critical patent/JPS60255646A/en
Publication of JPH0362659B2 publication Critical patent/JPH0362659B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は伝送損失の低い石英系光フアイバに関
するものである。 〔従来の技術とその問題点〕 石英系光フアイバの場合は高純度石英とドープ
ト石英との組み合わせが多く、例えばコアが高純
度石英からなるとき、クラツドは低屈折率ドープ
ト石英で構成され、コアが高屈折率ドープト石英
のとき、クラツドは高純度石英となるのが一般的
である。 また、コア,クラツドが共にドープト石英から
なるとき、そのドープ材を選定して上記両者に相
対的な屈折率差をもたせている。 一般的にコア用のドープ材としてはGeO2、P2
O5、Al2O3などの高屈折率用物質が採用されてお
り、クラツド用のドープ材としてはB2O3、弗化
物などの低屈折率用物質が採用されている。 もちろんこれ以外のドープ材も適宜採用されて
いる。 ところで、上記光フアイバの伝送損失αは次式
で求められる。 α=a/λ4+b+c(λ) ここで、 a:レイリー散乱係数 b:構造不完全による損失 c(λ):波長λに依存する吸収損失 (例えばOH基による吸収損失) λ:伝送光の波長 上記において、bおよびc(λ)は0にできる
とされているが、a/λ4は材質(ガラス)に固有
の値であるため、これを0にすることはできな
い。 高純度石英の場合、すなわちドープ材を含まな
い高純度の石英の場合にはaの値が最も小さく、
その値aは約0.7となつている。 そしてこのようにaの値が最も小さい高純度石
英でコアをつくり、さらに上記b、c(λ)が0
であるとした場合でも、伝送損失αはλ=1.3μm
において0.25dB/Kmとなる。 したがつて高屈折率ドープト石英をコアとして
いる従来の石英系光フアイバでは、レイリー散乱
係数の値が前述した高純度石英のそれよりも大き
くなつてしまい、その伝送損失は大きくなる。 また、コアが高純度石英製のものでも前述した
ようにレイリー散乱による伝送損失が少なからず
生ずる。 〔課題を解決するための手段〕 本発明は上記問題点に鑑み、コアが高純度石英
からなる光フアイバよりもさらに低損失の石英系
光フアイバを提供しようとするもので、その構成
は、石英系のコアと石英系のクラツドとからなる
光フアイバにおいて、上記コアが、高純度石英に
対する屈折率差(△o)で−0.01%〜−0.20%とな
る量の弗素を含有していることを特徴とするもの
である。 〔作用〕 このように石英系のコアが高純度石英に対する
屈折率差(△o)で−0.01%〜−0.20%となる量の
弗素を含有していることにより、レイリー散乱係
数を小さくでき、かつ低OH基化が容易となるの
で、コアが高純度石英や弗素以外のドープ材を含
有するドープト石英からなる光フアイバよりも、
より低損失の石英系光フアイバを得ることができ
る。 尚、高純度石英に対する屈折率差(△o)で−
0.01%〜−0.20%となる量の弗素の量とは、おお
よそ0.014wt%〜0.28wt%に相当する。 〔実施例〕 以下に本発明の実施例を図面を参照して詳細に
説明する。第1図、第2図、第3図において、符
号1は石英系のコア、符号2は石英系のクラツド
であり、このうち第1図、第2図のものは、それ
ぞれクラツドが内部クラツド21,22と外部ク
ラツド23,24とで構成されている。 第1図の石英系光フアイバにおいて、そのコア
1は、高純度石英に対する屈折率差(△o)で−
0.01%〜−0.20%に相当する量、すなわちおおよ
そ0.014wt%〜0.28wt%の弗素を含有した弗素ド
ープト石英からなり、内部クラツド21は上記コ
ア1よりも弗素のドープ量の多い弗素ドープト石
英からなり、さらに外部クラツド23はドープ材
を含まない高純度石英からなる。 第2図の石英系光フアイバにおいて、そのコア
1は前記第1図のものと同様、高純度石英に対す
る屈折率差(△o)で−0.01%〜−0.20%に相当す
る量の弗素を含有した弗素ドープト石英からな
り、内部クラツド22も前記第1図のものと同じ
く、コア1よりも弗素のドープ量の多い弗素ドー
プト石英からなり、さらに外部クラツド24は酸
化硼素(B2O3)がドープされた石英からなる。 第3図の石英系光フアイバは上述のものとは異
なり、クラツド2が単一の層で構成されている
が、この場合もコア1は高純度石英に対する屈折
率差(△o)で−0.01%〜−0.20%に相当する量の
弗素を含有した弗素ドープト石英からなり、単一
層のクラツド2はそのコア1よりも弗素のドープ
量の多い弗素ドープト石英からなる。 なお、上記において第1図、第2図の内部クラ
ツド21,22、第3図のクラツド2はコア1よ
りも低屈折率となるかぎり、弗素以外をドープ材
とするドープト石英で構成してもよく、さらに外
部クラツド23,24も前記以外のガラス組成物
で構成してもよい。 また、上記においてコア1が弗素を含有し、さ
らに第1図、第2図の内部クラツド21,22、
第3図のクラツド2が弗素を含有している場合、
これら弗素ドープト石英に他のドープ材、例えば
GeO2などを含有させることがある。 こうした場合の弗素以外のドープ材は光フアイ
バの製造易度、屈折率調整などに基づき、任意に
選定される。 上記各実施例での石英系光フアイバはその伝送
型式がステツプインデツクス、グレーデツドイン
デツクスのいずれであつてもよく、さらにシング
ルモード伝送型、マルチモード伝送型の2通りが
ある。 そしてこれらの光フアイバ母材を製造する手段
としてはMCVD法、OVD法、VAD法、PCVD法
など、各種のCVD法があげられる。 以上に例示した各種石英系光フアイバは、その
コア1が、高純度石英に対する屈折率差(△o
で−0.01%〜−0.20%に相当する量の弗素を含有
した弗素ドープト石英からなる。 この弗素ドープト石英は、高純度石英やこれに
単にGeO2、P2O5、Al2O3などがドープされた石
英よりもレイリー散乱係数が小さく、また、OH
基が残存している場合には0.95μm、1.24μm、
1.39μmなどの波長を中心に吸収損失があらわれ
るが、上記弗素ドープト石英の場合は他のドープ
ト石英と比べ低OH基化が容易であり、これの含
有率をほぼ0ppmにすることができる。 特にコア1中の弗素が高純度石英に対する屈折
率差で0.01%低下させるようにドープされている
と低OH基化の効果が顕著となり、伝送特性がよ
り改善される。 なお、弗素は石英に対し屈折率を低下させるド
ープ材であり、それゆえ上記コア1が弗素のみド
ープされている場合は高純度石英よりも低屈折率
となるが、第1図、第2図の内部クラツド21,
22、第3図のクラツド2はそれぞれコア1より
も多量の弗素を含有しているので当該コア1と比
べ低屈折率である。 もちろん内部クラツド21,22、単一層のク
ラツド2が弗素以外のドープ材を含有している場
合でも、これらはコア1よりも低屈折率とする。 また、第3図の単一層クラツド2では耐酸性に
難点のある弗素ドープト石英が光フアイバ表面に
露呈されており、これの対策が必要となるが、第
1図、第2図の場合は、耐酸性に関して問題のな
い高純度石英製の外部クラツド23、酸化硼素ド
ープト石英製の外部クラツド24が光フアイバ表
層部にあるので第3図のものよりも望ましい。 さらにコア1の外周に酸化硼素ドープト石英が
直接接触する場合、一般的に長波長領域での低損
失化が難しくなるとされているが、上記各実施例
での石英系光フアイバではそのようなことがない
ので、この点でも低損失化がはかれる。 次に本発明の石英系光フアイバであつて、前述
した第1図〜第3図に対応する構造のものについ
てより具体的な例を次表により説明する。なお、
コア径やクラツド径の単位はμm、屈折率差△o
高純度石英に対する値でその単位は%、そして伝
送損失値は波長1.30μmでの値でその単位はdB/
Kmである。
[Industrial Application Field] The present invention relates to a silica-based optical fiber with low transmission loss. [Prior art and its problems] In the case of silica-based optical fibers, high-purity quartz and doped quartz are often combined. For example, when the core is made of high-purity quartz, the cladding is made of low-refractive-index doped quartz, and the core is made of high-purity quartz. When is high refractive index doped quartz, the cladding is generally high purity quartz. Further, when both the core and the cladding are made of doped quartz, the doping material is selected to provide a relative difference in refractive index between the two. GeO 2 and P 2 are generally used as doping materials for the core.
High refractive index substances such as O 5 and Al 2 O 3 are used, and low refractive index substances such as B 2 O 3 and fluoride are used as dopants for the cladding. Of course, other dopants may also be used as appropriate. By the way, the transmission loss α of the above-mentioned optical fiber is determined by the following equation. α=a/λ 4 +b+c(λ) where, a: Rayleigh scattering coefficient b: Loss due to structural imperfection c(λ): Absorption loss depending on wavelength λ (e.g. absorption loss due to OH group) λ: Loss of transmitted light Wavelength In the above, it is said that b and c(λ) can be set to 0, but since a/λ 4 is a value specific to the material (glass), it cannot be set to 0. In the case of high-purity quartz, that is, high-purity quartz that does not contain doping materials, the value of a is the smallest,
Its value a is approximately 0.7. In this way, the core is made of high-purity quartz with the smallest value of a, and the above b and c (λ) are 0.
Even if , the transmission loss α is λ = 1.3μm
0.25dB/Km. Therefore, in a conventional silica-based optical fiber having a core made of high refractive index doped quartz, the value of the Rayleigh scattering coefficient becomes larger than that of the above-mentioned high purity quartz, resulting in a large transmission loss. Furthermore, even if the core is made of high-purity quartz, a considerable amount of transmission loss occurs due to Rayleigh scattering, as described above. [Means for Solving the Problems] In view of the above-mentioned problems, the present invention aims to provide a silica-based optical fiber whose core is made of high-purity quartz and whose loss is even lower than that of an optical fiber whose core is made of quartz. In an optical fiber consisting of a quartz-based core and a silica-based cladding, it is confirmed that the core contains fluorine in an amount such that the refractive index difference (△ o ) with respect to high-purity quartz is −0.01% to −0.20%. This is a characteristic feature. [Effect] As described above, since the quartz-based core contains fluorine in an amount such that the refractive index difference (△ o ) with respect to high-purity quartz is -0.01% to -0.20%, the Rayleigh scattering coefficient can be reduced. In addition, it is easier to reduce the OH group, so it is more suitable than an optical fiber whose core is made of high-purity quartz or doped quartz containing a dopant other than fluorine.
A silica-based optical fiber with lower loss can be obtained. In addition, the refractive index difference (△ o ) with respect to high-purity quartz is -
The amount of fluorine that is 0.01% to -0.20% corresponds to approximately 0.014wt% to 0.28wt%. [Example] Examples of the present invention will be described in detail below with reference to the drawings. In Figs. 1, 2, and 3, reference numeral 1 indicates a quartz-based core, and reference numeral 2 indicates a quartz-based cladding. , 22 and outer clads 23, 24. In the silica-based optical fiber shown in Figure 1, the core 1 has a refractive index difference (△ o ) of -
The inner cladding 21 is made of fluorine-doped quartz containing fluorine in an amount corresponding to 0.01% to -0.20%, that is, approximately 0.014wt% to 0.28wt%, and the inner cladding 21 is made of fluorine-doped quartz that is doped with more fluorine than the core 1. Furthermore, the outer cladding 23 is made of high-purity quartz containing no dopants. In the silica-based optical fiber shown in Fig. 2, the core 1 contains fluorine in an amount equivalent to -0.01% to -0.20% in refractive index difference (△ o ) with respect to high-purity quartz, as in the case of Fig. 1. The inner cladding 22 is also made of fluorine-doped quartz that is doped with more fluorine than the core 1, and the outer cladding 24 is made of boron oxide (B 2 O 3 ), as in the case of FIG. Made of doped quartz. The silica-based optical fiber in Figure 3 differs from the above-mentioned one in that the cladding 2 is composed of a single layer, but in this case as well, the core 1 has a refractive index difference (△ o ) of -0.01 with respect to high-purity quartz. The single-layer cladding 2 is made of fluorine-doped quartz containing a higher amount of fluorine than the core 1. In addition, in the above, the inner claddings 21 and 22 in FIGS. 1 and 2 and the cladding 2 in FIG. 3 may be made of doped quartz using a material other than fluorine as long as the refractive index is lower than that of the core 1. Of course, the outer claddings 23, 24 may also be composed of glass compositions other than those described above. Further, in the above, the core 1 contains fluorine, and the inner cladding 21, 22 in FIGS. 1 and 2,
If Clad 2 in Figure 3 contains fluorine,
These fluorine-doped quartz may be supplemented with other doping materials, e.g.
May contain GeO 2 etc. In such a case, the dopant other than fluorine is arbitrarily selected based on the ease of manufacturing the optical fiber, adjustment of the refractive index, etc. The transmission type of the silica optical fiber in each of the above embodiments may be either step index or graded index, and there are two types: single mode transmission type and multimode transmission type. Various CVD methods such as MCVD, OVD, VAD, and PCVD can be used to manufacture these optical fiber base materials. The various silica-based optical fibers exemplified above have a core 1 that has a refractive index difference (△ o ) with respect to high-purity quartz.
It is made of fluorine-doped quartz containing fluorine in an amount equivalent to -0.01% to -0.20%. This fluorine-doped quartz has a smaller Rayleigh scattering coefficient than high-purity quartz or quartz simply doped with GeO 2 , P 2 O 5 , Al 2 O 3 , etc.
0.95μm, 1.24μm if the group remains
Absorption loss appears around wavelengths such as 1.39 μm, but in the case of the above-mentioned fluorine-doped quartz, it is easier to reduce the OH group content compared to other doped quartz, and the content can be reduced to approximately 0 ppm. In particular, if fluorine in the core 1 is doped to reduce the refractive index difference by 0.01% compared to high-purity quartz, the effect of lowering the OH group will be significant, and the transmission characteristics will be further improved. Fluorine is a dopant that lowers the refractive index of quartz, so if the core 1 is doped only with fluorine, it will have a lower refractive index than high-purity quartz, but as shown in Figures 1 and 2. internal cladding 21,
22, each of the claddings 2 in FIG. 3 contains more fluorine than the core 1, and therefore has a lower refractive index than the core 1. Of course, even if the inner claddings 21, 22 and the single layer cladding 2 contain dopants other than fluorine, they should have a lower refractive index than the core 1. Furthermore, in the single layer cladding 2 shown in Fig. 3, fluorine-doped quartz, which has poor acid resistance, is exposed on the optical fiber surface, and countermeasures must be taken to prevent this.However, in the case of Figs. 1 and 2, The outer cladding 23 made of high-purity quartz and the outer cladding 24 made of boron oxide-doped quartz, which have no problem with respect to acid resistance, are located on the surface of the optical fiber, and are therefore more preferable than the one shown in FIG. Furthermore, if boron oxide doped quartz is in direct contact with the outer periphery of the core 1, it is generally said that it is difficult to reduce loss in the long wavelength region, but this is not the case with the silica-based optical fibers in each of the above embodiments. Since there is no loss, loss can be reduced in this respect as well. Next, more specific examples of the silica-based optical fiber of the present invention having structures corresponding to those shown in FIGS. 1 to 3 described above will be explained with reference to the following table. In addition,
The core diameter and cladding diameter are in μm, the refractive index difference △ o is a value for high-purity quartz in %, and the transmission loss value is at a wavelength of 1.30 μm in dB/
Km.

【表】 上記表で明らかなように、各石英系光フアイバ
はいずれも伝送損失が低いものとなつている。 一方、第4図は横軸にコア中の弗素濃度(高純
度石英に対する屈折率差(△o)を、縦軸にその
ときの伝送損失値(波長1.30μmにおける)を示
したものである。 この第4図から明らかなように、石英系光フア
イバにおいて、コアが高純度石英に対する屈折率
差(△o)で−0.01%〜−0.20%となる量の弗素を
含有していると低損失の石英系光フアイバを得る
ことができる。 以上説明した通り、本発明は石英系のコアと石
英系のクラツドとからなる石英系光フアイバにお
いて、上記コアが、高純度石英に対する屈折率差
(△o)で−0.01%〜−0.20%となる量の弗素を含
有していることから、レイリー散乱係数を小さく
することができ、かつ低OH基化の効果も顕著と
なり、もつて低損失の伝送特性に優れた石英系光
フアイバを提供することができる。
[Table] As is clear from the table above, each silica optical fiber has a low transmission loss. On the other hand, in FIG. 4, the horizontal axis shows the fluorine concentration in the core (refractive index difference (Δ o ) with respect to high-purity quartz), and the vertical axis shows the transmission loss value (at a wavelength of 1.30 μm). As is clear from Fig. 4, in a silica-based optical fiber, if the core contains fluorine in an amount such that the refractive index difference (△ o ) with respect to high-purity quartz is -0.01% to -0.20%, the loss is low. As explained above, the present invention provides a silica-based optical fiber consisting of a quartz-based core and a silica-based cladding, in which the core has a refractive index difference (△) with respect to high-purity quartz. o ) contains fluorine in an amount of -0.01% to -0.20%, it is possible to reduce the Rayleigh scattering coefficient, and the effect of low OH grouping is also significant, resulting in low-loss transmission. A silica-based optical fiber with excellent characteristics can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の石英系光フアイバの
各種実施例を示した横断面図、第4図は本発明の
石英系光フアイバにおける弗素ドープ量と伝送損
失値の関係を示すグラフである。 1……コア、2……クラツド、21,22……
内部クラツド、23,24……外部クラツド。
Figures 1 to 3 are cross-sectional views showing various embodiments of the silica optical fiber of the present invention, and Figure 4 is a graph showing the relationship between the amount of fluorine doped and the transmission loss value in the silica optical fiber of the present invention. It is. 1... Core, 2... Clad, 21, 22...
Inner cladding, 23, 24...outer cladding.

Claims (1)

【特許請求の範囲】 1 石英系のコアと石英系のクラツドとからなる
光フアイバにおいて、上記コアが、高純度石英に
対する屈折率差(△o)で−0.01%〜−0.20%とな
る量の弗素を含有している石英系光フアイバ。 2 クラツドが内部クラツドと外部クラツドとか
らなる特許請求の範囲第1項記載の石英系光フア
イバ。 3 クラツドがコアよりも多くの弗素を含有して
いる特許請求の範囲第1項記載の石英系光フアイ
バ。 4 内部クラツドがコアよりも多く弗素を含有し
ている特許請求の範囲第2項記載の石英系光フア
イバ。 5 外部クラツドが高純度石英からなる特許請求
の範囲第2項記載の石英系光フアイバ。 6 外部クラツドが弗素以外のドープ材を含有し
ている特許請求の範囲第2項記載の石英系光フア
イバ。 7 コアが弗素と他のドープ材を共に含有し、内
部クラツドが弗素を含有し、かつ外部クラツドが
高純度石英からなる特許請求の範囲第1項乃至第
5項記載の石英系光フアイバ。 8 コアが弗素とGeO2を共に含有し、内部クラ
ツドが弗素を含有し、かつ外部クラツドが高純度
石英からなる特許請求の範囲第7項記載の石英系
光フアイバ。
[Scope of Claims] 1. In an optical fiber consisting of a quartz-based core and a quartz-based cladding, the core has an amount such that the refractive index difference (Δ o ) with respect to high-purity quartz is −0.01% to −0.20%. A quartz-based optical fiber containing fluorine. 2. The silica-based optical fiber according to claim 1, wherein the cladding comprises an inner cladding and an outer cladding. 3. The silica-based optical fiber according to claim 1, wherein the cladding contains more fluorine than the core. 4. The silica-based optical fiber according to claim 2, wherein the inner cladding contains more fluorine than the core. 5. The silica-based optical fiber according to claim 2, wherein the outer cladding is made of high-purity quartz. 6. The silica-based optical fiber according to claim 2, wherein the outer cladding contains a dopant other than fluorine. 7. The silica-based optical fiber according to claims 1 to 5, wherein the core contains both fluorine and other dopants, the inner cladding contains fluorine, and the outer cladding is made of high-purity quartz. 8. The silica-based optical fiber according to claim 7, wherein the core contains both fluorine and GeO 2 , the inner cladding contains fluorine, and the outer cladding is made of high-purity quartz.
JP58115435A 1983-06-27 1983-06-27 Optical fiber of quartz Granted JPS60255646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58115435A JPS60255646A (en) 1983-06-27 1983-06-27 Optical fiber of quartz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58115435A JPS60255646A (en) 1983-06-27 1983-06-27 Optical fiber of quartz

Publications (2)

Publication Number Publication Date
JPS60255646A JPS60255646A (en) 1985-12-17
JPH0362659B2 true JPH0362659B2 (en) 1991-09-26

Family

ID=14662488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58115435A Granted JPS60255646A (en) 1983-06-27 1983-06-27 Optical fiber of quartz

Country Status (1)

Country Link
JP (1) JPS60255646A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055445A2 (en) * 2001-01-12 2002-07-18 Corning Incorporated Optical fiber and preform, method of manufacturing same, and optical component made therefrom
JP5700699B2 (en) 2012-05-11 2015-04-15 株式会社フジクラ Broadband low-loss optical fiber manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125635A (en) * 1982-01-22 1983-07-26 Furukawa Electric Co Ltd:The Radiation-resistant optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125635A (en) * 1982-01-22 1983-07-26 Furukawa Electric Co Ltd:The Radiation-resistant optical fiber

Also Published As

Publication number Publication date
JPS60255646A (en) 1985-12-17

Similar Documents

Publication Publication Date Title
US7526177B2 (en) Fluorine-doped optical fiber
JP6298893B2 (en) Single mode fiber with trapezoidal core showing reduced loss
US7680381B1 (en) Bend insensitive optical fibers
JPH03100804U (en)
US8428415B2 (en) Bend insensitive optical fibers with low refractive index glass rings
EP3715923B1 (en) Single-mode optical fiber with ultralow loss and large effective area and manufacturing method therefor
CN106772788B (en) Single mode fiber with cut-off wavelength displacement
KR20130117839A (en) Single mode optical fibre
WO2017020457A1 (en) Ultra-low attenuation large effective area single-mode optical fiber
JPH0449082B2 (en)
JPH11237514A (en) Optical fiber for grating, optical fiber preform for grating, and production of this optical fiber preform
JPH0416427B2 (en)
JPS61219009A (en) Single mode light waveguide comprising quartz glass and manufacture thereof
JPH0362659B2 (en)
CN106249347B (en) Bending insensitive photosensitive fiber for on-line preparation of weak grating array and preparation method
JP2800960B2 (en) Viscous matching method of optical fiber and viscous matching optical fiber
US8792762B2 (en) Low loss aluminum doped optical fiber for UV applications
WO2024048118A1 (en) Optical fiber
JP3315786B2 (en) Optical amplifier type optical fiber
JPS62116902A (en) Wide-band low dispersion optical fiber
CN116324545A (en) Multi-core optical fiber
JPS61251539A (en) Optical fiber
JP2002518988A (en) Optical fiber with tantalum-doped cladding
JPH0129220Y2 (en)
JPH11202139A (en) Optical fiber for grating, optical fiber preform for grating, and manufacture of same optical fiber preform